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Abstract

Composed image retrieval is a type of image retrieval task
where the user provides a reference image as a starting point
and specifies a text on how to shift from the starting point
to the desired target image. However, most existing meth-
ods focus on the composition learning of text and reference
images and oversimplify the text as a description, neglect-
ing the inherent structure and the user’s shifting intention
of the texts. As a result, these methods typically take short-
cuts that disregard the visual cue of the reference images.
To address this issue, we reconsider the text as instructions
and propose a Semantic Shift Network (SSN) that explic-
itly decomposes the semantic shifts into two steps: from the
reference image to the visual prototype and from the visual
prototype to the target image. Specifically, SSN explicitly
decomposes the instructions into two components: degrada-
tion and upgradation, where the degradation is used to pic-
ture the visual prototype from the reference image, while the
upgradation is used to enrich the visual prototype into the fi-
nal representations to retrieve the desired target image. The
experimental results show that the proposed SSN demon-
strates a significant improvement of 5.42% and 1.37% on
the CIRR and FashionIQ datasets, respectively, and estab-
lishes a new state-of-the-art performance. Code is available
at https://github.com/starxing-yuu/SSN.

1 Introduction
Composed Image Retrieval (Vo et al. 2019) (CIR) is an
emerging image retrieval task in that the users can provide
a multi-modal query composed of a reference image and a
text. Different from the traditional image retrieval (Wein-
zaepfel et al. 2022) where the users must provide the ex-
act same image of the desired result or text-to-image re-
trieval (Wang et al. 2019) where the users should describe
the target in a detailed language, as shown in Figure 1a,
CIR relax the requirement of input thus the users can simply
provide an example image that similar to the desired im-
age as reference, and then describe the difference from the
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Figure 1: (a) gives an example of the CIR task. (b) shows
existing works treat text as a description connecting the ref-
erence image and target image. They follow the paradigm
of Ir + L ↔ It. (c) gives a brief illustration of our idea.
We propose to consider the text as an instruction, inheriting
the property of human language to express semantic shifts.
With text instructions, the reference image is first degraded
into visual prototypes and then enriched into the final rep-
resentations to retrieve. This process can be described as

Ir
L−

−→ I0r
L+

−→ It.

reference to the target. Despite their diverse model archi-
tectures (Kim et al. 2021; Yang et al. 2021), the essence of
this task is to fully understand the user’s intent conveyed by
the reference image and the language and then find the most
similar image from all candidates. Thanks to the develop-
ment of vision features (Radford et al. 2021) and language
representations (Devlin et al. 2019), we can accomplish the
CIR task with more flexible free-form languages, including
changing one specific attribute of one object and adding or
removing some objects.

However, capturing the user’s intentions is still a chal-
lenging problem because the instruction text is far different
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from the description text that is commonly used in current
vision-language tasks, e.g., visual grounding (Deng et al.
2018), cross-modal retrieval (Wang et al. 2019), or visual
captioning (Liu et al. 2022a). For example, given the refer-
ence image and the text “Change the color of blue car to
red” in Figure 1b, how to depict the desired image for us hu-
mans? One may have the following intuitive procedure: 1)
identify the part of the reference image that should change,
i.e., “the color of blue car”, 2) imagine the visual prototype
of the reference image, i.e., this car without any color, and
3) picture the final desired target image as “the car in red”.

Unfortunately, despite the complex model architecture de-
sign with cross-modal attention (Hosseinzadeh and Wang
2020), graph neural network (Zhang et al. 2022), or fine-
grained visual network (Hosseinzadeh and Wang 2020), ex-
isting methods (Baldrati et al. 2022; Zhao, Song, and Jin
2022; Goenka et al. 2022) generally oversimplify the CIR
task as a composition learning of vision and language where
the text is usually treated as a description (Figure 1b), dis-
regarding the propriety of the structure of the text, which
should be an instruction on how to modify the reference to
the target. More seriously, composition learning typically in-
troduces redundant or even incorrect information that may
disrupt the final representations, e.g., simply combining the
semantics ‘blue, car’ of the reference image and the seman-
tics ‘red, car, blue’ of the text will depict ‘a red and blue
car’ defectively. The fundamental cause of this issue lies in
a lack of precise understanding of the language.

