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Abstract

The Segment Anything Model (SAM) is a powerful foun-
dation model that has revolutionised image segmentation.
To apply SAM to surgical instrument segmentation, a com-
mon approach is to locate precise points or boxes of instru-
ments and then use them as prompts for SAM in a zero-
shot manner. However, we observe two problems with this
naive pipeline: (1) the domain gap between natural objects
and surgical instruments leads to inferior generalisation of
SAM; and (2) SAM relies on precise point or box locations
for accurate segmentation, requiring either extensive manual
guidance or a well-performing specialist detector for prompt
preparation, which leads to a complex multi-stage pipeline.
To address these problems, we introduce SurgicalSAM, a
novel end-to-end efficient-tuning approach for SAM to ef-
fectively integrate surgical-specific information with SAM’s
pre-trained knowledge for improved generalisation. Specifi-
cally, we propose a lightweight prototype-based class prompt
encoder for tuning, which directly generates prompt embed-
dings from class prototypes and eliminates the use of explicit
prompts for improved robustness and a simpler pipeline. In
addition, to address the low inter-class variance among sur-
gical instrument categories, we propose contrastive proto-
type learning, further enhancing the discrimination of the
class prototypes for more accurate class prompting. The re-
sults of extensive experiments on both EndoVis2018 and En-
doVis2017 datasets demonstrate that SurgicalSAM achieves
state-of-the-art performance while only requiring a small
number of tunable parameters. The source code is available
at https://github.com/wenxi-yue/SurgicalSAM.

Introduction
Surgical instrument segmentation (SIS) is a crucial task in
surgical vision, aimed at precisely delineating surgical in-
struments in operative scenes. It provides vital assistance
to surgeons and facilitates the development of advanced
computer-assisted operation systems (Shademan et al. 2016;
Jin et al. 2021; Liu et al. 2021; Jian et al. 2020; Yue et al.
2023; Zhang and Tao 2020). Existing deep learning meth-
ods for SIS have achieved impressive results through the de-
sign and training of specialist models featuring task-specific
components. Nevertheless, these methods usually require
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Figure 1: Comparison of our SurgicalSAM against existing
detection-based, tracking-based, and reference-based zero-
shot SAM frameworks for surgical instrument segmentation.

training the complete set of model parameters (i.e., full train-
ing) using SIS datasets, resulting in inefficiency. In addition,
due to the limited scale of the SIS datasets, the trained mod-
els tend to exhibit subpar generalisation performance.

The Segment Anything Model (SAM) (Kirillov et al.
2023) has recently gained significant attention as a pioneer-
ing foundation model for promptable segmentation. Utilis-
ing SAM for downstream medical tasks holds great promise
for enhancing training efficiency and leveraging strong pre-
trained knowledge. Current research predominantly employs
SAM in a zero-shot manner for medical image segmenta-
tion. However, the lack of sufficient medical data in SAM
pre-training and the substantial domain gap between natural
objects and medical targets hinders the direct generalisation
of SAM towards medical tasks. Many studies have reported
subpar performance of SAM in zero-shot medical image
segmentation (Deng et al. 2023; He et al. 2023; Wald et al.
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(a) SAM Prediction Mask mAP vs. Bounding Box Prompt Jitter

(b) Scale Jitter -0.2 (c) GT Bounding Box (d) Scale Jitter 0.4

(e) Position Jitter -0.2 (f) GT Mask (g) Position Jitter 0.4

Figure 2: Prompt robustness study of SAM against bound-
ing box jitter in terms of scale and position for surgical in-
strument segmentation. A jitter factor of 0 represents the
ground-truth bounding box with no jitter; a higher absolute
value of the jitter factor indicates larger prompt noises.

2023; Mazurowski et al. 2023; Huang et al. 2023; Cheng
et al. 2023; Wang et al. 2023a,b).

