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Abstract

In this paper, we focus on the open-set panoptic segmenta-
tion (OPS) task to circumvent the data explosion problem.
Different from the close-set setting, OPS targets to detect
both known and unknown categories, where the latter is not
annotated during training. Different from existing work that
only selects a few common categories (≤ 16) as unknown
ones, we move forward to the real-world scenario by consid-
ering the various tail categories (∼ 1k). To this end, we first
build a new dataset with long-tail distribution for the OPS
task. Based on this dataset, we additionally add a new class
type for unknown classes and re-define the training annota-
tions to make the OPS definition more complete and reason-
able. Moreover, we analyze the influence of several signifi-
cant factors in the OPS task and explore the upper bound of
performance on unknown classes with different settings. Fur-
thermore, based on the analyses, we design an effective two-
phase framework for the OPS task, including thing-agnostic
map generation and unknown segment mining. We further
adopt semi-supervised learning to improve the OPS perfor-
mance. Experimental results on different datasets validate the
effectiveness of our method.

1 Introduction
Recent decades have witnessed a surge of high-quality
datasets (Deng et al. 2009; Everingham et al. 2010; Lin et al.
2014; Cordts et al. 2016; Gupta, Dollar, and Girshick 2019),
which lead to tremendous advances in visual perception al-
gorithms (He et al. 2016; Ren et al. 2015; Redmon et al.
2016; He et al. 2017). However, the thirst for data is far from
being satisfied since the models cannot perform robustly in
complex real-world scenarios. Datasets with a large variety
are crucial to the generalization performance for neural net-
works, but simply adding more labeled samples is not a vi-
able solution. As the size and complexity of the datasets in-
crease, the problem of long-tail distribution and label ambi-
guity becomes more significant. We refer to this problem as
data explosion. Since it is unrealistic to extensively gener-
ate categorical labels for thousands of classes, we look for
a more feasible approach by revisiting the relation between
the categorical labels and the perception tasks.

*Corresponding authors: Wengang Zhou and Houqiang Li
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Comparison between COCO and LVIS-PS. The
first row presents images, and the subsequent two rows
present the annotations of COCO and LVIS-PS, respectively.

In this paper, we propose to circumvent the data explosion
problem by studying a more realistic setting, termed open-
set panoptic segmentation task (OPS). As an extension of
panoptic segmentation (Kirillov et al. 2019), OPS requires
to detect instances that are not annotated in the training set,
a.k.a. the unknown category. In this setting, the annotation
complexity does not increase as the dataset grows. On one
hand, the tail categories1 can be regarded as unknown cat-
egories, and no annotations for them are needed for train-
ing. On the other hand, the annotations of panoptic segmen-
tation do not have overlapping ambiguity compared to the
box-level ones, and each pixel is one-to-one mapped to a
target. Therefore, OPS is a proper setting for robust percep-
tion network training where the dataset complexity exceeds
manual label capability.

Only a few works have been explored on the OPS task.
The pioneering work EOPSN (Hwang et al. 2021) first ex-
tends panoptic segmentation to the open-set setting and pro-
poses an exemplar-based approach to discover unlabeled
objects in the training set. Nevertheless, the existing OPS
benchmark is in small scale and suffers some limitations in
setting: (1) The COCO dataset (Lin et al. 2014) utilized in
the benchmark only includes 80 common categories, omit-

1The tail parts of categories in long-tail distribution
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ting a significant portion of rare classes. The incomplete
annotations for rare classes in COCO may result in some
correct open-set predictions being overlooked or incorrectly
identified as “false positive” during inference. (2) Only a
few common categories (≤ 16) in COCO are selected as un-
known ones, which is a significant deviation from the real-
world scenario where un-annotated categories can be rare
and diverse. Moreover, the instances of the unknown classes
all appear in the training images, which may leak some in-
formation to implicitly help the model to identify them. (3)
Pixels with unknown classes are re-annotated as “void” (“ig-
nore”) type during training, which provides too much ex-
tra prior information that unknown classes only exist in the
small parts of “void” areas in the image. In addition, certain
important factors that have substantial impacts on the OPS
task remain undiscussed in previous works, such as class
information, which may affect the generalization capabil-
ity from known categories to the unknown ones; annotation
propotion, which affects the information of novel categories.

