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Abstract

The deployment of multi-stream fusion strategy on behav-
ioral recognition from skeletal data can extract complemen-
tary features from different information streams and improve
the recognition accuracy, but suffers from high model com-
plexity and a large number of parameters. Besides, exist-
ing multi-stream methods using a fixed adjacency matrix
homogenizes the model’s discrimination process across di-
verse actions, causing reduction of the actual lift for the
multi-stream model. Finally, attention mechanisms are com-
monly applied to the multi-dimensional features, including
spatial, temporal and channel dimensions. But their attention
scores are typically fused in a concatenated manner, lead-
ing to the ignorance of the interrelation between joints in
complex actions. To alleviate these issues, the Front-Rear
dual Fusion Graph Convolutional Network (FRF-GCN) is
proposed to provide a lightweight model based on skeletal
data. Targeted adjacency matrices are also designed for dif-
ferent front fusion streams, allowing the model to focus on
actions of varying magnitudes. Simultaneously, the mecha-
nism of Spatial-Temporal-Channel Parallel Attention (STC-
P), which processes attention in parallel and places greater
emphasis on useful information, is proposed to further im-
prove model’s performance. FRF-GCN demonstrates signif-
icant competitiveness compared to the current state-of-the-
art methods on the NTU RGB+D, NTU RGB+D 120 and
Kinetics-Skeleton 400 datasets. Our code is available at:
https://github.com/sunbeam-kkt/FRF-GCN-master.

Introduction
Human action recognition (HAR) aims to determine the cur-
rent behavior category of a person based on a series of well-
trained recognition models, and it has wide range of appli-
cations, such as human-computer interaction (Liu and Wang
2020), video surveillance (Xin et al. 2023), and autonomous
driving (Saleh et al. 2022). In particular, after the introduc-
tion of skeleton-based HAR by ST-GCN (Yan, Xiong, and
Lin 2018), algorithms based on GCN for skeleton-based be-
havior recognition have emerged rapidly. Recent approaches
on GCN based behavior recognition mostly focused on 3
axis.
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The first is how the adjacency matrix in GCN can better
learn the relationship between joints to enhance the learn-
ing ability of the model. ST-GCN adopts the natural connec-
tions between human joints as the topological relations to be
learned, but is unable to establish new generative relations
as unnatural connections. 2S-AGCN (Shi et al. 2019b) pro-
poses an adaptive adjacency matrix to solve this problem
in order to learn more information. Further, MS-AAGCN
(Shi et al. 2020) adds learnable coefficients to the adjacency
matrix to make it more flexible. It has also been argued
that more relations between joints do not always help action
learning, for example, STSF-GCN (Fang et al. 2022) has ob-
tained relatively good performance using fewer relations on
a GCN model with joints as data input.

The second is different attention mechanisms are adopted
to better capture the spatio-temporal as well as the channel
attention scores. Numerous studies have explored the influ-
ence of attentional mechanisms on action judgments, which
is very reasonable from a biological point of view. All atten-
tion mechanisms are roughly divided into three categories:
temporal (Liu et al. 2020), spatial (Song et al. 2020), and
channel (Chen et al. 2021c). Many scholars have addressed
one or two of these, but more advanced models incorporate
all three, such as DC-GCN (Zhou et al. 2023), AM-GCN
(Sun et al. 2022).

The last is how multi-stream information can be better
fused. Different types of data often contain distinct feature
information, and the fusion of multiple streams of infor-
mation generally achieves better results than using a single
stream. Currently, most behavior recognition models based
on skeleton data employ architectures that fuse multiple
streams of information (Hu et al. 2022; Qin et al. 2022;
Wu, Zhang, and Zou 2023; Zhang et al. 2023). The data fu-
sion schemes used can be broadly classified into two cate-
gories: 1) Rear fusion of data (Chen et al. 2021d; Liu et al.
2022a; Xiong et al. 2022), where each stream of information
is processed by the same model to obtain behavior category
scores. These scores are then combined through weighted
fusion to produce a final behavior classification result. 2)
Front fusion of data (Song et al. 2020, 2022) where the input
data is fused prior to being processed by the model, followed
by feature extraction. We neutralized these two schemes in
FRF-GCN and obtained better fusion results.

We noticed 3 main limitations in these recent develop-
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Figure 1: Overall flow chart of FRF-GCN, the J M and B M are the joint motion and bone motion, respectively, where ⊕
denotes information fusion (including forward fusion and backward fusion), GCN TCN unit is the spatial temporal joint unit,
the upper and lower branches use a targeted adjacency matrix AJB and AJBM , STC-P is the spatial temporal channel parallel
attention mechanism, GAP and Softmax are the global average pooling and classifier, respectively.

ments: (1) Different adjacency matrices are not selected ac-
cording to the different characteristics of multi-stream in-
formation, which may overlook valuable information. (2)
Most of the existing attention mechanisms use a serial pro-
cessing approach, learning spatial, temporal and channel
features sequentially or in a different order. The attention
learned at the back-end may be influenced by the front-
end, while some interconnections may be lost. Moreover, we
know from our experiments that joint spatio-temporal atten-
tion and channel attention do not seem to enjoy equal status
for behavioral classification tasks. (3) Incorporating novel
modalities increases the complexity of the architecture, and
while some efficient solutions have been proposed for multi-
stream GCN based behavior recognition, there is still a sig-
nificant gap with lightweight solutions.