Specifically, surgical instruments differ significantly from
natural objects in terms of specialised appearance, complex
anatomical background, and high inter-category similarity.
We evaluate three essential zero-shot SAM strategies on SIS:
(1) MT-RCNN (MaskTrack-RCNN) (Yang, Fan, and Xu
2019) or Mask2Former (Cheng et al. 2022) as a bounding
box detector followed by SAM, (2) Track Anything (Yang
et al. 2023), and (3) PerSAM (Zhang et al. 2023), represent-
ing detection-based, tracking-based, and reference-based
frameworks, respectively. As shown in Fig. 1, these meth-
ods demonstrate inferior results, where detection-based and
tracking-based methods depict incorrect contours and the
reference-based method misidentifies the instrument class.
This further highlights the challenge of bridging the natural-
surgical domain gap and emphasises the necessity of SAM
tuning.

In addition, the performance of SAM relies on the pre-
cise locations of explicit prompts (Cheng et al. 2023; Wald
et al. 2023). We confirm this through a prompt robustness
study on SIS by introducing various scale and position jit-
ters to the ground-truth bounding box as a prompt for SAM
and recording the prediction mAP. As shown in Fig. 2, our
study demonstrates SAM’s sensitivity to prompt jitters: even
minor deviations in the provided bounding box prompts can
significantly impair segmentation accuracy. As a result, ex-

isting zero-shot SAM frameworks often involve complex
multi-stage pipelines, requiring either precise manual guid-
ance or a well-performing specialist detector to provide ac-
curate points or bounding boxes for accurate prompting.
This complexity further restricts the direct application of
SAM in the surgical domain.

To address the above challenges, we propose Surgical-
SAM, an end-to-end approach that effectively mitigates
the surgical-natural domain gap through efficient tuning
of SAM. A comparison of SurgicalSAM against existing
pipelines is shown in Fig. 1. We propose a lightweight
prototype-based class prompt encoder, which takes an in-
strument class as a prompt and learns the class prototypes
by interacting with the image embedding to directly gener-
ate prompt embeddings for the mask decoder. By tuning the
prototype-based class prompt encoder and the mask decoder,
surgical knowledge is integrated with SAM’s pre-trained
knowledge, effectively mitigating the domain gap. More-
over, our strategy of directly generating latent prompt em-
beddings from class prompts and eliminating the use of ex-
plicit points and bounding boxes further addresses the poor
robustness associated with explicit prompts as well as main-
tains an end-to-end pipeline.

In SurgicalSAM, the class prototypes play a vital role in
effectively prompting the instrument of interest from an im-
age. However, different surgical instrument categories often
exhibit high similarity and low inter-class differences, thus
posing a big challenge. To address this, we further propose
contrastive prototype learning, utilising contrastive loss to
acquire discriminative learned class prototypes. This method
enhances the distinction between fine-grained instrument
categories, resulting in more accurate class prompting and
improved segmentation outcomes.

In summary, the contributions of this paper are threefold:
• We introduce SurgicalSAM to integrate surgical instru-

ment knowledge with the pre-trained knowledge in SAM
through efficient tuning for class promptable surgical
instrument segmentation. It outperforms both specialist
models and complex multi-stage solutions.

• We propose a prototype-based class prompt encoder that
eliminates the use of explicit prompts and facilitates di-
rect learning of latent prompt embeddings from class
prompts for an end-to-end pipeline. We also propose con-
trastive prototype learning to enhance the discrimination
of the prototypes of fine-grained instrument categories
for more accurate class prompting.

• We conduct extensive experiments on the challeng-
ing EndoVis2018 and EndoVis2017 datasets, achieving
state-of-the-art (SOTA) performance while significantly
improving training efficiency.

Related Work
Surgical Instrument Segmentation
Current research addresses SIS by training customised spe-
cialist models. Early research employs a pixel classification
paradigm to predict pixel-wise class probabilities in a frame.
Notably, TernausNet pioneers this direction using a U-Net-
based encoder-decoder network (Shvets et al. 2018). This
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has been later extended with feature pyramid attention (Ni
et al. 2020) and flow-based temporal priors (Jin et al. 2019;
Zhao et al. 2020). Nevertheless, these approaches encounter
spatial class inconsistency, where one instrument may be as-
signed multiple instrument types.

