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Abstract

Recent advances in zero-shot text-to-3D human generation,
which employ the human model prior (e.g., SMPL) or Score
Distillation Sampling (SDS) with pre-trained text-to-image
diffusion models, have been groundbreaking. However, SDS
may provide inaccurate gradient directions under the weak
diffusion guidance, as it tends to produce over-smoothed re-
sults and generate body textures that are inconsistent with
the detailed mesh geometry. Therefore, directly leveraging
existing strategies for high-fidelity text-to-3D human textur-
ing is challenging. In this work, we propose a model called
PaintHuman to addresses the challenges from two perspec-
tives. We first propose a novel score function, Denoised Score
Distillation (DSD), which directly modifies the SDS by in-
troducing negative gradient components to iteratively correct
the gradient direction and generate high-quality textures. In
addition, we use the depth map as a geometric guide to en-
sure that the texture is semantically aligned to human mesh
surfaces. To guarantee the quality of rendered results, we
employ geometry-aware networks to predict surface mate-
rials and render realistic human textures. Extensive exper-
iments, benchmarked against state-of-the-art (SoTA) meth-
ods, validate the efficacy of our approach. Project page:
https://painthuman.github.io/

Introduction
Significant progress has been made in text-to-3D content
generation. Some methods are proposed for general ob-
jects (Poole et al. 2023; Lin et al. 2023), and some are specif-
ically for 3D human avatars (Cao et al. 2023; Hong et al.
2022; Jiang et al. 2023). 3D human avatars are increasingly
important in various applications, including games, films,
and metaverse. In this work, we focus on texturing a pre-
defined human mesh with text prompts.

The success of recent methods rely on CLIP model (Hong
et al. 2022) or text-to-image generation, which leverages
the diffusion model (Ho, Jain, and Abbeel 2020; Rombach
et al. 2022), and Score Distillation Sampling (SDS) (Poole
et al. 2023) combined with differentiable 3D representa-
tions (Mildenhall et al. 2020; Barron et al. 2021). How-
ever, directly leveraging existing strategies for detailed hu-
man avatar texturing in a zero-shot manner is challenging
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Figure 1: Generated results of PaintHuman. Given texture-
less human meshes and textual descriptions as input, our
model can generate high-quality and detailed textures that
aligned to input geometry and texts.

for two reasons. First, we find that SDS is a general-purpose
optimization, which guides the loss gradient in a direction
due to its weak supervision and unable to well handle un-
clear signal from the diffusion model. This issue results in
generated human textures of low quality, including over-
smoothed body parts and blurry garment details. Second,
textures guided by text-to-image models are usually not se-
mantically unaligned to either input texts or human mesh
surfaces, resulting in missing textures or unaligned texture
mapping for the geometry.
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Recent work (Hong et al. 2022; Jiang et al. 2023) for hu-
man avatar texturing entangles shape and texture generation,
which leverage human-specific priors (Loper et al. 2015)
for human body texturing. To ensure the generated textures
aligned to the given geometry, TEXTure (Richardson et al.
2023) and Text2Tex (Chen et al. 2023a) utilize a depth-
aware diffusion model (Rombach et al. 2022) to directly in-
paint and update textures from different viewpoints, which
could cause inconsistency when the input mesh has com-
plex geometry. Other methods such as Latent-Paint (Metzer
et al. 2023) or Fantasia3D (Chen et al. 2023b) apply SDS
to update the loss gradient for consistent texture generation.
However, SDS fails to semantically align textures to input
texts, i.e., the synthesized textures are non-detailed and over-
smoothed.

Therefore, we propose PaintHuman to address a primary
issue associated with SDS. Our main idea is to denoise the
unclear gradient direction provided by the SDS loss. We
handle this from two aspects. Firstly, we propose Denoising
Score Distillation (DSD), which introduces a negative gra-
dient component to directly modify the SDS, which could
iteratively correct the gradient direction for detailed and
high-quality texture generation. Then, to enable geometry-
aware texture generation, we utilize geometric guidance
which provides rich details of the mesh surface to guide
the DSD precisely, and use spatially-aware texture shading
models (Karis and Games 2013) to guarantee the quality of
rendered visual results.