In this paper, we propose to take the text as instructions
that represent the semantic shifts from the reference image
to the target image, and then decompose the instructions
into two parts: the degradation and the upgradation. As illus-
trated in Figure 1c, based on the decomposition, we conduct
the desired image representations in two steps: 1) degrading
the reference image into the visual prototype that only con-
tains the visual attributes that need to be preserved, and 2)
upgrading the visual prototype into the final desired target.
Thanks to the decomposition of instructions, we divide the
complex task that models the user’s intentions into two sim-
ple and orthogonal sub-tasks which are easier to learn. Based
on the final representations, we can directly find the nearest
neighbors in the latent space as the final retrieval results.

Specifically, we implement the proposed method with a
Semantic Shift Network (SSN) that is composed of four
components: 1) the representation networks that extract vi-
sual and language features of reference images, target im-
ages, and instructions; 2) the decomposing network that de-
composes the instruction text into the degradation part and
upgradation part; 3) the degrading network that transforms
the reference image to the visual prototype conditioned on
the degradation part of the instruction text; 4) the upgrading
network that transforms the visual prototype to the final rep-
resentation of desired image conditioned on the upgradation
part. To train the SSN, we design a traditional retrieval loss
to guarantee the overall performance of composed image re-
trieval, as well as a regularization constraint that disciplines
the language decomposing and the visual prototypes.

We validate the effectiveness of SSN on two widely used
composed image retrieval benchmarks, i.e., FashionIQ (Wu

et al. 2021) and CIRR (Liu et al. 2021). SSN stands as a
new state-of-the-art on all metrics. Specifically, we achieve
impressive improvements of 5.42% and 1.37% on CIRR and
FashionIQ mean recall metrics, respectively.

In summary, our contributions include:
• We reformulate the composed image retrieval task as a

semantic shift problem based on the text instructions,
with the shift path as reference image → visual proto-
type → desired target image.

• We introduce a Semantic Shift Network for the CIR task
that implements the decomposed semantic shifts with
several well-designed components.

• The proposed SSN achieves state-of-the-art performance
with impressive improvements on two widely-used com-
posed image retrieval datasets.

2 Related Work
Image Retrieval. Image Retrieval is a fundamental task
for the computer vision community since it has a wide
range of application scenarios, e.g., search engines, and e-
commerce (Zhang and Tao 2020). Given a query image, we
need to return the most similar image. In the beginning,
global image representation (Chen et al. 2022a) based re-
trieval methods were investigated. To achieve fine-grained
matching (Sun et al. 2021) between images and thus im-
prove retrieval performance, several approaches transformed
images into several local representations (e.g., region fea-
tures (Teichmann et al. 2019)). However, these pioneering
works (Chen et al. 2022a; Sun et al. 2021; Weinzaepfel et al.
2022)’s queries are images only and they focus more on sim-
ilarity matching between images. In reality, people usually
convey query intent with text rather than images, so text-
image retrieval is also a research focus in image search. Ben-
efiting from the success of a large model for visual language
pre-training (Kim, Son, and Kim 2021; Devlin et al. 2019),
cross-modal representations have shown remarkable perfor-
mance in text-image retrieval. Moreover, the query can also
combine image and text, which is the direction we explore.
Composed Image Retrieval. Composed Image Retrieval
refers to searching target images given semantically re-
lated reference images and modification texts. One line of
work (Zhang et al. 2023; Kim et al. 2021) introduces tar-
get images into the forward process during training, which
greatly increases the training cost. The MCL&SAP (Zhang
et al. 2023) method perceives the semantics of modifica-
tion texts at multiple layers of the image and models the
differences in the image. Another line of works aiming at
efficient retrieval explores composition learning and the fol-
lowing introduced works belong to this type. Gated residual
fusion is first proposed to combine image and text features
for the CIR task in TIRG (Vo et al. 2019) and is commonly
used for global fusion in later works (Wang et al. 2022; Kim
et al. 2021; Chen and Bazzani 2020). MAAF (Dodds et al.
2020) method applies self-attention mechanisms to realize
the interaction between image-text sequences. Conditioned
on text, VAL (Chen, Gong, and Bazzani 2020) is proposed
to obtain combined features through multi-grained cross-
modal semantic alignment, and CosMo (Lee, Kim, and Han
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Figure 2: The pipeline of our proposed Semantic Shift Network (SSN). Given a pair of reference images and text modifiers (also
as an instruction), we aim at retrieving the correct target image from candidate images. At the stage of visual-language represen-
tation, we utilize the CLIP image and text encoders to obtain the respective features. Then the semantic shift features from text
instruction are decomposed to direct the reference image features Ir into a visual prototype I0r . The text features biased toward
the target and reference image (namely L+ and L− respectively) are generated at the same time. In the upgrading process, L+

