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Abstract

Existing super-resolution methods exhibit limitations when
applied to nighttime scenes, primarily due to their lack of
adaptation to low-pair dynamic range and noise-heavy dark-
light images. In response, this paper introduces an innovative
customized framework to simultaneously Brighten and Zoom
in low-resolution images captured in low-light conditions,
dubbed BrZoNet. The core method begins by feeding low-
light, low-resolution images and their corresponding ground
truths into the Retinex-induced siamese decoupling network.
This process yields distinct reflectance maps and illuminance
maps, guided by supervision from the ground truth’s decompo-
sition maps. Subsequently, these reflectance and illuminance
maps transition into an intricate super-resolution sub-network.
This sub-network employs a meticulously designed cross-layer
content-aware interactor - Illumination-aware Interaction Unit
(IaIU), elegantly endowed with a gating mechanism. The IaIU
facilitates meaningful feature interaction between illuminance
and reflectance features while effectively reducing unwanted
noise. An intricate super-resolution cage is also constructed
to comprehensively integrate information, ultimately resulting
in the generation of high-resolution images featuring intricate
details. Thorough and diverse experiments validate the supe-
riority of the proposed BrZoNet, surpassing contemporary
cutting-edge technologies by proficiently augmenting bright-
ness and intricately recovering complex details, showcasing
advancements of 7.1% in PSNR, 2.4% in SSIM, and an im-
pressive 36.8% in LPIPS metrics.

Introduction
The task of low-light image processing has been a hot re-
search topic in the field of computer vision (Sharma and Tan
2021; Jin, Yang, and Tan 2022; Jin et al. 2023; Tan et al. 2021;
Xie et al. 2023). It has practical applications across diverse
domains, encompassing nighttime photography, nighttime
detection, and segmentation, as well as security surveillance
and autonomous driving (Wu and Deng 2022; Deng et al.
2022). These tasks necessitate the acquisition of bright and
detailed images or video frames to ensure effective visual per-
ception and capture rich feature information, thereby enhanc-
ing high-level perceptual performance. Hence, enhancing the
brightness of low-light images along with improving their
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Figure 1: We explore three different approaches to address
the challenging task of super-resolution in low-light scenes:
(a) task cascade, (b) direct super-resolution, and (c) siamese
decoupling and illumination-guided super-resolution.

resolution to capture more details holds substantial research
significance for the aforementioned task.

To tackle this issue, two of the most intuitive approaches
are considered: one involves cascading low-light enhance-
ment with the super-resolution method, while the other entails
training the existing super-resolution network model directly
on the corresponding dataset. The corresponding schemes
are shown in Figure 1(a) and Figure 1(b). We explored the
effectiveness of these two implementation strategies by using
the state-of-the-art super-resolution model (i.e., HAT (Chen
et al. 2023)) as well as the low-light enhancement models
(i.e., LLFormer (Wang et al. 2023) and SCI (Ma et al. 2022))
for direct and cascade training. The corresponding visual re-
sults are presented in Figure 2. Notably, we retrained both the
cascaded and standalone super-resolution models using the
low-light super-resolution dataset to ensure a fair comparison.

Nevertheless, both of the aforementioned approaches
present sub-optimal solutions to this joint task. As evidenced
in Figure 2, the results produced by cascaded models, namely
SCI+HAT and LLFormer+HAT, are contingent upon the
efficacy of the low-light enhancement model. However, this
approach is hindered by prominent noise and a deficiency of
detail. Direct utilization of existing super-resolution models
produces artifacts and is not sufficiently adaptable to different
levels of darkness. The root cause of these limitations lies
in the inherent characteristics of existing super-resolution
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Figure 2: Visual results of various methods in low-light
scenes. Cascade mode and direct super-resolution mode ex-
hibit inferior performance. In contrast, the proposed approach
achieves more natural and intricate texture details.