Specifically, DSD utilizes an additional negative pair of
image and text. The key idea is that by using a negative im-
age, i.e., an image with noise rendered from the last train-
ing iteration, we could reinforce the learning of the com-
plex surface geometry to produce clear boundaries between
different garments. In addition, with the help of negative
text prompts, the synthesized textures could be more se-
mantically aligned to the input text. Overall, the negative
pair contributes a negative part to SDS, which controls the
gradient direction by a weighted subtraction of the two in-
put pairs, producing an effective gradient to address over-
smoothed texture generation. To further ensure textures se-
mantically aligned to the complex avatar surface, we first
use the depth map as guidance during the diffusion pro-
cess for texturing, which provides fine-grained surface de-
tails. In addition, we follow (Munkberg et al. 2022) to
apply the Spatially-Varying Bidirectional Reflectance Dis-
tribution Function (SV-BRDF) (Karis and Games 2013)
and coordinate-based networks (Müller et al. 2022) for
geometry-aware material prediction. With the help of differ-
entiable rendering (Hasselgren et al. 2021), we could update
the rendered human avatar and synthesized textures in an
end-to-end fashion.

The contributions of our work are summarized as follows:

• We introduce Denoising Score Distillation (DSD), a
diffusion-based denoising score using negative image-
text pairs for high-fidelity texture generation aligned to
textual descriptions.

• We employ semantically aligned 2D depth signals and
spatially-aware rendering functions for geometry-aware

texture generation and realistic avatar rendering.

• Through comprehensive experiments, we prove the effi-
cacy of our method over existing texture generation tech-
niques.

Related Work
Diffusion Models. With the development of denoising
score-matching generative models (Sohl-Dickstein et al.
2015), diffusion models present great success in a vari-
ety of domains such as image editing, text-to-image syn-
thesis, text-to-video synthesis, and text-to-3D synthesis. In
the field of text-to-image synthesis, diffusion models have
demonstrated impressive performance, especially the Stable
Diffusion model (Rombach et al. 2022), which is trained
on a large number of paired text-image data samples with
CLIP (Radford et al. 2021) to encode text prompts and VQ-
VAE (Van Den Oord, Vinyals et al. 2017) to encode images
into latent space. In our work, we use a pre-trained Stable
Diffusion model to incorporate intrinsic image prior to guide
the training of our texture generation network.

3D Shape and Texture Generation. There has been a re-
cent surge of interest in the field of generating 3D shapes and
textures. One line of methods, such as Text2Mesh (Michel
et al. 2022), Tango (Lei et al. 2022), and CLIP-Mesh (Mo-
hammad Khalid et al. 2022), utilize CLIP-space similari-
ties as an optimization objective to create novel 3D shapes
and textures. Gao et al. (2022) trains a model to generate
shape and texture via a DMTet (Shen et al. 2021) mesh ex-
tractor and 2D adversarial losses. A recent approach called
DreamFusion (Poole et al. 2023) introduces the use of pre-
trained diffusion models to generate 3D NeRF (Mildenhall
et al. 2020) models based on a given text prompt. The key
component in DreamFusion is the score distillation sam-
pling (SDS), which uses a pre-trained 2D diffusion model
as a critique to minimize the distribution of the predicted
and ground-truth Gaussian noise, thus the 3D scene can be
optimized for desired shape and texture generation.

In the context of texture generation, Latent-NeRF (Metzer
et al. 2023) demonstrated how to employ SDS loss in the la-
tent space of the diffusion model to generate textures for 3D
meshes and then decoded to RGB for the final colorization
output. Besides, both TEXTure (Richardson et al. 2023) and
Text2Tex (Chen et al. 2023a) proposed a non-optimization
method with progressive updates from multiple viewpoints
to in-paint the texture over the 3D mesh models.