To address the above issues, in this paper, we first revisit
the OPS task and re-formulate its benchmark settings. To
involve more diverse categories and complete annotations,
we construct a new LVIS-PS dataset for the OPS task based
on the LVIS dataset (Gupta, Dollar, and Girshick 2019) and
COCO. As shown in Fig. 1, LVIS-PS adds more segments
with various tail categories to the void or stuff areas of
COCO. We treat all these tail categories (∼ 1k) in LVIS-
PS as unknown ones. We also introduce a new class type
for unknown classes (i.e., unseen), which is absent from the
training images, and propose a new metric to evaluate it. Fur-
thermore, we re-define the available training annotations to
make the OPS settings more reasonable yet challenging.

Subsequently, we conduct a thorough analysis of several
crucial factors that impact the performance of OPS, includ-
ing different usage of class information, different annotation
and category numbers. Finally, based on these analyses, we
propose an effective two-phase framework for the OPS task,
which consists of thing-agnostic map generation and un-
known segment mining. We also build a Semi-PanoFCN-2s
model with semi-supervised training to further improve the
OPS performance. The proposed framework can be regarded
as a simple yet effective baseline for the new challenging
OPS benchmark. Our framework outperforms (Hwang et al.
2021) by a considerable margin on the unknown classes on
LVIS-PS. Moreover, compared with the pure class-agnostic
model (Qi et al. 2021), our framework not only has class-
specific segmentation capability, but also shows better gen-
eralization capability to the other dataset (i.e., ADE20K
(Zhou et al. 2017)).

2 Related Work
2.1 Open-set Detection and Segmentation
Recently, the open-set problem has been explored in various
computer vision tasks (Bendale and Boult 2015; Dhamija
et al. 2020; Joseph et al. 2021; Gupta et al. 2022; Zhao et al.
2022; Vaze et al. 2021; Qi et al. 2021; Saito et al. 2021;
Wang et al. 2022b; Hwang et al. 2021; Wang et al. 2022a,
2021). Dhamija et al. (Dhamija et al. 2020) first formal-

ize the open-set object detection problem and propose the
open-set object detection protocol to better estimate the per-
formance under real-world conditions. Joseph et al. (Joseph
et al. 2021) propose the ORE model to achieve the open-
world detection task based on the energy-based identifier
and contrastive clustering. For the segmentation task, Lu et
al. (Qi et al. 2021) propose a class-agnostic entity segmen-
tation task and construct a Global Kernel Bank with both
dynamic and static kernels to generate entity masks. LDET
(Saito et al. 2021) introduces a new data augmentation and
uses decoupled training for open-world instance segmenta-
tion. Hwang et al. (Hwang et al. 2021) extend panoptic seg-
mentation to the open-set setting and propose an EOPSN
model which uses RPN to obtain proposals for unknown
classes and applies clustering to mine reliable exemplars.

Our work focuses on the open-set panoptic segmentation
task following (Hwang et al. 2021). However, different from
(Hwang et al. 2021), we re-formulate the open-set panoptic
segmentation task from several aspects and introduce vari-
ous tail categories to make it closer to the real-world condi-
tion but more challenging.

3 Rethinking Open-Set Panoptic
Segmentation

In this section, we first formalize the open-set panoptic seg-
mentation (OPS) task (Sec. 3.1). To address the drawbacks
of the original OPS settings, we construct a new OPS bench-
mark to make it closer to the real-world scenario yet more
challenging (Sec. 3.2). After that, we introduce the applied
evaluation metrics for the new OPS task (Sec. 3.3).

3.1 Problem Formulation
Panoptic segmentation is a combination of instance segmen-
tation and semantic segmentation. It aims to classify each
pixel to its corresponding thing or stuff class and segment
each individual instance for thing classes. The main differ-
ence between open-set panoptic segmentation (OPS) and the
common panoptic segmentation setting (close-set) is that the
former involves a special unknown class, which is not avail-
able for training. Concretely, suppose a set of known classes
C = {0, · · · , C−1} and a set of unknown categories is pre-
defined. All these unknown categories are selected from the
thing categories and regarded as a special “unknown class”
U . In the training stage, only the data of the known classes
are available, and their annotations are the same as the close-
set settings. In the inference stage, all segments with the
known classes or the special unknown class are supposed to
be found in a given image.