An alternative paradigm is mask classification, which
aims to predict a set of masks and associate each mask
with a class label, inherently reducing spatial class incon-
sistency. ISINet introduces mask classification to instrument
segmentation with Mask-RCNN (González, Bravo-Sánchez,
and Arbelaez 2020; He et al. 2017). Later, Baby et al. (2023)
improve its classification performance by designing a spe-
cialised classification module. In addition, TraSeTR inte-
grates tracking cues with a track-to-segment transformer
(Zhao, Jin, and Heng 2022) and MATIS incorporates tem-
poral consistency with Mask2Former (Ayobi et al. 2023;
Cheng et al. 2022). Although various methods have been
proposed for surgical instrument segmentation, they primar-
ily rely on designing specialist models and training the com-
plete set of model parameters, which is inefficient. Partic-
ularly with the small datasets in the surgical domain, these
models may exhibit subpar generalisation performance.

Segment Anything Model
SAM is recognised as a pioneering foundation model for im-
age segmentation. The large-scale pre-training equips it with
excellent zero-shot generalisation capabilities, driving vari-
ous downstream applications (Wang et al. 2023c; Li et al.
2023; Yan et al. 2023). However, SAM has been shown to
struggle with zero-shot generalisation to medical scenarios
(Deng et al. 2023; He et al. 2023; Mazurowski et al. 2023;
Huang et al. 2023; Cheng et al. 2023) due to the substan-
tial domain gap between natural objects and medical sub-
jects. Moreover, SAM relies on explicit points and bounding
boxes at precise locations for accurate segmentation (Cheng
et al. 2023; Wald et al. 2023). As a result, extensive manual
guidance or a specialist detector is often required, leading to
a complex multi-stage pipeline (Wang et al. 2023a).

To bridge the natural-medical domain gap, some stud-
ies seek to adapt SAM through domain-specific fine-tuning.
However, they either require accurate point or bounding box
prompts (Ma et al. 2023; Wu et al. 2023) or employ uni-
versal prompt embeddings for all classes which lack dis-
crimination for fine-grained surgical instrument categories
(Zhang and Liu 2023; Chen et al. 2023; Wang et al. 2023b).
In contrast, our approach introduces a novel efficient-tuning
approach for SAM with a prototype-based prompt encoder,
which generates prompt embeddings from contrastively-
learned class prototypes. This enhances the discrimination
of fine-grained classes while simplifying the pipeline by
eliminating the need for explicit prompts.

Methodology
Overview
In this work, we address the task of surgical instrument
segmentation in a class promptable manner through effi-
cient tuning of SAM. Specifically, given a surgical image
I ∈ RH×W×3 with spatial resolution H ×W and the class

of an instrument in the image c as prompt, our goal is to
predict the class c mask of the image, denoted as M (c):

M (c) = SurgicalSAM(I, c). (1)

SurgicalSAM is composed of three core components as
shown in Fig. 3(a): an image encoder, a prototype-based
class prompt encoder, and a mask decoder. Similar to SAM,
the image encoder EI first extracts the embedding of the
input image as FI ∈ Rh×w×d, with h × w denoting the
shape of the image embedding and d representing the num-
ber of embedding channels. Then, our prototype-based class
prompt encoder ECP utilises the class prototypes B to ac-
tivate the image embedding and leverages the obtained acti-
vated feature conditioned on the prompt class c to generate
prompt embeddings, including dense prompt embeddings
T

(c)
D and sparse prompt embeddings T

(c)
S . Finally, the im-

age embedding and prompt embeddings are used to predict
the mask M (c) by the mask decoder DM . The above process
can be expressed as:

FI = EI(I), (2)

T
(c)
D , T

(c)
S = ECP (FI , B, c), (3)

M (c) = DM (FI , [T
(c)
D , T

(c)
S , TO]), (4)

where TO denotes the learnable output tokens in SAM.

Prototype-based Class Prompt Encoder
The prototype-based class prompt encoder exploits the sim-
ilarity between the image and class prototypes to create
prompt embeddings. Specifically, as shown in Fig. 3(b), the
spatial-wise similarity between the image embedding and
the class prototype is computed to activate class-specific re-
gions within the image, resulting in a class-activated feature
to generate prompt embeddings for the mask decoder. Fur-
thermore, inspired by the utilisation of both foreground and
background point prompts in SAM, we propose to not only
employ the prototype of the prompted class but integrate all
class prototypes to incorporate both positive and negative
cues. Such a strategy provides more robust priors for the
model to effectively distinguish between instrument classes
with high similarity.