methods under normal lighting conditions, making it chal-
lenging to robustly learn rich features from extremely dark
images to enhance super-resolution. However, in the cascade
model, because of the inherent limitations of low illumina-
tion enhancement methods, the enhanced input propagated
to the subsequent super-resolution network tends to suffer
from color biases, noise, and even blurred details, thereby
significantly impeding the overall performance of the super-
resolution model. Conversely, network models without a spe-
cific design tailored to low-light images face considerable
challenges when attempting to glean sufficient fine-grained
information from such inputs, given their low pixel values
and narrow dynamic ranges. Consequently, these models are
prone to generating issues such as artifacts, noise, and color
biases. Moreover, the actual images and video frames cap-
tured in real-world scenarios often exhibit varying degrees of
darkness, thus further compounding the challenge of adapt-
ing to diverse levels of low-light conditions. This variability
necessitates a flexible and adaptable approach to address the
specific darkness level in a given scenario.

In order to address the above challenges, we have devised a
novel framework and corresponding training strategy, which
leverages the principles of the Retinex theory within the con-
text of decomposition space. The corresponding scheme is
shown in Figure 1(c). Specifically, a decomposition space net-
work is introduced, trained by siamese unsupervised learning,
to decompose the low-illumination image into distinct reflec-
tion and illumination maps. These individual components,
representing the inherent reflectance and illuminance char-
acteristics, are then directed into a subsequent multi-scale
contextual UNet for dedicated enhancement. To further im-
prove the quality of the reflectance maps and adapt them to
varying degrees of darkness, we have introduced a cross-layer
aware interactor with gating mechanisms, which serves a dual
purpose of implicit denoising and illuminating the reflectance
maps. By employing gating mechanisms, we can selectively
regulate the information flow, enabling the reflectance maps

to better acclimate to diverse low-light conditions. Further-
more, the enriched multi-scale illumination and reflection
features undergo a meticulous super-resolution fusion pro-
cess, meticulously designed within an intricate fusion cage.
This fusion facilitates comprehensive information integration
across multiple scales and ultimately leads to the reconstruc-
tion of super-resolution images. The final results are obtained
by a dot product, which effectively enhances both luminance
and fine-grained details, thus achieving superior visual en-
hancement outcomes.

The main contributions of the paper are summarized:

• In order to solve the low-light super-resolution problem,
BrZoNet is proposed from the perspective of decomposi-
tion space for simultaneously Brightening and Zooming
low-light low-resolution images.

• To enable the interaction of information on different scales
of illuminance and reflectance features, this paper pro-
poses a cross-layer content-aware interactive component
- Illumination-aware Interaction Unit (IaIU), which en-
hances the adaptability of features to different darkness
levels and suppresses the noise implicitly.

• In order to enhance the detail of the final reconstruction
results, this paper proposes an intricate super-resolution
fusion cage - Multi-stream Super-resolution Cage (MSC),
which emphasizes faithful texture details by fusing re-
flectance and illumination features at different scales.

• Thorough and comprehensive experimentation unequivo-
cally establishes the superiority of the proposed BrZoNet
over contemporary cutting-edge technologies, as it not
only enhances brightness but also adeptly restores intri-
cate details, achieving remarkable improvements of 7.1%
in PSNR, 2.4% in SSIM, and an impressive 36.8% in
LPIPS metrics.

Related Work
Image Super-resolution
In recent years, remarkable advancements have been achieved
in image super-resolution algorithms, driven by the rapid de-
velopment of deep learning (Zhou et al. 2023a; Sun, Pan,
and Tang 2022). The utilization of convolutional neural net-
work (Ledig et al. 2017; Zamir et al. 2020; Gao et al. 2023a)
and generative adversarial network (Wang et al. 2018, 2021)
in addressing image super-resolution challenges has resulted
in outstanding performance across various datasets. The ap-
plication of transformer-based networks (Liu et al. 2021c;
Liang et al. 2021; Chen et al. 2023; Gao et al. 2023b) in the
realm of image super-resolution has significantly contributed
to advancements in model architecture, computational effi-
ciency, and practical application, thereby fostering progress
in the research and development of super-resolution tasks.
These methods promote the development of super-resolution
tasks in terms of model structure, computational consump-
tion, and application to realistic scenarios. However, these
methods are not specifically designed for nighttime scenes,
and their direct use can result in insufficient brightening,
artifacts, color deviation, and noise amplification.
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Figure 3: The pipeline of the BrZoNet. The overall network consists of three parts: Part (a) utilizes a siamese decoupling module
to decompose the low-light low-resolution input. Part (b) constructs cross-layer content-aware interactor between the illumination
and reflection branches, proposing an illumination-based perceptual-guided reflection for fine enhancement. Part (c) builds a
multi-stream feature aggregation super-resolution module to improve high-frequency details and enlarge the resolution. (d)
illustrates the proposed training strategy and the specific constraint losses (i.e., marked with red dashed arrows) introduced in
each module, including decoupling constraint, illumination-reflection constraint, and reconstruction constraint, respectively.