3.2 Towards a New OPS Benchmark
As discussed in Sec. 1, the current OPS setting (Hwang et al.
2021) remains drawbacks and suffers large gaps from the
real-world scenario. Therefore, we construct a new bench-
mark for the OPS task according to the following steps:

Annotation aggregation. We aim to adopt the more com-
plicated LVIS dataset (Gupta, Dollar, and Girshick 2019) for
the OPS task, which shares the same images with the COCO
dataset (Lin et al. 2014) while re-annotating them with more
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Method Train Test Unknown Classes
Anno. Source Unk. Annotated Anno. Source Number Type Source

EOPSN COCO Void COCO 4/8/16 Seen COCO
Ours COCO Void & Stuff LVIS-PS 1020 Seen & Unseen Long Tail in LVIS-PS

Table 1: Comparison of the benchmark settings of EOPSN (Hwang et al. 2021) and ours. “Anno. Source” denotes the source
of annotations during training or testing. “Unk. Annotated” denotes the classes that unknown segments may be annotated in
training annotations.

diverse categories and complete annotations. However, LVIS
cannot be used for OPS directly since it is constructed pri-
marily for the instance segmentation task with overlapped
instance annotations and no stuff categories. To address the
problem, we build a new panoptic segmentation dataset,
named “LVIS-PS”, based on (Gupta, Dollar, and Girshick
2019) and (Lin et al. 2014). Concretely, we follow a “Thing
First, COCO First” principle to generate the panoptic seg-
mentation level annotations of the LVIS-PS dataset. For each
image, we place the annotations from different sources on
the remaining blank areas of a panoptic map in the follow-
ing order: COCO-THING, LVIS-THING, COCO-STUFF 2.
Specially, if a newly added instance has high overlaps with
existing ones on the map, it will be discarded to avoid am-
biguity. Detailed information of LVIS-PS and the procedure
to construct it are presented in the Supplementary Material.
Consequently, all categories in COCO are retained in LVIS-
PS while more tail categories are added with no overlap. As
shown in Fig.1, LVIS-PS additionally labels more instances
that are originally regarded as stuff or ignored in COCO.

Category split. Considering the un-annotated categories
can be rare and diverse in the real-world scenario, we se-
lect various tail categories (∼ 1k) as unknown classes, i.e.,
the newly added ones in LVIS-PS compared to COCO. Cor-
respondingly, categories in COCO are regarded as known
classes. Moreover, though the annotations of the unknown
classes are not available at the training stage, their corre-
sponding objects still exist in the training images in the pre-
vious OPS setting, which will help some class-agnostic clas-
sifiers (i.e., region proposal network in (Hwang et al. 2021))
to identify them implicitly. In contrast, the OPS method also
needs to possess the capability to find segments with classes
that never appear in training, which are denoted as unseen
classes. These classes are genuinely “open-set” to some de-
gree. To this end, we select a portion of unknown classes
with few samples as unseen classes, and remove all images
that contain these classes during training (about 10% train-
ing images). Accordingly, the remained unknown classes are
denoted as seen classes.

Unknown region removal. According to the definition
of the OPS task, annotations of unknown classes need to be
removed before training. A problem naturally arises as to
what their corresponding pixels should be re-annotated as.
In the previous OPS setting, these pixels are re-annotated as
“void” (or “ignore”) type, which is ignored at the training
stage. However, this operation will introduce unreasonable
prior information that the unknown classes are solely present

2We use COCO-Thing to represent “thing classes in COCO
dataset” for simplicity. LVIS-Thing and COCO-Stuff share the
same representation.

in the limited regions of “void” areas in the image. In-
stead, there is another reasonable situation where segments
of those unknown classes are annotated as stuff classes under
a loose criterion. Based on this assumption, original COCO
annotations become an optimal training source for LVIS-
PS since the annotations of LVIS-PS are extended based
on COCO annotations, and these newly added segments are
naturally annotated as “void” type or stuff classes in original
COCO annotations.