Specifically, the prototype-based class prompt en-
coder ECP is built upon a prototype bank B =
concat({B(k)}k∈{1,2,...,C}) ∈ RC×d consisting of a rep-
resentative prototype for each class, where C is the to-
tal number of classes. Given an image I with image
embedding FI , we construct a similarity matrix S =
concat({S(k)}k∈{1,2,...,C}) ∈ RC×h×w to represent the
spatial-wise similarity of the image with the prototypes of
all classes. It is generated by computing the dot product be-
tween the image embedding at every spatial location and
each class prototype:

S(k) = FI ×B(k), for k ∈ {1, 2, ..., C}. (5)

The similarity matrix is then employed as spatial at-
tention to activate the class-specific regions, result-
ing in class-activated feature for all classes FC

I =
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Figure 3: SurgicalSAM for class promptable surgical instrument segmentation through efficient tuning of SAM.

concat({F (k)
I }k∈{1,2,...,C}) ∈ RC×h×w×d:

F
(k)
I = FI ◦ S(k) + FI , for k ∈ {1, 2, ..., C}, (6)

where ◦ and + represents element-wise multiplication and
addition, respectively, and F

(k)
I ∈ Rh×w×d represents the

class-activated feature for class k.
Finally, the class-activated feature is used to formu-

late dense and sparse prompt embeddings. In SAM, dense
prompt embeddings are derived from foreground masks,
providing positive cues for segmenting the object. Imitating
this, we leverage the class-activated feature of the positive
class, i.e., the prompted class c, for encoding dense prompt
embeddings T

(c)
D ∈ Rh×w×d. This is achieved through a

two-layer Multilayer Perceptron (MLP):

T
(c)
D = gD(ReLU(fD(F

(c)
I ))), (7)

where fD and gD are two linear projection functions
with intermediate dimension rD. On the other hand, the
sparse prompt embeddings in SAM are encoded from
both positive information (foreground points and bounding
boxes) and negative information (background points). In-
spired by this, we generate sparse prompt embeddings us-
ing the class-activated feature of all classes that include
both positive, prompted class and negative, non-prompted
classes. The positive and negative classes are then distin-
guished through a pair of positive and negative embeddings.
Specifically, FC

I is first fed into a two-layer MLP to ob-
tain positivity-agnostic sparse prompt embeddings T̂C

S =

concat({T̂ (k)
S }k∈{1,2,...,C}) ∈ RC×n×d:

T̂C
S = gS(ReLU(fS(F

C
I ))), (8)

where fS and gS are two linear projection functions with in-
termediate dimension rS , n indicates the number of sparse
tokens per class, and T̂

(k)
S ∈ Rn×d represents the positivity-

agnostic sparse prompt embedding activated by class k.
Then, a pair of positive and negative embeddings, λ+ ∈ Rd

and λ− ∈ Rd, are respectively added to the embeddings

corresponding to positive class (class c) and negative classes
(classes other than c), resulting in the final sparse prompt
embeddings T (c)

S ∈ RC×n×d that are positivity-aware:

T
(c)
S = concat({T̂ (k)

S + 1(k = c)λ+

+ (1− 1(k = c))λ−}), for k ∈ {1, 2, ..., C}. (9)

T
(c)
S is then reshaped to Cn×d and is fed with T

(c)
D into the

mask decoder for mask prediction.

Contrastive Prototype Learning
Our method relies on discriminative class prototypes for pre-
cise instrument category identification and accurate class
region activation. However, obtaining accurate class proto-
types in surgical scenarios with highly similar instrument
appearances is challenging. To enhance prototype discrim-
inativeness for more accurate class prompting, we propose
contrastive prototype learning to acquire the optimised class
prototypes during tuning of the framework, as illustrated in
Fig. 4. Specifically, we propose prototype contrastive loss
motivated by infoNCE loss (van den Oord, Li, and Vinyals
2019; Poole et al. 2019), where the class prototypes are con-
sidered as anchors and the SAM-based class embeddings in
training images are regarded as samples. Given image em-
bedding FI , the ground-truth binary mask of class c, G(c), is
processed to resolution h×w and used to extract the SAM-
based class embedding v(c) ∈ Rd for class c by averaging
the foreground features:

v(c) =

∑hw
i (FI ◦G(c))∑hw

i G(c)
. (10)