Low-light Image Enhancement
The integration of Retinex theory (Rahman, Jobson, and
Woodell 2004) into deep learning represents a predominant
approach in addressing the majority of current methods (Wei
et al. 2018; Wang et al. 2019; Zhang et al. 2021; Ma et al.
2023; Gao et al. 2023a; Liu et al. 2023; Li et al. 2024). Fur-
ther, Retinex theory is also combined with neural architecture
search (Liu, Simonyan, and Yang 2018; Liu et al. 2021b,a)
and unrolling modes (Wu et al. 2022) to address low-light
enhancement tasks. Besides supervised methods, there are
semi-supervised and unsupervised approaches (Jiang et al.
2021; Guo et al. 2020; Ma et al. 2022; Liu et al. 2022) for
low-light enhancement. Drawing inspiration from the Retinex
theory principles, this paper delves into the learning process
of super-resolution tasks in low-light scenarios.

Methodology
The problem of super-resolution in low-light scenarios is a
complex and challenging task within a practical application
context, and as such, it has not received sufficient attention for
an extended period. It aims to reconstruct a super-resolution
image with normal illumination xnsr from a low-resolution
image captured under low-lighting conditions xllr. In the fol-
lowing, we propose a specialized methodology that encom-
passes three essential processing steps: siamese decoupling,
cross-layer interaction, and fusion reconstruction. The over-
all pipeline of the proposed method is illustrated in Figure 3.
Firstly, leveraging the principles of Retinex theory, we es-

tablish a Retinex-induced siamese decoupling module Nrsd

to derive the low-resolution illumination mapping ullr (or
unhr) and reflection mapping vllr (or vnhr) in terms of xllr

and its corresponding normal-light high-resolution image
ynhr. This decoupling process can be formulated as

xllr/ynhr Nrsd−→ {ullr/unhr,vllr/vnhr}. (1)

Building upon this foundation, we further devise a cross-
layer content-aware interactor Ncci that facilitates feature
exchange between two mapping branches. Finally, through
the meticulous integration of a intricate super-resolution fu-
sion cage and the retinex-based element-wise multiplication,
we obtain the enhanced super-resolution image xnsr with
faithfully restored lighting conditions. The workflow can be
succinctly formalized as follows:

{ullr,vllr} Ncci−→ {unsr,vnsr} ⊙−→ xnsr. (2)

Retinex-induced Siamese Decoupling
We posit that the decomposition mechanism guided by
Retinex theory can be effectively extended across differ-
ent resolutions. Thus, for a given data pair (xllr,ynhr),
where xllr represents the low-resolution input captured un-
der weak lighting conditions and ynhr corresponds to the
high-resolution ground truth with optimal illumination, we
jointly input them into a shared-parameter representation
space. Specifically, we construct a parallel Retinex-induced
siamese decoupling network Nrsd parameterized by θrsd,
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which is an improved version of the Unet-type architecture. It
is worth noting that, in order to enhance the representational
capacity of features, we introduce refined content reconstruc-
tion units as fundamental building blocks at each layer, as
depicted in Figure 4. The entire module is learned by incorpo-
rating a decoupling constraint1, yielding the low-resolution
illumination map and reflection map. The entire process can
be formalized as follows:
{ullr,vllr} = Nrsd(x

llr; θrsd), x
llr = ullr ⊙ vllr

{unhr,vnhr} = Nrsd(y
nhr; θrsd), y

nhr = unhr ⊙ vnhr.
(3)

Cross-layer Content-aware Interactor
Building upon the aforementioned framework, the separated
illumination mapping and reflection mapping {ullr,vllr} are
fed into two parallel Unet-style network, designed for fine-
grained feature enhancement and interaction. This module is
denoted as Ncci parameterized by θcci, which is formulated
as {unsr,vnsr} = Ncci(u

llr,vllr; θcci). To elaborate fur-
ther, we first extract features at n different scales from the de-
coder of the illumination sub-network denoted as {ullr

Fi
}ni=1.