is fused with visual prototypes I0r by transformer an encode layer and then are linearly added to global representations. Finally,
similarity scores are measured by an inner-product operation to generate the ranked list.

2021) method refines reference image features from the term
of style and content. Benefiting from the visual-language
pre-training, several works (Liu et al. 2021; Goenka et al.
2022; Saito et al. 2023; Baldrati et al. 2022) transfer to the
CIR task and achieved favorable performance. Representa-
tive works include CLIP-based models (Baldrati et al. 2022;
Saito et al. 2023) but the work in (Saito et al. 2023) is under
the zero-shot setting, which is different from our task. Fol-
lowing (Baldrati et al. 2022), we also use the same CLIP en-
coder. Different from previous works, our model considers
the modification text as an instruction that guides the refer-
ence image semantically shift back to a visual prototype.

3 Approach
In this section, we present the proposed Semantic Shift Net-
work (SSN). We first briefly describe how to obtain the
representations for image and text inputs. Then we present
the technical details of degradation and upgradation, respec-
tively, and finally depict our training objectives.

3.1 Preliminaries
The Composed Image Retrieval (CIR) task replaces the
query in traditional image retrieval with multi-modal input,
usually an image plus a text modifier. In this task, the query
image is referred to as a reference image r, and the text mod-
ifier is denoted as l. Given each query q = (r, l), the trained
model returns a ranked list of the candidate images from a

large image gallery D, in descending order of similarity to
the joint query semantic representation. An ideal retrieval
system should rank the target image t at the first position.

3.2 Visual-Language Representation
CLIP (Radford et al. 2021) is a recently successful visual-
language pre-trained model learned contrastively from
400M associated image-text pairs crawled from the internet.
To leverage the powerful representation capability of CLIP,
we adopt CLIP matched encoder to yield image and text fea-
tures. Formally, we denote the CLIP image encoder as ΦI

and the CLIP text encoder as ΦL. Given a triplet (r, l, t) of
reference image r, modification text l, and target image t,
image features Ir = ΦI(r), It = ΦI(t) and text feature L is
represented as ΦL(l). Unlike previous works (Baldrati et al.
2022), we also preserve the fine-grained token-level features
in addition to the global representations, which facilitates
the exploration of richer interactions between modalities.
We use a linear layer projecting image token-level features
to the same d-dimension as text modality representations
(d = 512). Note that the features are a set of token-level
features and projected global representations, they can be
formulated in a unified way as follows:

V = {proj(vcls),v1,v2, ..., vM}, (1)

where M is the sequence length or the number of tokens and
tokens in V can be from r, l, t and thus produces Ir, It or L.
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3.3 Degradation Process
We propose to model the CIR as a degradation-upgradation
learning process where we treat the text as an instruction.
The degradation process is to decompose features, during
which the reference image is degraded into visual prototypes
with decomposed text features guidance.