In summary, we adopt the LVIS-PS dataset for the OPS
task. We use the corresponding original COCO annotations
during training, while using generated LVIS-PS annotations
for inference. Four class types (i.e., known-thing, known-
stuff, seen, unseen) are considered during evaluation. Com-
parison of the benchmark settings proposed in (Hwang et al.
2021) and ours is shown in Tab. 1.
3.3 Evaluation Metrics
Following (Hwang et al. 2021), we use three standard
panoptic segmentation metrics (Kirillov et al. 2019), includ-
ing panoptic quality (PQ), segmentation quality (SQ), and
recognition quality (RQ). However, for unseen class, it’s
not appropriate to use original RQ and PQ, which contains
“false positive” (FP), to measure its performance for the fol-
lowing reasons. First, FPs may face an important condition
that the prediction is actually an object but with no ground-
truth assigned to it. However, these kinds of predictions are
not real “false positives” for unseen class in the open-set
setting. Second, for unseen class, we tend to find as many
potential objects as possible, hence the “false positives” are
not a major concern. Third, compared with other tasks (e.g.,
object detection), recall in panoptic segmentation can bet-
ter reflect real-world performance, since the latter requires
each pixel to be one-to-one mapped to a class. More FPs of
unseen can be reflected from the performance of other class
types (e.g., stuff ). Moreover, unseen class shares the same
FPs with seen class since they are both supposed to be pre-
dicted as the special unknown class. It’s reasonable to treat
all these FPs as FPs of seen class since there are significantly
more ground-truths in seen class than in unseen class.

Hence, we propose a modified PQ (denoted as PQ*),
which replaces the RQ with Recall during its computation,
to measure the performance of unseen class. The detailed
modification is presented in Equ. 1:

PQ =

∑
(p,g)∈TP IoU(p, g)

|TP |︸ ︷︷ ︸
segmentation quality (SQ)

· |TP |
|TP |+ 1

2
|FP |+ 1

2
|FN |︸ ︷︷ ︸

recognition quality (RQ)

,

PQ* =

∑
(p,g)∈TP IoU(p, g)

|TP |︸ ︷︷ ︸
segmentation quality (SQ)

· |TP |
|TP |+ |FN |︸ ︷︷ ︸

Recall

.

(1)
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Settings Seen Unseen
PQ PQ-thing PQ* PQ*-thing

Class-Specific 18.53 23.21 8.59 20.32
Comb-Seen 17.91 21.21 17.67 26.88
Comb-All - 25.18 - 29.77

Table 2: Performance on unknown classes with different
class information.

4 Analysis of Influencing Factors in OPS
In this section, we study the influence of several significant
factors on the OPS task, and explore the upper bound of
performance on unknown classes with different settings. In
these experiments, we assume that all annotations of seen
categories are provided. We use a two-stage Panoptic FCN
model (denoted as PanoFCN-2s) for all the experiments,
which is modified from the original Panoptic FCN (Li et al.
2021) and the details will be discussed in the next section.

4.1 Influence of Class Information
Recent studies (Li et al. 2020; Kim et al. 2022) indicate that
a class-agnostic detector will help detect more open-world
instances. This inspires us to investigate the impact of class
information on the OPS task. We consider three types of
class information for training: (1) Class-Specific. All seg-
ments are annotated with their specific classes. (2) Comb-
Seen. All seen classes are combined as a single class (re-
ferred as “unknown-comb”). In other words, we re-annotate
all segments of seen classes with “unknown-comb” class. (3)
Comb-All. We combine all thing (i.e., known-thing, seen)
classes as a single “thing-comb” class, while leaving the stuff
classes unchanged. Unseen classes are not considered here,
as they only occur in the test set.

Considering that they are trained with different category
numbers, we need to unify their evaluation methods on un-
known classes. Following the OPS settings, if segments of
unknown classes are classified as any one of the unknown
classes (for (1)) or “unknown-comb” class (for (2)), they
will be regarded as “true positives (TPs)”. To compare (1),
(2) with (3), we follow another principle that segments of
unknown classes are TPs if they are classified as any one
of the thing classes when calculating PQ, which is denoted
as “PQ-thing” (“PQ*-thing”). It’s worth noting that when
calculating the “PQ-thing” of seen class for (3), we use the
expectation of FPs since its true value cannot be obtained.