Subsequently, utilizing the designed Illumination-aware In-
teraction Unit (IaIU; ψIaIU ), the preceding features are em-
ployed as guidance masks to fuse with the features {vllr

Fi
}ni=1

from the reflection sub-network at each layer, ultimately ob-
taining the guided reflection map vnsr:

vllr
Fi+1

= ψIaIU (ullr
Fi
,vllr

Fi
), i = 1, · · · , n. (4)

The ψIaIU is illustrated in the middle of Figure 3. Specif-
ically, the illumination features ullr

Fi
and reflection fea-

tures vllr
Fi

obtained from the encoder are inputted separately
into the multi-dconv block with norm layers, denoted as
DcN. After that, the dimensions are reshaped to obtain the
illumination-aware guidance map GIaIU , which represents
the relationship between the illumination and reflection fea-
tures, expressed as

GIaIU = Softmax
(
DcN(ullr

Fi
)⊗ DcN(vllr

Fi
)
)
, (5)

where ⊗ denotes the matrix multiplication operation. Using
this guidance map as an attention map, we apply softmax
normalization and modulate the transformed reflection fea-
tures. At the same time, we introduce a feed forward block
with stack of gated conv. layers, denoted as Ψ̃Feed. This
stack performs self-coordinated transformation and produces
a reflection map with the same dimensions as the input, i.e.,

FIaIU
i = Ψ̃Feed

(
DcN(vllr

Fi
)⊗GIaIU

)
. (6)

It’s important to note that the illumination map contains
more structural detail information. Thus, it can serve as a
mask to guide the enhancement of the reflection map. More-
over, inspired by the Retinex theory, we perform element-
wise multiplication between the reflection map and the illu-
mination map in the feature level, formulated as vllr

Fi+1
=

Up↑(u
llr
Fi

⊙FIaIU
i ), where Up↑ denotes the ConvTranspose

layer for upsampling. The purpose of this step is to obtain
the guided reflection feature vllr

Fi+1
that are more consistent

in terms of contextual content.
1Please refer to the self-regularized decoupling loss in Eq. (8).

Figure 4: Illustrations of the basic RCU module.

Figure 5: Architectural details of the MSC module.

Intricate Super-resolution Fusion Cage
We designed the Multi-stream Super-resolution Cage (MSC)
module for the illumination and reflection branches to per-
form feature aggregation and amplification across multiple
scales. As shown in Figure 5, for each specific indexed scale
layer of the illumination and reflection features, they undergo
sequential refined content unit (RCU) and selective attention
mechanism (SKFF) layers. The SKFF layer is inspired by
the setting of method (Zamir et al. 2020), enabling feature
selection and aggregation interaction between the two scales
to enhance representational capacity. By applying two sets
of the same operation forms, along with residual connec-
tions, we obtain the amplified illumination and reflection
maps through convolution and upsampling operations at the
desired magnification ratio.

Loss Function
The following is the loss function used in this paper:

Ltotal = λSD ∗ LSD + λFR ∗ LFR + λRP ∗ LRP , (7)

where LSD and LFR and LRP are self-regularized decou-
pling loss, and fusion resolution loss and reconstruction per-
ception loss respectively. λSD, λFR and λRP are the corre-
sponding loss weights.
Self-regularized Decoupling Loss. Within the decomposi-
tion space, following the principles of Retinex, we impose
constraints on the input data pairs separately, ensuring that
the decomposed illumination and reflection components sat-
isfy fundamental imaging rules. The constructed decoupling
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Scale Metrics EDSR D-DBPN ESRGAN RDN RCAN SRFBN PAN MSRResNet MIRNet SwinIR Restormer SRFormer HAT Ours