Inspired by the token selection (Liu et al. 2022b) in vi-
sion transformers, we propose a trainable cross-modal de-
compose module to direct the semantics towards the degra-
dation part and upgradation part. With the help of reference
images, we can distinguish this set of opposite semantic in-
formation. As shown in Figure 2, the inputs are a set of to-
kens from the provided text {vl

1,v
l
2, ..., v

l
M} ∈ RM×d (M

is the text sequence length), we first concatenate them with
the global semantic representation of the reference image
Igr = proj(vr

cls). Then we feed the concatenated features
X l = {x1,x2, ...,xM}, xi = [Igr ,v

l
i] ∈ RM×2d ([·] is the

concatenation operation) to one MLP-sigmoid layer. This re-
flects the weight of each token contribution to the degrada-
tion and upgradation semantic parts:

Cl = sigmoid(WlX
l + bl) ∈ RM×1. (2)

Multiplied with the original token-level text features, we
generate the positive and negative guiding text representa-
tions by Eq.( 3). L+ denotes the semantics related to the tar-
get, such as the expected attribute, “red color” (in Figure 1).
Complementarily, L− implies the object needed to be modi-
fied in the reference image, e.g., “the car” (in Figure 1). The
conflicting property (red and blue color) is removed.

L+ = Cl ⊙ L

L− = (1− Cl)⊙ L,
(3)

So far, we have obtained the guidance text features. Con-
ditioned on this, to determine which among the reference
images should be kept or discarded, we proceed with similar
decomposition to produce contribution weights of reference
image features but exchange the roles of the two modalities:

Xr = {x1,x2, ...,xP },xi = [L−,vr
i ] ∈ RP×2d

Cr = sigmoid(WrX
r + br) ∈ RP×1,

(4)

where P is the number of patches and Xr is the concate-
nated features of reference image tokens {vr

1,v
r
2, ..., v

r
P }

and global semantic representations of L−. After that, we
obtain visual prototypes I0r by

I0r = Cr ⊙ Ir

I
0

r = (1− Cr)⊙ Ir,
(5)

where I0r preserves the core information of the given refer-
ence image. I

0

r is the token features after removing the visual
prototypes from the original reference image.

3.4 Upgrading Process
Based on visual prototypes, the upgrading process aims to
transform the visual prototype into the final representation
close to the target image by compositional learning. In our

late composition module, there are two parallel branches,
one for processing positive guiding text and visual proto-
types, and the other for negative guidance and irrelevant
features in reference images. In each branch, we first add
modality-specific embeddings El&Ei for inputs from differ-
ent modalities, like modal-type embeddings in ViLT (Kim,
Son, and Kim 2021). Note that these two learnable embed-
dings do not include degradation and upgrading information
and they are used to indicate modality information. Then we
fuse them via the transformer encode block F(·). In detail,
take the top branch as an example, given token sequences
[L+, I0r ], the fused features represent as:

Fen = F([L+ + El, I
0
r + Ei]), (6)

where El, Ei is the text modality embedding and image
modality embedding respectively. The same fusion as in
Eq.(6) is performed in the bottom branch for the inputs
{L−, I

0

r}. Since the fusion layer takes sequence features as
input, it can accept independent image token features rather
than token features concatenated with text modality. There-
fore we make the features of the target image also go through
the fusion layer F to generate Ftg but without text inputs.

Finally following the work in (Baldrati et al. 2022), the
final predicted feature Fp is a linear addition between the
convex combination of the global reference image Igr and
global text features L and the learned pooled fused features
F̂en. We denote the final fused features in the top branch as
F+
p and the fused features in the bottom branch as F−

p .