The results are shown in Tab. 2. We find that the per-
formance of Comb-All performs the best among the three
settings on both two unknown classes. These results verify
that if we follow a class-agnostic setting to reduce or elim-
inate the class-variation information, models will have bet-
ter segmentation and generalization capabilities on unknown
classes. We attribute this to the fact that this setting will drive
model to ignore the differences between each thing class,
thus forcing it to learn stronger objectness cues.

4.2 Influence of Annotation Propotion
It’s widely acknowledged that a dataset with more annota-
tions is likely to enhance model performance, as the model

Ratios 20% 40% 60% 80% 100%

seen Seen 12.31 16.64 17.66 18.03 17.91
anno. Unseen 5.78 11.17 14.69 16.82 17.67
seen Seen 6.48 14.03 15.32 17.39 17.91

category Unseen 4.00 7.80 12.18 15.20 17.67

Table 3: Performance with different ratios of seen annota-
tion numbers or seen category numbers. The experiments
are based on the PanoFCN-2s model and Comb-Seen set-
ting.
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Figure 2: The red points denote the performance with dif-
ferent ratios of seen classes. For each selection ratio, the
blue point denotes the performance with similar annotation
amounts but more category numbers.

can be exposed to a greater variety of samples in the train-
ing stage. It motivates us to quantitatively study the influ-
ence of annotation numbers in this task. Specifically, we
construct four different splits with different selection ratios
(20%, 40%, 60%, 80%). We randomly select the seen anno-
tations with corresponding ratios, while the known annota-
tions remain unchanged. We use PanoFCN-2s model with
Comb-Seen setting in these experiments.

The results are shown in the top parts of Tab. 3. On one
hand, the performance of seen classes is notably improved
when the ratio increases initially, but this improvement grad-
ually diminishes and may even become negative. On the
other hand, the increment of ratio brings continuous perfor-
mance improvement of unseen classes. We attribute it to the
fact that the increment of annotations will guide the network
to mine more potential instances, thereby aiding the discov-
ery of unseen classes. However, this may also lead to more
false positives, thus hindering the performance improvement
of seen classes.

Furthermore, we adopt another strategy to select annota-
tions, that is, we randomly choose different ratios of seen
categories with their corresponding annotations. As shown
in the bottom parts of Tab. 3, the performance trends are sim-
ilar to the above results. Moreover, these results drive us to
think of a question: does the increment of category numbers
play an important role in the performance improvement?
To this end, for each setting of category numbers, we con-
duct another experiment with similar annotation amounts
but containing more categories. The results are shown in

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

6750
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Figure 3: Overview of the proposed two-phase framework, including thing-agnostic map generation (first phase) and unknown
segment mining (second phase). In the first phase, we apply Semi-PanoFCN-2s to mine more potential unknown instances.

Fig. 2, from which we can draw two conclusions: (1) With
similar annotation numbers, more category numbers per-
form better. (2) The increment of category numbers has a
more significant impact than only increasing corresponding
amounts of annotations when the annotation number reaches
a certain value (40%). The great influence of category vari-
ety reminds us that introducing more categories is more im-
portant than generating more annotations for the OPS task.
However, the diversity of categories is far from sufficient
under the COCO annotations. Labels with more various cat-
egories are needed to improve the model’s generalization ca-
pability. Therefore, we propose to design a framework that
generates pseudo labels of instances with novel categories
automatically.

5 Method

Based on our analyses in Sec. 4, we can conclude that the
class-agnostic setting leads to better performance on un-
known classes, and annotations containing more categories
will significantly help the OPS task. However, the number
of known classes is very limited in the OPS setting. To this
end, we first modify (Li et al. 2021) into a two-stage struc-
ture (Sec. 5.1) and then design a two-phase semi-supervised
framework (Sec. 5.2 - 5.4) to enrich the category variety in
the annotations, thus better completing the OPS task. The
whole framework is shown in Fig. 3.

5.1 PanoFCN-2s

Due to its one-stage structure, Panoptic FCN (Li et al. 2021)
will suffer from the foreground-background class imbalance
problem, hence not excel at detecting more potential un-
known segments. Therefore, we modify it into a two-stage
structure (denoted as PanoFCN-2s) to better fit the OPS task.
We construct an RoI Kernel Head to generate kernels for
thing classes following the structure in (He et al. 2017), and
use it to replace the Kernel Generator module in (Li et al.
2021). Details please refer to the Supplementary Material.