Human-specific shape and texture generation methods
also follow the same ideas that use CLIP similarity be-
tween the generated human image and the textural descrip-
tions (Hong et al. 2022) or directly leverage SDS for iterative
shape and texture generation (Kolotouros et al. 2023; Zeng
et al. 2023; Jiang et al. 2023). Besides, they also employ
human body model prior, i.e., SMPL (Loper et al. 2015),
for effective human avatar generation. However, most gen-
erated human textures are over-smooth and of low quality,
which we argue is caused by the unstable guidance provided
by SDS.
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Figure 2: Overview of our proposed model. Our goal is to texture the human mesh given an input text and a mesh model.
To achieve this, we propose Denoised Score Distillation with a negative pair of image and text prompts to guide the gradient
direction for detail texture generation that is semantically aligned to the input text. We introduce depth signals to the diffusion
process for complex garment texturing, and a learnable network to estimate SV-BRDFs for albedo and material parameter
learning. Finally, the camera position is adjusted for refined details of the face region.

Method
In this section, we start with an overview of SDS. We then
introduce Denoised Score Distillation (DSD), which uses an
extra negative pair of image-text to guide gradient direction,
thereby generating detailed textures that align with the input
text. Finally, we employ depth signals in the diffusion pro-
cess for complex surface texturing and employ a geometry-
aware rendering function for photorealistic human texture
generation. The overall pipeline is shown in Figure 2.

SDS Overview
Given an input image x with a latent code z, a conditioning
text embedding y, a denoising U-Net ϵϕ with model param-
eters ϕ, a uniformly sampled timestep t ∼ U(0, I), and a
Gaussian noise ϵ ∼ N (0, I), the diffusion loss is:

LDiff(z, y, t) = w(t)∥ϵϕ(zt, y, t)− ϵ∥22, (1)

where w(t) is a weighting function depending on t, and zt
refers to the noisy version of z via an iterative forward diffu-
sion process given by zt =

√
αtz+

√
1− αtϵ, with αt being

the noise scheduler. For high-quality generation, classifier-
free guidance (CFG) (Ho and Salimans 2022) is used, which
jointly learns text-conditioned and unconditioned models
via a scale parameter ω. During inference, the two models
are used to denoise the image as follows:

ϵ̂ϕ (zt, y, t) = (1 + ω)ϵϕ (zt, y, t)− ωϵϕ (zt, t) . (2)

Given a differentiable rendering function gθ, the gradient of
diffusion loss with respect to model parameters θ is:

∇θLSDS = w(t) (ϵ̂ϕ (zt, y, t)− ϵ)
∂zt
∂θ

, (3)

where we have omitted the U-Net Jacobian term as shown in
(Poole et al. 2023). The purpose of SDS is to generate sam-
ples via optimization from a text-guided diffusion model.
However, we argue that SDS only presents poor guidance
on input text prompt and the generated 2D image, hence, in
the following, we propose a new loss design to increase the
generation quality.

Denoised Score Distillation
Given a textureless human avatar, our task is to generate sur-
face textures conditioned on input texts. Due to SDS and
neural representation of 3D avatar (Mildenhall et al. 2020),
zero-shot human texture generation is made possible. We
observe that using SDS only for human texturing can cause
over-smoothed body parts and cannot be fully semantically
aligned to the input text.

We address the issue brought by SDS by proposing a new
method, Denoised Score Distillation (DSD), for detailed hu-
man avatar texturing of high quality. Specifically, when pre-
sented with input text embedding y and the corresponding
image x with the latent code z, our objective is to refine the
gradient ∇θLSDS in Eq. 3 to a direction, so that the rendered
avatar contains a detailed texture mapping that is seman-
tically aligned to the input text. Mathematically, our DSD
score function is formulated as:

LDSD = w(t)
(
∥ϵϕ(zit, y, t)−ϵ∥22−λ∥ϵϕ(ẑi−1

t , ŷ, t)−ϵ∥22
)
, (4)

where we introduce a negative pair of image with latent code
ẑ and text with embedding ŷ. λ is a weighting parameter.
Both zit and ẑi−1

t have a superscript i indicating the training
iteration and share the same timestep t and noise ϵ, allow-
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ing us to use the same U-Net for noise prediction. Then the
gradient of LDSD over the model parameter θ is:

∇θLDSD = w(t)
(
ϵ̂ϕ (zt, y, t)− ϵ− λ(ϵ̂ϕ (ẑt, ŷ, t)− ϵ)

)∂zt
∂θ

= w(t)
(
ϵ̂ϕ (zt, y, t)− λϵ̂ϕ (ẑt, ŷ, t)− (1− λ)ϵ

)∂zt
∂θ

,

(5)
where we have omitted the U-Net Jacobian matrix follow-
ing Poole et al. (2023).

As shown in Figure 2, we employ the negative image
x̂i−1 derived from the previous training iteration, where we
consider x̂i−1 a negative version of xi as it contains more
noise signals. The inclusion of the negative image within
the computation process of ∇θLDSD yields two significant
advantages. Firstly, ẑi−1

t can reinforce the memory of the
rendered human image during training, so that the final out-
put can still be semantically aligned to the input text. Sec-
ondly, the incorporation of the negative image improves the
model’s capacity to learn complex geometries, thus facilitat-
ing the generation of clear boundaries between varying gar-
ment types. For negative prompts, we use common prompts
such as disfigured, ugly, etc. However, we would adapt ex-
isting prompts based on a test run, infusing refined nega-
tive prompts based on the observed output. For instance, if
artifacts emerge within rendered hand regions, we append
“bad hands” to the prompt set. In contrast to the indirect ap-
plication of negative prompts in Stable Diffusion, we inject
the negative prompt embedding directly into ∇θLDSD. This
strategy effectively minimizes the artifact in rendered hu-
man images, thereby enhancing the quality of the generated
output.

Through the integration of both negative image and
prompts, we successfully manipulate the existing SDS gra-
dient in Eq. 3 to guide the model convergence towards a
mode that yields highly detailed and qualitative textures,
which also remain semantically aligned to the input text.
Further analyses and insights into this approach are provided
in our ablation study.

Geometry-aware Texture Generation

Geometry Guidance in DSD. To accurately texture com-
plex garment details, we compute and leverage the cor-
responding depth map as a fine-grained guidance. There-
fore, we employ a pre-trained depth-to-image diffusion
model (Rombach et al. 2022) rather than the general version,
so that the generated avatar could follow the same depth val-
ues of the given surface mesh. As shown in Figure 5 (b), al-
though the rendered human image presents textures that are
not semantically aligned to the input text as the belt region
is not clearly textured, utilizing the depth-aware diffusion
model ensures the generated texture reserve more geometric
details and semantically aligned to the given geometry.

Shading Model for Rendering. Following the idea of
physically based rendering (PBR), which models and ren-
ders real-world light conditions and material properties, we
estimate surface materials by leveraging SV-BRDFs for hu-

man image rendering:

R(xp, l) =

∫
H

Li(l)(fd + fs) (l · n) dl, (6)

where Li(l) is the incident radiance, and H = {l : l · n ≥
0} denotes a hemisphere with the incident light and surface
normal n. fs and fd are diffuse and specular SV-BRDFs,
respectively.

In particular, we follow (Karis and Games 2013) to em-
ploy a simple diffuse model at a low cost. The diffuse SV-
BRDF is mathematically expressed as follows:

fd(xp) =
kd

π
, (7)

where kd is the diffuse term which can be learned based on
3D vertex positions. For specular SV-BRDF estimation, we
use a microfacet specular shading model as in (Karis and
Games 2013) to characterize the physical properties of the
mesh surface:

fs(l,v) =
DFG

4(n · l)(n · v) , (8)

where v is the view direction. D, F and G represent the
normal distribution function, the Fresnel term and geomet-
ric attenuation, respectively. We also choose the Disney
BRDF Basecolor-Metallic parametrization (Burley and Stu-
dios 2012) for a physically accurate rendering. Specifically,
the specular reflectance term ks = m · kd + (1 − m) ·
0.04, where the diffuse term kd, the roughness term r and
the metallic term m can be estimated via our proposed
SV-BRDF network give surface points xp: σ(γ(xp)) =
[kd, r,m]. γ is a coordinate-based network (Müller et al.
2022) and σ is a parameterized SV-BRDF estimation model.
We also utilize a differentiable split-sum approximation for
Eq. 6 to maintain the differentiability in the rendering pro-
cess. Moreover, we follow (Zhang et al. 2021) to regularize
the material learning, which results in a smooth albedo map.