To this end, the prototype contrastive loss is expressed as:

LPCL = − 1

C

C∑
k=1

log
exp(B(k) · v(k)/τ)∑C
q=1 exp(B

(k) · v(q)/τ)
, (11)

where τ refers to the temperature parameter for modulating
the similarities and B(k) is the prototype of class k. It can
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Figure 4: Contrastive Prototype Learning.

be seen that LPCL strengthens the similarity between the
prototype of class k (anchor) and the SAM-based class em-
beddings of k (positive samples), simultaneously suppress-
ing the similarity between the prototype of class k (anchor)
with the SAM-based class embeddings of the classes other
than k (negative samples). This results in more discrimina-
tive prototype representations and enhanced surgical domain
knowledge infusion through SAM tuning.

Efficient Tuning
SurgicalSAM is of high training efficiency. During tuning,
the large image encoder is frozen and only the parameters of
the lightweight prototype-based prompt encoder and mask
decoder are updated. The tuning is end-to-end, supervised
by a loss function consisting of two terms: dice loss for seg-
mentation (Milletari, Navab, and Ahmadi 2016) and proto-
type contrastive loss for prototype learning:

L = LDICE + LPCL, (12)

LDICE =
2
∑HW

i migi∑HW
i m2

i +
∑HW

i g2i
, (13)

where mi and gi are the predicted logit and the ground-truth
binary value at pixel i of the image, respectively.

Experiments and Discussion
Datasets and Evaluation
We use the EndoVis2018 (Allan et al. 2020) and En-
doVis2017 (Allan et al. 2019) datasets and adhere to
the standard protocols defined by Shvets et al. (2018)
and González, Bravo-Sánchez, and Arbelaez (2020). En-
doVis2017 consists of eight videos, each with 255 frames,
for which we perform 4-fold cross-validation following
Shvets et al. (2018). EndoVis2018 offers 11 training videos
and four validation videos with each consisting of 149
frames. Both datasets provide seven instrument categories.

For evaluation, we follow prior research and adopt three
segmentation metrics: Challenge IoU (Allan et al. 2019),
IoU, and mean class IoU (mc IoU) (González, Bravo-
Sánchez, and Arbelaez 2020; Baby et al. 2023; Ayobi et al.
2023). The efficiency of our method is evaluated in terms of
training speed, training GPU usage, and inference speed.

Implementation Details
The data from EndoVis2017 and EndoVis2018 are pre-
processed following Shvets et al. (2018). For the prototype-
based prompt encoder, the intermediate dimensions rD and
rS are both set to 128 and the number of tokens per class
n is set to 2 and 4 for EndoVis2018 and EndoVis2017, re-
spectively. For prototype contrastive loss, a temperature τ
of 0.07 is used. In terms of training, we initialise the im-
age encoder, the mask decoder, and the positive and nega-
tive embeddings (λ+ and λ−) of SurgicalSAM with SAM’s
pre-trained weight of the ViT-H version (Dosovitskiy et al.
2020). The image encoder and the positive and negative em-
beddings of our model remain frozen while the weights of
the prompt encoder and mask decoder are updated. We em-
ploy an Adam optimiser with a learning rate of 0.001 and
0.0001 for EndoVis2018 and EndoVis2017, respectively. To
reduce computational load, we adopt pre-computed image
embeddings in training, employing a batch size of 32. Our
model is implemented using PyTorch and trained and evalu-
ated on an Nvidia Tesla V100 16GB GPU.

Main Results
The comparison of SurgicalSAM with existing methods on
EndoVis2018 and EndoVis2017 are presented in Table 1 and
Table 2, respectively. A visual comparison of the predictions
is shown in Fig. 5. The evaluated instrument categories in-
clude Bipolar Forceps (BF), Prograsp Forceps (PF), Large
Needle Driver (LND), Suction Instrument (SI), Vessel Sealer
(VS), Clip Applier (CA), Grasping Retractor (GR), Monopo-
lar Curved Scissors (MCS), and Ultrasound Probe (UP). In
our comparison, we categorise existing strategies into spe-
cialist models and SAM-based models. Remarkably, Surgi-
calSAM surpasses existing SAM-based models, matching or
even exceeding the performance of SOTA specialist models,
while using only a few tunable parameters.