×2

PSNR↑ 18.38 18.70 18.08 18.79 19.76 18.42 18.78 18.15 21.05 18.38 21.21 19.55 20.21 22.79
SSIM↑ 0.679 0.682 0.655 0.701 0.712 0.662 0.693 0.677 0.720 0.640 0.727 0.704 0.719 0.745
LPIPS↓ 0.466 0.460 0.300 0.455 0.426 0.510 0.450 0.451 0.436 0.577 0.385 0.469 0.454 0.243
RMSE↓ 0.125 0.120 0.135 0.120 0.110 0.125 0.119 0.128 0.095 0.125 0.095 0.110 0.103 0.078
FSIM↑ 0.851 0.862 0.873 0.874 0.881 0.847 0.867 0.848 0.889 0.845 0.892 0.877 0.882 0.902
SRE↑ 55.62 55.80 55.52 55.86 56.37 55.67 55.85 55.52 57.06 55.64 57.09 56.23 56.58 57.90

×4

PSNR↑ 17.69 17.96 17.18 18.21 19.07 17.67 18.10 17.59 19.78 17.53 20.29 18.72 19.75 21.41
SSIM↑ 0.679 0.674 0.647 0.701 0.712 0.665 0.700 0.684 0.704 0.663 0.720 0.705 0.715 0.726
LPIPS↓ 0.623 0.575 0.471 0.584 0.550 0.640 0.559 0.581 0.599 0.688 0.492 0.613 0.561 0.383
RMSE↓ 0.135 0.132 0.149 0.128 0.119 0.136 0.129 0.137 0.109 0.139 0.106 0.121 0.110 0.090
FSIM↑ 0.832 0.848 0.858 0.866 0.874 0.836 0.859 0.841 0.878 0.840 0.885 0.869 0.873 0.886
SRE↑ 58.51 58.64 58.30 58.77 59.21 58.51 58.71 58.45 59.63 58.43 59.82 59.02 59.57 60.39

Table 1: Quantitative comparison of ×2 and ×4 tasks on the RELLISUR dataset. Best results are bolded. Six reference indicators,
including PSNR, SSIM, LPIPS, RMSE, FSIMC and SRE are quantitatively analyzed.

Figure 6: Qualitative comparisons of ×2 tasks on RELLISUR dataset. The top is the full result images, the middle are local
zoom images of the red boxes, and the bottom is the statistical distributions of the RGB channels.

constraints can be represented as follows:

Lu,v
SD =

∑
p∈{llr,nhr}

||up⊗vp−xp||1+SATV (up,vp), (8)

where SATV (·, ·) denotes the structure-aware total variation
loss (Wei et al. 2018).
Fusion Resolution Loss. After merging the two branches
and performing super-resolution, we apply constraints sepa-
rately to the resulting illumination and reflection components
to ensure their consistency with the corresponding ground
truth illumination and reflection content. Additionally, we
introduce an illumination smoothness constraint to guarantee
structural smoothness. This loss term can be represented as
follows:

LFR =
∑

q∈{u,v}

||qnsr−qnhr||1+SATV (unsr,vnsr). (9)

Reconstruction and Perception Loss. In the concluding stage
of the network reconstruction, we apply the following loss

terms to enforce content consistency and perceptual content
consistency, expressed as

LRP = ||ynsr−ynhr||1+||ψ(ynsr)−ψ(ynhr)||Perc, (10)

where ψ denotes the pretrained VGG-19 network with spe-
cific network layers. By imposing content consistency and
perceptual consistency losses, the network is encouraged to
generate visually consistent and more realistic enhancement
results.