Semantic Zoom. Human perception is particularly sensi-
tive to distortions and artifacts in facial features. However,
texturing human avatars in a full-body context often results
in degraded facial details. To address this issue, we enhance
the human prior during the optimization process by semanti-
cally augmenting the prompt (Hong et al. 2022). For exam-
ple, we prepend “the face of” to the beginning of the prompt
to pay more attention to this region. Simultaneously, every
four iterations, we shift the look-at point of the camera to
the face center and semantically zoom into the facial region,
which refines facial features and improves the overall per-
ception of the rendered avatar.

Experiments
Baseline Methods. We compare our model to recent
SoTA baseline models, including Latent-Paint (Metzer et al.
2023), TEXTure (Richardson et al. 2023), and Fanta-
sia3D (Chen et al. 2023b) with the appearance modeling part
only. We modify Fantasia3D to ensure the vertex positions
remain fixed. We also compare our model to a recent method
for realistic human avatar generation, DreamHuman (Kolo-
touros et al. 2023), to further validate the effectiveness of
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(a) An Asian man wearing a navy suit

(c) A woman wearing a short jean skirt and a 
cropped top

(b) A man wearing a hoodie

(d) A young man wearing a turtleneck

DreamHuman Ours DreamHuman Ours

Figure 3: Qualitative comparisons with DreamHuman (Kolotouros et al. 2023). As DreamHuman is not publicly available, we
pick similar mesh models from Renderpeople (Renderpeople 2021) and download the results from the published paper.

our design. Although its human mesh model is not publicly
available, we use the same text prompts as DreamHuman to
evaluate the texture quality with similar mesh models.

Qualitative Analysis. As shown in Figure 4, we compare
our results against baseline models. Latent-Paint cannot cap-
ture the object semantics, which results in failed or blurry
textured avatars. TEXTure generates relatively better results
than Latent-Paint but suffers from inconsistent textures. Fan-
tasia3D performs well given certain input texts as in Fig-
ure 4 (a) and (c), but it outputs unrealistic samples with
noisy textures in most cases due to the use of SDS. In con-
trast, our model produces textured avatars with high-quality
and detailed textures, which are aligned to input texts and
consistent with the geometry. We compare our model with
DreamHuman in Figure 3. We observe that using the same
text input, our model generates textured avatars with more
high-frequency details, such as the cloth wrinkles, which is
different from DreamHuman where the textures are over-
smoothed. Moreover, in both experiments, our model can
consistently generate high-quality human faces.

Quantitative Analysis. To investigate the alignment be-
tween the rendered human avatars and the input texts, we use
the CLIP score (Radford et al. 2021). As shown in Table 1,
we compare our method with the baseline models and report
the mean CLIP score. Specifically, we generate 6 frontal im-
ages from all textured avatars, each separated by a 30-degree
interval. We use 20 different meshes with 4 prompts for each
mesh, with a total of 80 prompts. We observe that our model
outperforms all baseline models, where our result is higher
than Latent-Paint by the largest margin of around 19.99%.

Method Mean CLIP Score ∆ (%)
Latent-Paint 24.11 19.99%
TEXTure 25.34 14.17%
Fantasia3D 27.10 6.75%
PaintHuman (Ours) 28.93 -
DreamHuman 25.79 12.25%
PaintHuman (Ours) 28.95 -

Table 1: Quantitative comparisons between baseline models
and ours. ∆ denotes the percentage by which our model out-
performs the indicated method.