5.2 First Phase: Thing-Agnostic Map Generation
To find potential unknown segments sufficiently and with
high quality, we need to choose a reasonable training strat-
egy. As discussed in Sec. 4, we find that the Comb-All
setting performs the best on unknown classes. Therefore,
we first combine all thing (i.e., known-thing, seen) classes
into a single “thing-comb” class and re-annotate thing seg-
ments with it. Stuff classes remain unchanged. Next, we use
these re-annotated training samples to train a PanoFCN-2s
model. Particularly, the output dimension of the classifica-
tion branch in PanoFCN-2s is set to S+1, where S is the
number of stuff classes. After training, we pass training im-
ages through the model to obtain the prediction maps. Ben-
efited from the Comb-All setting, these maps contain many
potential thing segments but are thing-agnostic that all these
segments belong to one “thing-comb” class.

5.3 Second Phase: Unknown Segment Mining
We now have two kinds of panoptic segmentation maps of
training images, one is the accurate original annotations but
without unknown classes (denoted as Map-O), the other is
the generated thing-agnostic maps (denoted as Map-T). To
mine potential unknown segments and generate complete
segmentation maps, we design an Unknown Segment Min-
ing (USM) algorithm to take advantage of both two maps.
First of all, we need to clarify the areas where the unknown
segments may be found. As shown in Fig. 1, the original
COCO annotations tend to place the unknown segments into
void (ignore) or stuff areas. Hence, we choose to mine un-
known segments from these two areas. Concretely, we first
fetch the segments with thing class from the generated Map-
T, denoted as TH = [th1, · · · , thn]. Next, we calculate the
intersection areas of each segment in TH with void and stuff
areas in Map-O separately. Segments with high intersections
will be chosen as potential unknown segments.

After obtaining unknown segments, we then need to com-
bine them with the Map-O. We follow a “Thing First,
Known First” principle to construct the complete annota-
tions. Specifically, for a training image, we first take known-
thing segments and known-stuff segments from Map-O, and
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Model

Known Classes Unknown Classes

Known-Thing Known-Stuff Seen Unseen

PQ SQ RQ PQ SQ RQ PQ SQ RQ PQ* SQ Recall

Supervised model

PanoFCN-2s 42.41 78.15 52.17 27.44 70.31 33.87 17.91 78.35 22.87 17.67 79.61 22.20

Open-set Panoptic segmentation methods

Void-Supp (Hwang et al. 2021) 44.81 79.90 53.97 26.67 72.36 33.94 4.57 73.80 6.19 9.70 71.96 13.48

EOPSN (Hwang et al. 2021) 44.74 80.74 54.05 26.45 72.62 33.64 0.51 74.64 0.68 0.26 74.41 0.35

Two-Phase (PanoFCN) 44.00 80.88 53.74 29.59 75.41 36.70 3.49 81.42 4.29 4.20 79.97 5.26

Two-Phase (PanoFCN-2s) 43.80 78.37 53.73 28.07 75.43 34.62 7.89 78.55 10.04 16.85 79.02 21.33

Semi-Two-Phase 43.23 78.36 53.03 27.53 74.22 33.94 9.98 80.17 12.45 19.80 80.19 22.20

Table 4: Open-set Panoptic segmentation results on LVIS-PS val set under the proposed OPS setting, which needs to predict
known classes and unknown classes with only annotations of known classes are used. “Supervised model” represents that a
PanoFCN-2s model is trained with annotations where seen classes are available. It is worth mentioning that our performance
on unseen classes even outperforms that of the supervised model with some margins.

initialize a blank panoptic segmentation map. Then, we
place these segments on the blank areas of the map fol-
lowing the order: (1) known-thing segments, (2) unknown
segments, (3) known-stuff segments. Finally, these complete
panoptic segmentation maps are used as pseudo labels to
train another PanoFCN-2s model. In this way, many poten-
tial unknown segments are added in the annotations, enrich-
ing their category varieties, hence benefiting the OPS train-
ing. Particularly, the output dimension of its classification
branch is set to T + S + 1, where T , S are the number
of known-thing, known-stuff classes, respectively. Only this
PanoFCN-2s model is applied during inference.