In terms of SAM-based models, the three zero-shot SAM
baselines: MT-RCNN or Mask2Former with SAM (Yang,
Fan, and Xu 2019; Cheng et al. 2022) (detection-based),
Track Anything (Yang et al. 2023) (tracking-based), and Per-
SAM (Zhang et al. 2023) (reference-based), all exhibit infe-
rior performance. In particular, PerSAM is notably unsuit-
able for the task due to its reliance on a single instance for
visual reference and a simple two-point prompting mech-
anism. Given the substantial intra-class variance and low
inter-class variance among surgical instruments, a single in-
stance lacks the necessary information for accurately refer-
encing an instrument, resulting in missing instances in pre-
diction, as shown in Fig. 5(b) and (d). Additionally, the use
of just one foreground point and one background point fails
to effectively prompt SAM for zero-shot instrument segmen-
tation due to SAM’s lack of surgical domain knowledge,
leading to an incorrect interpretation of the instrument con-
tours (Fig. 5(a), (b), and (c)). While Track Anything exhibits
improved performance compared to PerSAM, its efficacy
heavily relies on the quality of prompts, as shown by the
large gap between the results obtained from prompting with
one point versus five points. Furthermore, the significant
motion of instruments often causes Track Anything to lose
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Instrument CategoriesMethod Category Method Challenge IoU IoU mc IoU BF PF LND SI CA MCS UP #Params

Specialist Model

TernausNet 46.22 39.87 14.19 44.20 4.67 0.00 0.00 0.00 50.44 0.00 32.20M
MF-TAPNet 67.87 39.14 24.68 69.23 6.10 11.68 14.00 0.91 70.24 0.57 37.73M
Dual-MF 70.40 - 35.09 74.10 6.80 46.00 30.10 7.60 80.90 0.10 203.80M
ISINet 73.03 70.94 40.21 73.83 48.61 30.98 37.68 0.00 88.16 2.16 162.52M
TraSeTr 76.20 - 47.71 76.30 53.30 46.50 40.60 13.90 86.20 17.15 -
S3Net 75.81 74.02 42.58 77.22 50.87 19.83 50.59 0.00 92.12 7.44 68.41M
MATIS Frame 82.37 77.01 48.65 83.35 38.82 40.19 64.49 4.32 93.18 16.17 68.72M

SAM-based Model

MT-RCNN + SAM 78.49 78.49 56.07 79.83 74.86 43.12 62.88 16.74 91.62 23.45 57.67M
Mask2Former + SAM 78.72 78.72 52.50 85.95 82.31 44.08 0.00 49.80 92.17 13.18 68.72M
TrackAnything (1 Point) 40.36 38.38 20.62 30.20 12.87 24.46 9.17 0.19 55.03 12.41 -
TrackAnything (5 Points) 65.72 60.88 38.60 72.90 31.07 64.73 10.24 12.28 61.05 17.93 -
PerSAM 49.21 49.21 34.55 51.26 34.40 46.75 16.45 15.07 52.28 25.62 -
PerSAM (Fine-Tune) 52.21 52.21 37.24 57.19 36.13 53.86 14.34 25.94 54.66 18.57 2
SurgicalSAM (Ours) 80.33 80.33 58.87 83.66 65.63 58.75 54.48 39.78 88.56 21.23 4.65M
GT Centroid + SAM 60.26 60.26 63.34 44.35 65.92 30.99 87.14 69.69 80.04 65.26 -
GT Bbox + SAM 88.04 88.04 84.23 87.10 86.81 72.23 91.21 75.91 93.08 83.24 -

Table 1: Comparative Results on the EndoVis2018 Dataset. #Params represents number of tunable parameters.