Such improvements demonstrate that our proposed DSD is
capable of generating more realistic textures on complex hu-
man meshes, and is better aligned to the input texts.

User Study. We conduct user study to analyze the quality
of the generated textures and the fidelity to the input text.
Specifically, 4 meshes are selected with 4 text prompts gen-
erated for each mesh, resulting in 16 visual results for each
baseline method. We ask users to rate the overall quality, in-
cluding texture quality and alignment between text and ren-
dered results. More details are shown in the supplementary
material. Collected results are reported in Table 2 including
mean scores and standard deviation values, indicating that
our method outperforms the baselines.

Ablation Study. To validate the effectiveness of our de-
sign, we use two prompts as examples: “a man in a suit with
a belt and tie” and “a young man wearing a turtleneck” for
the ablation study. Results are shown in Figures 5 and 6.
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Latent-Paint TEXTure Fantasia3D Ours

(a) A man wearing a shirt

(b) A young man wearing a turtleneck

(c) A woman in a jogging suit

(d) A young woman in a dress

(e) A full-body shot of a boy with afro hair

Figure 4: Qualitative comparisons on RenderPeople (Renderpeople 2021) for textured human avatars. Compared with Latent-
Paint (Metzer et al. 2023), TEXTure (Richardson et al. 2023), and Fantasia3D (Chen et al. 2023b), our generations contain the
best texture quality with high-frequency details and consistent with input textual descriptions.
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(a) SDS (b) SDS + Depth (c) SDS + Depth + NegPrompt (f) Full: DSD + Depth 
+ BRDF

(d) DSD + SH

Figure 5: Visualization of ablation study. We provide results of textured human avatars based on different settings that are added
gradually from vanilla SDS baseline.

Method Score ∆ (%)
Latent-Paint 1.21±0.70 148.76%
TEXTure 1.28±0.60 135.16%
Fantasia3D 1.76±0.70 71.02%
DreamHuman 2.83±0.82 6.36%
PaintHuman (Ours) 3.01±0.95 -

Table 2: User study results of baseline models and ours. ∆
denotes the percentage by which our model outperforms the
indicated method.

Firstly, the efficacy of our DSD is verified through several
comparisons. As shown in Figure 5(a), we note that employ-
ing SDS for human texturing often results in over-smoothed
body parts and fails to fully align with the input text seman-
tically, where the belt region is neglected. The addition of
depth map guidance in Figure 5(b) also struggles to address
this issue. Furthermore, by adding negative prompts, Fig-
ure 5(c) shows that the rendered image contains more high-
frequency details but is not aligned with the input text, and
some parts are devoid of texturing.

We further examine the effectiveness of the BRDF shad-
ing model. As shown in Figure 5(d), we render the re-
sult with the Spherical Harmonic model (SH) (Boss et al.
2021), resulting in less realistic textures with noticeably
noisy color distributions at the borders between different
garments. However, using BRDF can give us smooth and
clear textures. In contrast, as shown in Figure 5(e), an im-
age rendered using our DSD effectively mitigates the over-
smoothing issue and results in a detailed human avatar.

Finally, as shown in Figure 6, our application of semantic
zoom on the face region enhances the overall texture quality.
Notably, the method enables the presence of intricate facial
features resulting in a more realistic representation.

Figure 6: Importance of semantic zoom. The left image
shows the generated avatar with semantic zoom, while the
right image employs no semantic zoom.

Conclusion
In this work, we introduce PaintHuman, a zero-shot text-to-
human texture generation model. We present a novel score
function, Denoised Score Distillation (DSD), which refines
the gradient direction to generate high-quality, detailed hu-
man textures aligned to the input text. We also leverage ge-
ometry signals in DSD for accurate texturing of complex
garment details. To maintain semantic alignment between
the mesh and the synthesized texture, we employ a differen-
tiable network to parameterize SV-BRDFs for surface mate-
rial prediction, which is complemented by physically based
rendering for realistic avatar renderings, with facial details
refined through semantic zooming. Our extensive experi-
ments reveal significant improvements in texture generation,
validating the effectiveness of our module designs.
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