3.5 Training and Inference
As shown in Figure 2, we use the inner product to measure
the similarity between the predicted features and the target
image representation and then obtain the ranking list of can-
didate images. Following (Baldrati et al. 2022; Zhao, Song,
and Jin 2022; Wang et al. 2022), the retrieval objective is to
minimize batched-based classification loss as follows:

Lc =
1

B

B∑
i=1

−log
exp(λ ∗ s(F (i)

p , F
(i)
tg ))∑B

j=1 exp(λ ∗ s(F (i)
p , F

(j)
tg ))

, (7)

where λ is a temperature parameter. Given the two sets of
predicted features output by the late composite module, we
obtain their similarity distribution to the target image. z− =
softmax(sim(F−

p , Ftg)), z
+ = softmax(sim(F+

p , Ftg)).
Finally, we employ a Kullback-Leibler Divergence loss as
a regularization constraint:

Lk = KL(z+∥zgt)−KL(z−∥z+). (8)

We aim to push away the distance between z+ and z− and
thus optimize decompose learning. Thanks to the end-to-
end training, the overall objective L guides the learning of
L+, L− and I0r and is described as follows:

L = Lc + wLk
Lk, (9)

where wLk
is the hyperparameter of the loss weights, and its

default value is 1. It is worth noting that the bottom branch
in Figure 2 used for fusing L− and I

0

r is only for training.
During inference, we only use F+

p , the composite features
to retrieve the target image.
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Recall@K Recallsubset@KMethod K=1 K=5 K=10 K=50 K=1 K=2 K=3 Average

TIRG (Vo et al. 2019) 14.61 48.37 64.08 90.03 22.67 44.97 65.14 35.52
TIRG+LastConv (Vo et al. 2019) 11.04 35.68 51.27 83.29 23.82 45.65 64.55 29.75

MAAF (Dodds et al. 2020) 10.31 33.03 48.30 80.06 21.05 41.81 61.60 27.04
MAAF+BERT (Dodds et al. 2020) 10.12 33.10 48.01 80.57 22.04 42.41 62.14 27.57

MAAF-IT (Dodds et al. 2020) 9.90 32.86 48.83 80.27 21.17 42.04 60.91 27.02
MAAF-RP (Dodds et al. 2020) 10.22 33.32 48.68 81.84 21.41 42.17 61.60 27.37
ARTEMIS (Delmas et al. 2022) 16.96 46.10 61.31 87.73 39.99 62.20 75.67 43.05

CIRPLANT (Liu et al. 2021) 15.18 43.36 60.48 87.64 33.81 56.99 75.40 38.59
CIRPLANT w/OSCAR (Liu et al. 2021) 19.55 52.55 68.39 92.38 39.20 63.03 79.49 45.88

CLIP4Cir (Baldrati et al. 2022) 38.53 69.98 81.86 95.93 68.19 85.64 94.17 69.09
SSN 43.91 77.25 86.48 97.45 71.76 88.63 95.54 74.51

Table 1: Comparisons with the state-of-the-art methods for composed image retrieval on the CIRR dataset. Here we show all
Recall@K, Recallsubset@K and the average metrics. The average metric is the mean value of Recall@5 and Recallsubset@1.
Our complete SSN model obtains significant improvement compared to other SOTA methods. The best results are in bold.

Method Tops&Tees Dress Shirt Average
R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50 mean

TIRG (Vo et al. 2019) 19.08 39.62 14.87 34.66 18.26 37.89 17.40 37.39 27.40
JVSM (Chen and Bazzani 2020) 13.00 26.90 10.70 25.90 12.00 27.10 11.90 26.60 19.25

VAL (Chen, Gong, and Bazzani 2020) 27.53 51.68 22.53 44.00 22.38 44.15 24.15 46.61 35.38
CoSMo (Lee, Kim, and Han 2021) 29.21 57.46 25.64 50.30 24.90 49.18 26.58 53.21 39.90