Experiments
Experimental Setting
We use the widely recognized dataset RELLISUR2 to train
and evaluate the proposed method. The dataset comprises
paired images, including low-resolution dark light/high-
resolution normal light images at ×1, ×2, and ×4 reso-
lutions. The training set consists of 3610 pairs, while the test

2https://vap.aau.dk/rellisur/
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Figure 7: Qualitative comparisons of ×4 tasks on RELLISUR dataset. The top is the full result images, the middle two rows are
local zoom images of the red and green boxes, and the bottom is the statistical distribution of the RGB channels.
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Figure 8: Enhancement results comparison for input images
under different low-light levels (i.e., -3.0EV, -4.0EV and -
5.0EV). Across all varying low-light levels, the proposed
method excels in both detail and luminance restoration, ef-
fectively suppressing color distortion.

set includes 425 pairs of images with varying darkness levels
at each resolution. We experimented with data at ×2 and
×4 resolution. To augment our dataset, we utilize three data
augmentation techniques, namely random cropping, random
rotation, and random flipping (Liu et al. 2020). The experi-
ments were conducted using the PyTorch 2.0.1 framework
on a single NVIDIA GeForce GTX 2080Ti GPU, and the
optimizer used was AdamW with 15W iterations. Dynamic
patch size and batch size were employed during training. The
initial learning rate was set to 2× 10−3, and we opted for the
CosineAnnealingRestartCyclicLR as the learning rate tuning
method.

Experimental Evaluation
To fully verify the effectiveness of our method, we com-
pare 13 state-of-the-art normal light super-resolution meth-
ods, including MSRFBN (Li et al. 2019), D-DBPN (Haris,
Shakhnarovich, and Ukita 2018), RDN (Zhang et al. 2018c),

EDSR (Lim et al. 2017), ESRGAN (Wang et al. 2018),
RCAN (Zhang et al. 2018b), PAN (Zhao et al. 2020), ESR-
GAN (Wang et al. 2018), SwinIR (Liang et al. 2021), MIR-
Net (Zamir et al. 2020), Restormer (Zamir et al. 2022), SR-
Former (Zhou et al. 2023b) and HAT (Chen et al. 2023). All
compared methods are retrained on the RELLISUR dataset
according to the official parameters. And we choose six eval-
uation metrics: Peak Signal to Noise Ratio (PSNR) (Chan
and Whiteman 1983) and Structural Similarity Index Mea-
sure (SSIM) (Wang et al. 2004), Learned Perceptual Image
Patch Similarity (LPIPS) (Zhang et al. 2018a), Root Mean
Square Error (RMSE) (Ferrari et al. 2018), Feature-based
Similarity Index (FSIMC) (Zhang et al. 2011) and Signal to
Reconstruction Error Ratio (SRE) (Lanaras et al. 2018).
Quantitative Evaluation. As shown in Table 1, our BrZoNet
outperforms other state-of-the-art techniques, ranking first in
all six evaluation metrics. This indicates that the results re-
covered by the proposed method consistently exhibit superior
performance in terms of illumination, color, and texture de-
tails compared to alternative approaches. Particularly for the
×2 upscaling task, PSNR and RMSE show improvements
of 7.4% and 17.8%, respectively. For the ×4 upscaling task,
the improvements are 5.5% for PSNR and 15.1% for RMSE.
Qualitative Evaluation. The qualitative comparison visual-
ization results are presented in Figure 6 and Figure 7. In
comparison to other state-of-the-art methods, the proposed
method excels not only enhances illumination but also ex-
hibits superior restoration of texture details. It effectively
suppresses the generation of artifacts and noise issues. Fur-
thermore, the statistical distribution of RGB values indicates
that, our method produces results with color distributions
closer to those of the reference image, as compared to the
contrastive methods.

To demonstrate that our proposed method can adaptively
enhance and super-resolve low-light low-resolution images
of different darkness levels, we show the comparison results
in Figure 8. Compared to these above methods, the proposed
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Scale Method Metric
IllNet IaIU MSC PSNR↑ SSIM↑ LPIPS↓