5.4 Semi-PanoFCN-2s
Though we have built a simple yet effective baseline to
achieve the OPS task, we further improve the first PanoFCN-
2s model to make it more suitable for this task, thereby
boosting the performance on the unknown classes. In the
first phase, the PanoFCN-2s model is able to find potential
thing segments from the images, benefiting from the proper
model structure and the Comb-All setting. However, it re-
lies much on the model’s generalization capability while
lacking task-specific guidance. Hence, we adopt the semi-
supervised learning strategy into the training procedure and
modify the PanoFCN-2s model to achieve it. Specifically,
we add a new classification branch CLS2 in the RoI Ker-
nel Head of PanoFCN-2s model, paralleling with the origi-
nal one (CLS1). Different from CLS1, CLS2 aims to mine
more potential thing segments following the online semi-
supervised training strategy. Hence, we denote the modified
PanoFCN-2s model as Semi-PanoFCN-2s. During training,
we first select top-k proposals according to their classifica-
tion scores on the thing class, generate their corresponding
masks, and filter out low-scoring ones. The kept masks are
considered as proposals for unknown segments. As men-
tioned in Sec. 5.3, unknown segments are likely to hide in
the void or stuff areas. Hence, we calculate the intersection
areas of each of those unknown proposals with the two ar-
eas separately and remove the proposals with low intersec-

tions. Besides, we additionally set a scoring threshold on the
proposals which have high intersections with the stuff ar-
eas to guarantee the quality of stuff classes. Finally, we re-
label the remained proposals as the thing class, and use these
pseudo labels to train the CLS2. During inference, we only
use CLS2 to obtain classification scores.

The method to mine potential unknown segments is simi-
lar to the USM algorithm, but the most significant difference
is that it participates in the training procedure following a
semi-supervised training strategy, hence is able to enhance
the ability of the network to find more unknown segments. It
is worth noting that we only replace the PanoFCN-2s model
with Semi-PanoFCN-2s in the first phase of the framework.

6 Experiments
We evaluate our method on the proposed LVIS-PS dataset.
During training, as discussed in Sec. 3.2, we use the corre-
sponding original COCO annotations of LVIS-PS train set,
which contain 80 thing classes and 53 stuff classes. LVIS-
PS val set is utilized for evaluation, which has 994 classes
in total. Three kinds of standard panoptic segmentation met-
rics (Kirillov et al. 2019), including panoptic quality (PQ),
segmentation quality (SQ) and recognition quality (RQ) are
applied for three class types, i.e., known-thing, known-stuff
and seen. PQ* and Recall are used for unseen classes.

6.1 Experiment Setup
As described in Sec. 5, we follow a two-phase paradigm to
achieve the OPS task. In the first phase, we train the pro-
posed Semi-PanoFCN-2s with the Comb-All setting to pro-
duce thing-agnostic maps. In the second phase, we use USM
algorithm to generate pseudo labels and train the proposed
PanoFCN-2s with the Comb-Seen setting using these gener-
ated labels. During inference, only the PanoFCN-2s model is
applied. In both two phases, we follow the original settings
of (Li et al. 2021) with 1× and multi-scale strategies. For
hyperparameters, the overlap thresholds are set to 0.8 and
0.9 for void and stuff areas, respectively. The score thresh-
old for stuff areas is set to 0.3 in Semi-PanoFCN-2s. k is set
to 50, which is the same with (Li et al. 2021).
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Models Epoch APm
e APm

e 50 APm
e 75 APm

e s APm
e m APm

e l

Trained on COCO
Panoptic FCN (Li et al. 2021) 12 11.88 24.19 10.61 3.49 7.75 22.73

ES (Qi et al. 2021) 12 13.78 26.57 12.55 1.73 11.27 26.98
ES (Qi et al. 2021) 36 14.66 27.96 13.43 2.06 13.03 28.08

Trained on LVIS-PS (a part of COCO) with COCO annotations
Two-Phase 12 16.02 30.35 14.48 4.49 9.55 29.34

Semi-Two-Phase 12 16.28 30.79 14.63 4.23 9.67 29.91

Table 5: Cross-dataset results on ADE20K val set. The models of (Li et al. 2021) and (Qi et al. 2021) are trained with COCO,
while our model is trained with LVIS-PS with COCO annotations, which has fewer training images.