CLVC-Net (Wen et al. 2021) 33.50 64.00 29.85 56.47 28.75 54.76 30.70 58.41 44.56
SAC (Jandial et al. 2022) 32.70 61.23 26.52 51.01 28.02 51.86 29.08 54.70 41.89
DCNet (Kim et al. 2021) 30.44 58.29 28.95 56.07 23.95 47.30 27.78 53.89 40.84

MAAF (Dodds et al. 2020) 27.90 53.60 23.80 48.60 21.30 44.20 24.30 48.80 36.55
CIRPLANT (Liu et al. 2021) 21.64 45.38 17.45 40.41 17.53 38.81 18.87 41.53 30.20

ARTEMIS (Delmas et al. 2022) 29.20 54.83 27.16 52.40 21.78 43.64 26.05 50.29 38.17
MUR (Chen et al. 2022b) 37.37 68.41 30.60 57.46 31.54 58.29 33.17 61.39 47.28

CLIP4Cir (Baldrati et al. 2022) 41.41 65.37 33.81 59.40 39.99 60.45 38.32 61.74 50.03
SSN 44.26 69.05 34.36 60.78 38.13 61.83 38.92 63.89 51.40

Table 2: Comparisons with the state-of-the-art methods for composed image retrieval on the FashionIQ dataset. Here we show
all Recall@10 and Recall@50 across all categories. Our complete SSN model outperforms other state-of-the-art methods on
most of the metrics. The best result is in bold.

4 Experiments
4.1 Datasets and Metrics

CIRR Dataset (Liu et al. 2021) is the released dataset
of open-domain for the CIR task. Each triplet consists of
real-life images with human-generated modification sen-
tences. The real-life images come from the popular NLVR2

dataset (Suhr et al. 2018), which contains real-world entities
with reasonable complexity. In 36,554 triplets, 80% are for
training, 10% are for validation, and 10% are for evaluation.
FashionIQ Dataset (Wu et al. 2021) is a realistic dataset
for interactive image retrieval in the fashion domain. Each
query is composed of one reference image and two natu-
ral language descriptions about the visual differences of the
target image. Following (Baldrati et al. 2022; Kim et al.
2021), we use the original evaluation split, which includes
5,373, 3,817, and 6,346 images for three specific fashion cat-

egories: Tops&Tees, Dresses, Shirts.
Metrics. Following previous works (Baldrati et al. 2022;
Delmas et al. 2022; Zhao, Song, and Jin 2022), we employ
Recall within top-K as the retrieval performance, which in-
dicates the ratio of the ground-truth target image in the top-K
ranking list that is correctly retrieved.

4.2 Implementation Details
We utilize the CLIP (Radford et al. 2021) model to initialize
the image encoder with ViT-B/32. The hidden dimension of
the 1-layer 8-head transformer encoder is set to 512. The
temperature λ of the main retrieval loss (in Eq.(7)) is equal
to 100. Note that for FashionIQ, we fix the image encoder
after one training epoch and fine-tune the text encoder only.
We adopt AdamW optimizer with an initial learning rate of
5e-5 to train the whole model. We apply the step scheduler
to decay the learning rate by 10 every 10 epochs. The batch
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Recall@K Recall subset@KMethod K=1 K=5 K=10 K=50 K=1 K=2 K=3 (R@5+R sub@1)/2

Baseline 42.62 76.7 87.06 97.54 68.98 86.73 94.16 72.84
SSN(Ir,L) 43.34 76.97 87.4 97.2 72.18 88.42 95.24 74.575
SSN(I0r ,L) 44.43 77.44 86.92 96.96 71.63 88.21 94.88 74.535

SSN(Ir,L+) 43.46 77.64 87.51 97.42 71.9 87.9 95.12 74.77
SSN 45.13 77.49 87.75 97.32 73.04 88.64 95.17 75.265

Table 3: Ablation Studies of our SSN model with different components and various settings for decomposition outputs. We
report all Recall@K, Recallsubset@K, and the mean recall on the validation set of the CIRR dataset.