Instrument CategoriesMethod Category Method Challenge IoU IoU mc IoU BF PF LND VS GR MCS UP

Specialist Model

TernausNet 35.27 12.67 10.17 13.45 12.39 20.51 5.97 1.08 1.00 16.76
MF-TAPNet 37.25 13.49 10.77 16.39 14.11 19.01 8.11 0.31 4.09 13.40
Dual-MF 45.80 - 26.40 34.40 21.50 64.30 24.10 0.80 17.90 21.80
ISINet 55.62 52.20 28.96 38.70 38.50 50.09 27.43 2.10 28.72 12.56
TraSeTr 60.40 - 32.56 45.20 56.70 55.80 38.90 11.40 31.30 18.20
S3Net 72.54 71.99 46.55 75.08 54.32 61.84 35.50 27.47 43.23 28.38
MATIS Frame 68.79 62.74 37.30 66.18 50.99 52.23 32.84 15.71 19.27 23.90

SAM-based Model

Mask2Former + SAM 66.21 66.21 55.26 66.84 55.36 83.29 73.52 26.24 36.26 45.34
TrackAnything (1 Point) 54.90 52.46 55.35 47.59 28.71 43.27 82.75 63.10 66.46 55.54
TrackAnything (5 Points) 67.41 64.50 62.97 55.42 44.46 62.43 83.68 62.59 67.03 65.17
PerSAM 42.47 42.47 41.80 53.99 25.89 50.17 52.87 24.24 47.33 38.16
PerSAM (Fine-Tune) 41.90 41.90 39.78 46.21 28.22 53.12 57.98 12.76 41.19 38.99
SurgicalSAM (Ours) 69.94 69.94 67.03 68.30 51.77 75.52 68.24 57.63 86.95 60.80
GT Centroid + SAM 44.42 44.42 54.41 63.42 36.03 22.57 54.21 75.18 70.17 59.25
GT Bbox + SAM 76.31 76.31 81.18 89.36 73.44 67.67 90.04 87.79 94.03 65.91

Table 2: Comparative Results on the EndoVis2017 Dataset.

track or confuse between instruments with similar appear-
ances (Fig. 5(b), (c), and (d)). Detection-based SAM shows
the most promising performance among the three zero-shot
SAM baselines. However, its effectiveness relies on a well-
trained detector model which requires significant training ef-
fort. Also, without SAM tuning, the lack of domain knowl-
edge can result in incomplete masks or misidentification of
instrument categories (Fig. 5(a), (b), and (c)).

SurgicalSAM outperforms all three zero-shot SAM base-
lines. Different from these solutions, SurgicalSAM inte-
grates surgical domain knowledge with SAM’s pre-trained
general knowledge, enhancing its expertise with surgical
instruments and resulting in more accurate segmentation
(Fig. 5). Meanwhile, the tuning of SurgicalSAM is highly
efficient, requiring significantly fewer tunable parameters
than the detection-based model (4.65M for SurgicalSAM
vs. 57.67M for MT-RCNN + SAM). Furthermore, Surgi-
calSAM utilises learned prototypes as references, which are
more general and descriptive than the single instance refer-
ence in PerSAM, and eliminates the use of explicit prompts

for a pipeline much simpler than the multi-stage detection-
based pipeline.

We also establish two oracle scenarios by employing
ground-truth centroids or ground-truth bounding boxes as
prompts for SAM. As shown in Table 1 and Table 2, Surgi-
calSAM demonstrates substantial superiority over the util-
isation of ground-truth centroids, achieving an improve-
ment of 20.07% and 25.52% in Challenge IoU for En-
doVis2018 and EndoVis2017, respectively. These promising
results show that SurgicalSAM already attains superior re-
sults compared to employing basic manual guidance.

Moreover, SurgicalSAM achieves SOTA performance
competitive with the specialist models while requiring sub-
stantially fewer tunable parameters (4.65M for Surgical-
SAM vs. 68.72M for MATIS Frame). Particularly, signifi-
cant improvements can be observed in mean class IoU, in-
dicating that the general knowledge in foundation models
serves as extra priors that help to diminish the class im-
balance problem in small datasets. In summary, our method
achieves promising performance with high efficiency.
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Figure 5: Visualisation of Predicted Masks.

Challenge IoU mc IoU Challenge IoU mc IoU
n \LPCL ✗ ✓

2 76.38 53.95 80.33 58.87
4 78.26 56.54 79.46 58.40
6 77.28 53.71 79.67 56.97
8 76.98 53.94 80.10 58.30

Table 3: Ablation Study on SurgicalSAM.