6.2 Evaluation on LVIS-PS Dataset
Tab. 4 shows the performances on the LVIS-PS val set of dif-
ferent models. The supervised one (1st row) is a PanoFCN-
2s model, which is directly trained following the Comb-Seen
setting and with complete annotations, in which annota-
tions of seen classes are available. Compared with the super-
vised model, the proposed two-phase framework (5th row)
can achieve comparable performance on unseen classes, and
even performs slightly better on both two types of known
classes. For seen classes, the performance of the supervised
model can be seen as an upper bound. With lacking annota-
tions of over 700 kinds of seen classes, the performance gap
of the two-phase framework with the supervised one is rea-
sonable. Overall, these results demonstrate that the proposed
framework can achieve the OPS task with a relatively good
performance.

When the proposed Semi-PanoFCN-2s is employed in
the first phase (6th row), the performance on the unknown
classes improves in all aspects, while still achieving com-
petitive performance on known classes. It is worth men-
tioning that the performance on unseen classes even out-
performs that of the supervised model with some margins
(+2.13% on PQ*, +0.58% on SQ). In addition, when we re-
place PanoFCN-2s with Panoptic FCN (Li et al. 2021) (4th
row), the performance on unknown classes drops to a great
degree, which demonstrates the importance of PanoFCN-2s
on the OPS task. These results verify the effectiveness of our
proposed contributions in the OPS setting for constructing a
two-phase framework with a two-stage model and adopting
semi-supervised learning to enable the network to find more
potential accurate unknown segments.

We also compare our framework with the previous OPS
method EOPSN (Hwang et al. 2021). Their results are
shown in the second and third rows, where “Void-Supp” rep-
resents the baseline model of EOPSN. We re-train and infer
these models on the LVIS-PS datasets, strictly following the
original settings. As shown in Tab. 4, our method is superior
to EOPSN on unknown classes by a large margin, and has
comparable performance with it on known classes. We at-
tribute its poor performance on LVIS-PS datasets to the fact
that the samples of tail unknown classes are rare and diverse,
and thus are hard to be clustered as in EOPSN.

The visualization results of different models are shown in
Fig. 3 in Supplementary Material. Segments with unknown
classes are in deep blue. Compared with Panoptic FCN (Li

et al. 2021) (3rd row) and Void-Supp (Hwang et al. 2021)
(4th row), our method is able to find more unknown in-
stances (in deep blue) with comparable or better stuff qual-
ity (1st-3rd column). Moreover, in many cases, we observe
that our method also has better segmentation capability on
known classes (4th-5th column).

6.3 Cross-Dataset Evaluation
To validate the generalization capability of our method, we
evaluate our trained model on another dataset ADE20K
(Zhou et al. 2017). Considering that the classes of ADE20K
and COCO (LVIS-PS) are different, we apply the entity seg-
mentation metric APm

e (Qi et al. 2021) for evaluation. APm
e

is similar to APm used in instance segmentation, while it re-
gards all segments as one class, including those in thing or
stuff classes, and gives no tolerance to the overlaps of dif-
ferent segments.

Tab. 5 shows the generalization results on the ADE20k
dataset with different models. For Panoptic FCN (Li et al.
2021) and ES (Qi et al. 2021), we use their released models
trained on COCO and evaluate them on the whole ADE20K
val set. It’s worth mentioning that we actually use fewer
training samples than them, since the training set of LVIS-
PS is a part of that of COCO. Despite this, our proposed
method (Line 4-5) outperforms them (Line 1-2) by at least
2.24% APm

e , and even surpasses (Qi et al. 2021) (Line 3)
trained with more epochs. Especially, compared with the
class-agnostic model (Qi et al. 2021), our method not only
shows better generalization performance, but also possesses
class-specific segmentation capability.

7 Conclusion
In this paper, we first build a new dataset LVIS-PS for the
OPS task and redefine the OPS settings in a more reason-
able and practical way. We regard tail categories in LVIS-
PS as unknown classes and redefine the training annotations
to avoid unreasonable prior information. Subsequently, we
analyze the influence of several significant factors for the
OPS task, such as class information and annotation propo-
tion. Based on these analyses, we design an effective two-
phase semi-supervised framework to accomplish the OPS
task, which comprises of thing-agnostic map generation and
unknown segment mining. Experimental results on different
datasets demonstrate the effectiveness of our method.
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