shared Lk
R@K R sub@1 meanK=1 K=5

1 ✓ ✓ 43.77 77.30 71.66 74.91
2 × × 44.32 77.42 71.92 74.67
3 × ✓ 45.13 77.49 73.04 75.27

Table 4: Ablation experiments on loss function terms Lk and
an exploration of whether two decomposing layers (one for
images and one for text) share parameters. We report all met-
rics on the validation set of CIRR dataset.

size is set to 128 and the network is trained for 50 epochs. All
experiments can be implemented with PyTorch on a single
NVIDIA RTX 3090 Ti GPU.

4.3 Comparison with State-of-the-Arts
Results on CIRR dataset are presented in Table 1 for the
test set. Our model which learns to decompose visual proto-
types and semantic shift outperforms the state-of-the-art in
all metrics. Compared to CLIP4Cir (Baldrati et al. 2022), a
strong competitor that has recently successfully applied the
CLIP model to the CIR task, our model outperforms it by
5.42% mean recall (R@5 + Rsub@1)/2 and increases up to
5.38% in Top-1 recall metrics. As shown in Table 1, we also
outperform other methods by a large margin.
Results on FashionIQ dataset are reported in Table 2 for
the validation set. Although the model is not improved as
much as on the CIRR dataset, our proposed method achieves
state-of-the-art results for all categories in most cases. Com-
pared to the strongest method, we improved the mean recall
by 1.37%. The limited improvement is due to the domain
gap between the fashion data and the open domain CLIP, the
small size of the data, and the specialization for fine-tuning
the CLIP image encoder.

4.4 Ablation Studies
Model architecture. In order to demonstrate the contribu-
tions of individual components in our design, we first con-
ducted experiments about ablated models. Moreover, we
also explored several various settings for the decomposition
outputs that are used during upgradation. Table 3 presents
the detailed results on the validation set of the CIRR dataset.
The different ablated models are as follows:
• Baseline: it is the model without any designed module.

• SSN(Ir,L): it is the SSN model without degradation.
That means the inputs for the upgradation are original
dense tokens extracted from the visual and textual en-
coder.

• SSN(I0r ,L): it is the complete SSN model where visual
prototypes and original text features are decomposition
outputs.

• SSN(Ir,L+): it is the complete SSN model where the
original reference image and positive guiding text fea-
tures are decomposition outputs.

• SSN: it is the full SSN model where positive guiding
text features (L+) rich the degraded visual prototypes (I0r )
during upgradation and then produces the final represen-
tations.

There are three following observations in Table 3: 1)
the SSN(Ir,L) model slightly outperforms the baseline by
0.72% in Recall@1 because of fine-grained token features.
Our proposed method (SSN) achieves the best performance
and gains a more significant improvement over the base-
line model (2.51% in Recall@1). This highlights the effec-
tiveness of decomposing semantic shifts into two steps. 2)
SSN(Ir,L+) is comparable to SSN (Ir,L) model. This is
because when only decomposing text instructions without
generating visual prototypes, semantic shifts lack a well-
acted object. 3) Based on the SSN (Ir,L) model, two models
(SSN(I0r ,L) & SSN) picturing visual prototypes from ref-
erence images achieved further improvements up to 1.79%.
This supports the motivation discussed in Section 1 that the
visual cue of the reference images should not be disregarded.
Loss function. Our total training objective in Eq.(9) in-
volves two aspects: the main retrieval loss and additional
regularized loss Lk. To demonstrate the effectiveness of the
regularized constraint decomposing features, we performed
ablation experiments on Lk in Eq.(9). Comparing the sec-
ond and third rows in Table 4, we observe that the model
with a regularized loss Lk performs better than the one with-
out Lk, despite only a slight improvement. This shows ad-
ditional loss Lk helps to learn optimal decomposed features
from original CLIP representations.
Shared parameter of decomposing layer for image and
text? In Figure 2, we employ the same structure: one MLP
layer followed by a sigmoid activation function, to decom-
pose the semantic shifts and obtain visual prototypes. To
explore whether components with the same structure can
share parameters, we conduct additional experiments. From
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Sunlight hits the back of the 
furry animal on the rock.