Ablation Study
We conduct an ablation study on EndoVis2018 for con-
trastive prototype learning and the number of tokens n.
Specifically, we remove the contrastive prototype learning
module and use fixed class prototypes computed by taking
the average of the class embeddings across all training sam-
ples. The results, as depicted in Table 3, show a significant
difference. Without the contrastive learning process, the pre-
computed fixed prototypes tend to be overly similar across
different instrument categories due to their highly similar ap-
pearance. Contrastive prototype learning helps the model to
learn more discriminative class prototypes and accurately
identify the instrument classes. Moreover, the efficacy of
contrastive prototype learning remains consistent across dif-
ferent numbers of tokens. Regarding the impact of different
numbers of tokens on our complete model, as shown in Ta-
ble 3, no notable changes can be observed. In contrast to
the original SAM which is sensitive to the number of points
provided (Cheng et al. 2023), the use of class prompt in our
work demonstrates enhanced robustness.

Cross-Dataset Generalisation
We verify the cross-dataset generalisability of SurgicalSAM
by training it on one dataset and evaluating it on another.
The results are shown in Table 4, where only the instrument
classes shared by both datasets are considered. Compared
to the SOTA specialist model MATIS Frame, our method
consistently performs better in both ways (EndoVis2018
to EndoVis2017 and EndoVis2017 to EndoVis2018). No-
tably, when trained on EndoVis2018 and evaluated on En-
doVis2017, we achieve a large improvement of 11.43% in

Instrument Categories (IoU)T V Method BF PF LND MCS Mean IoU

18 17 MATIS Frame 45.57 32.62 44.98 58.84 45.50
SurgicalSAM 70.95 35.21 45.46 76.08 56.93

17 18 MATIS Frame 65.55 13.89 38.25 65.58 45.81
SurgicalSAM 44.50 27.17 50.76 62.94 46.34

Table 4: Cross-Dataset Generalisation. T: training dataset;
V: validation dataset; 18: EndoVis2018; 17: EndoVis2017.

SpeedT (fps) MemoryT (GB)Method bz=2 bz=16 bz=32 bz=2 bz=16 bz=32
MATIS Frame 3.1 - - 13.1 - -
MT-RCNN+SAM 8.2 12.8 - 3.2 13.9 -
SurgicalSAM 40.1 57.4 59.8 1.9 5.9 9.6

SpeedI (fps)Method Online Feature Offline Feature
MT-RCNN+SAM 1.6 14.3
SurgicalSAM 1.7 91.7

Table 5: Complexity Analysis. T : Training; I: Inference.

the IoU averaged over all classes. This underscores the ad-
vantage of SurgicalSAM over dedicated specialist models in
terms of its ability to effectively generalise to new data dis-
tributions, owing to its integration of both foundation gen-
eral knowledge and surgical domain expertise.

Complexity Analysis
We conduct a complexity analysis of SurgicalSAM against
the best-performing zero-shot SAM baseline (MT-RCNN +
SAM) and the SOTA specialist model MATIS Frame (Ayobi
et al. 2023). Their comparison regarding training efficiency
across three batch sizes (bz) and inference efficiency is de-
picted in Table 5. In training, our method demonstrates con-
siderably improved efficiency with notably faster speed and
lower GPU memory consumption. Owing to the small num-
ber of tunable parameters, SurgicalSAM utilises less than
1/6 of the GPU memory of MATIS Frame with the same
batch size, while achieving training over 10 times faster. In
inference, the end-to-end pipeline of SurgicalSAM allows it
to run faster than the complex multi-stage SAM baseline.

Conclusion
In this paper, we present SurgicalSAM, a novel method to
efficiently tune SAM for surgical instrument segmentation.
SurgicalSAM introduces a prototype-based class prompt en-
coder, which generates prompt embeddings directly from
class prototypes. This eliminates the need for explicit points
or boxes from manual guidance or specialist detectors, en-
abling an end-to-end pipeline and enhancing prompt robust-
ness. We also introduce contrastive prototype learning to en-
hance the discriminative capability of class prototypes, im-
proving differentiation among fine-grained instrument cat-
egories. Our method achieves state-of-the-art performance
on both EndoVis2018 and EndoVis2017 with remarkable
training and inference efficiency. It shows great promise for
adapting SAM for surgical instrument segmentation.
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