×2

✗ ✗ ✗ 21.91 0.725 0.270
✓ ✗ ✗ 22.16↑0.25 0.734↑0.009 0.261↓0.009

✓ ✓ ✗ 22.31↑0.40 0.733↑0.008 0.255↓0.015

✓ ✓ ✓ 22.79↑0.88 0.745↑0.020 0.243↓0.027

×4

✗ ✗ ✗ 20.78 0.720 0.387
✓ ✗ ✗ 20.90↑0.12 0.723↑0.003 0.392↓0.005

✓ ✓ ✗ 21.16↑0.38 0.724↑0.004 0.389↓0.002

✓ ✓ ✓ 21.42↑0.64 0.726↑0.006 0.383↓0.004

Table 2: Ablation study regarding the proposed network com-
ponents (i.e., IllNet, IaIU and MSC) on ×2 and ×4 task. Each
numerical subscript in the bottom right corner is marked, in-
dicating the difference from the baseline method.

w/ percep GTw/o percep

Figure 9: Illustrating ablation analysis of the perceptual loss.

method accurately recover the brightness and detail infor-
mation of images with different levels of darkness, effec-
tively avoiding color deviation. This confirms the remarkable
adaptability of our method to scenes with varying levels of
darkness and challenging lighting conditions.

Ablation Study
Effects of Decomposition Space. To validate the effective-
ness of addressing low-light image super-resolution from the
perspective of decomposition space, we conducted ablation
experiments by training models with the retained illuminance
sub-network (i.e., IllNet) and models without the illuminance
sub-network. The results in the second and sixth rows of
Table 2 demonstrate a significant performance improvement
after incorporating the IllNet, thereby confirming the efficacy
from the perspective of decomposition space.
Effects of IaIU. To demonstrate the effectiveness of the IaIU,
we excluded the MSC while maintaining the IllNet. The
results in the third and seventh rows of Table 2 show that
the cross-layer content-aware interactor with IaIU improves
model performance compared to results without its inclusion.
Effects of MSC. To confirm the effectiveness of the MSC, we

Method PSNR↑ SSIM↑ LPIPS↓
RSD w/o ynhr (×2) 22.46 0.738 0.252

Ours (×2) 22.79↑0.33 0.745↑0.007 0.243↓0.009

RSD w/o ynhr (×4) 21.25 0.724 0.378

Ours (×4) 21.42↑0.17 0.726↑0.012 0.383↓0.005

Table 3: Ablation study regarding the siamese decoupling
for ynhr on ×2 and ×4 task. The numbers annotated at the
bottom right corner indicate the differences.

LSD (w/o SATV) LFR (w/o SATV) LRP PSNR↑
0.5 0.5 0.5 22.33
1 0.1 0.1 22.57

0.8 0.5 0.5 22.74
1 0.5 0.5 22.79

w/o skip connection 22.17

Table 4: Analysis of loss weights and skip connections (Note
that the SATV loss is by default set with a weight of 1).

compare the quantitative results of the complete network with
those from the third and seventh rows in Table 2. The inclu-
sion of the super-resolution fusion cage with MSC improves
model performance, leading to more detailed reconstruction
results.
Effects of Siamese Decoupling. To showcase the enhanced
performance of the decomposition subnetwork with the
siamese decoupling training strategy in our method, we ex-
cluded the decomposition of the normal light high-resolution
images (i.e., RSD w/o ynhr) and the corresponding loss func-
tion during training. The resulting quantitative improvements
are evident in Table 3, affirming the effectiveness of the
siamese decoupling strategy.
Effects of Loss Weights and Perceptual Loss. To validate the
impact of perceptual loss, we present the results of a qualita-
tive comparison in Figure 9. It is evident that the perceptual
loss effectively enhances detail recovery and mitigates color
deviation. Table 4 shows the impact of different loss weights
and the skip connections of Unet on the final performance.
It can be observed that the decoupling loss accounts for the
largest proportion, and removing the skip connections results
in a 0.62dB decrease in PSNR performance.

Conclusion
This study introduces the BrZoNet framework to address lim-
itations in existing super-resolution methods for nighttime
scenes. It enhances adaptability to low-pair dynamic range
and noise-laden dark-light images by combining siamese de-
composition and a super-resolution network, featuring the
IaIU for effective feature interaction and noise reduction. Br-
ZoNet achieves high-resolution images through comprehen-
sive information integration in a super-resolution cage. Exten-
sive experiments demonstrate its superiority over state-of-the-
art techniques, with significant improvements in brightness
and detail recovery.
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