People in black cap and gown 
stand in a room with lights

A short sleeve striped loose 
shirt and has no buttons

Has green lettering and it 
has a print at the back

Figure 3: Visualization of where to be concerned when picturing visual prototypes from reference images on two datasets, in the
form of heatmaps. In the reference image in the first column, the back of the furry animal is highlighted in the visual prototype,
indicating the main characteristics of the target image. In the reference image of the fourth column, the reference image changes
the print (lettering and color) in the front of the T-shirt to bring it back to the visual prototype. This suggests that we are not just
concerned with the salient objects in the image and that the visual prototype contains a rich set of visual cues.

𝐶":
(1 − 𝐶"):

Remove the concreter to the right. Shot from a different angle.Query text:

Figure 4: Examples of the learned Cl when decomposing
text instructions to L+&L−. The darker the green box, the
higher the corresponding weight.

rows one and three in Table 4, we can see that MLP lay-
ers that share parameters hurt the performance of the model.
This is because decomposing networks for reference images
and text have different objectives despite the same architec-
ture. Producing visual prototypes is to get invariant features
(shared with target images) while decomposing semantics in
the text instruction is to get semantically shifted features.

4.5 Qualitative Results
Heatmaps in visual prototypes. As shown in Figure 3,
we visualize what details are retained in the process of
picturing visual prototypes from reference images on both
datasets. In Section 3.3, we generate Cr to indicate whether
certain features of the reference image are preserved or not.
The heatmap is a merging of Cr and the original reference
images. From the heatmaps, we can tell where the visual
prototype and the original reference image have changed
and the extent of these changes. With decomposing semantic
shifts as guidance, we observe that the majority of important
information in the reference image receives more attention.

Normalized weights in L+&L−. We give examples of the
learned weight Cl when decomposing text instructions to
L+&L− in Figure 4. The word tokens with high weight in
L+ are those words representing semantic shifts, e.g., “re-
move, to right”. While this type of words contribute little in
L−, those with high weights in L− are some object words,
corresponding to visual clues in the reference image.

Query:
Dog with 
human instead 
of another dog

Retrieved by the 
reference image 
only (Top-4)

Retrieved by the 
visual prototype 
(Top-4)

Retrieved by the 
proposed SSN 
(Top-4)

Figure 5: Top-4 retrieved results of the reference image, vi-
sual prototype and the proposed SSN.

Comparison of the retrieved results between different
image inputs and SSN. From Figure 5, we see that the
images retrieved by the reference image only are still “Dog
with dog”, while the images retrieved by the I0r have re-
moved another dog and preserved the most valuable cues,
regardless of whether the dog was with something or not.
Our SSN can put the correct image in the first position.

5 Conclusion
In this paper, we focus on the composed image retrieval task,
an extended image retrieval task. Given the provided ref-
erence image and text requirements pair, the goal is to re-
trieve the desired target image. We first rethink the text as
an instruction and then propose a Semantic Shift Network
(SSN) to decompose the text instructions into degradation
and upgradation. The text first directs the reference image
toward the visual prototype and then guides the visual pro-
totype closer to the target image. Extensive experiments on
two benchmark datasets verify the effectiveness of the pro-
posed method and show that our model significantly outper-
forms state-of-the-art methods by 5.42% and 1.37% on the
mean of Recall@K, respectively. In the future, we intend
to explore other complex mechanisms to model the text in-
struction in the CIR task and extend to the zero-shot setting.
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