To alleviate these limitations, we propose the FRF-GCN,
which incorporates the following 3 key novelties:

1. Instead of using a fixed adjacency matrix, we propose
targeted adjacency matrices for the fusion of two differ-
ent information sources. This approach enhances the effi-
ciency of GCN computations and minimizes redundant cal-
culations.

2. To simultaneously capture attention scores in the tem-
poral, spatial, and channel dimensions of skeleton data, we
introduce the STC-P attention mechanism. By incorporat-
ing it into FRF-GCN, we preserve the interdependencies be-
tween temporal, spatial, and channel attention, resulting in
more effective extraction of skeleton information.

3. We propose a lightweight architecture for fusing mul-
tiple streams of skeleton information through bidirectional
fusion. This approach reduces the model’s parameterization
while maintaining its performance.

FRF-GCN achieves a balance between parameter size
and performance on the NTU60, NTU120 and Kinetics-
Skeleton datasets, demonstrating competitiveness against
current state-of-the-art models.

Related Works
Multi-Stream Information Data Fusion
In recent years, many studies have demonstrated that multi-
stream information fusion can lead to better performance,
such as MS-AAGCN (Shi et al. 2020), MST-GCN (Chen
et al. 2021d) and 4S-ACE-Ens (Qin et al. 2022). The number
of information streams ranges from dual streams (Shi et al.

2019b; Wu, Wu, and Kittler 2021), to triple streams (Song
et al. 2022), quadruple streams (Chen et al. 2021a; Yang
et al. 2021), and even more (Chen et al. 2021b). The types of
information are also diverse, including not only joint bones
and their motion information, but also angular information
and so on. They are fused at the end or at the beginning of
the model to obtain better results after fusion. Based on the
results done in previous studies, it is demonstrated that front
fusion leads to a significant reduction in the number of pa-
rameters but a decrease in performance, while rear fusion
leads to a significant increase in performance but an expo-
nential increase in the number of parameters.

In contrast, our FRF-GCN model utilizes a dual data fu-
sion scheme, combining both forward and post fusion ap-
proaches, along with targeted adjacency matrices. This ap-
proach effectively reduces the parameter count while min-
imizing performance loss. By leveraging both forward and
post fusion techniques, our model achieves a balance be-
tween parameter reduction and preserving performance.

Attention Mechanisms in Behavior Recognition
Attention plays an extremely important role in behavioral
recognition models, and there are two main categories of its
forms of action: local attention and global attention.

In previous studies, local attention has been the majority
and has given significant impetus to later studies. For ex-
ample, ST-GCN (Yan, Xiong, and Lin 2018) and AT-GCN
(Sheng and Li 2021) use the local attention mechanism to
capture the local association information in the skeleton se-
quence. Later, with the rise of transformer and other atten-
tion mechanisms in Natural Language Processing (NLP),
many scholars introduced them into behavior recognition
tasks, such as KA-AGTN (Liu et al. 2022b), ACT (Mazzia
et al. 2022), HGCT (Bai et al. 2022), CSCMFT (Liu et al.
2023), etc. The idea of transformer is adopted. And the at-
tention mechanism represented by transformer focuses on
the global state information.

In addition to the transformer model, excellent GCN mod-
els such as CTR-GCN (Chen et al. 2021c) and EfficientNet
(Song et al. 2022) also choose to adopt a more global fo-
cus on attention information. This also makes sense biologi-
cally, as people are often used to adopting a top-down strat-
egy (Lange and Lappe 2006) when judging what category
an action belongs to, which shows the importance of global
information. The STC-P attention mechanism we deployed

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

6918



in FRF-GCN also adopts the idea of global attention.

Model Architecture
The model of FRF-GCN proposed in this paper is shown in
Figure 1, and its main component structures are specified by
following subsections.

Front-Rear Dual Fusion Strategy
To balance the number of parameters and performance of
the state of the art models, this paper designs a dual fusion
strategy, combining both front fusion and rear fusion. The
idea is straightforward: before inputting the information into
the network, the four streams (i.e. joint, bone, joint motion
and bone motion) are fused in pairs, which the joint and bone
information are fused, as well as the joint motion and bone
motion information, as shown in Figure 1. Subsequently, the
two fusion streams are input into the network using a dual-
stream model.

The front fusion stage is to splice the two sets of informa-
tion mentioned earlier in terms of channel dimensions, after
which it is fed into the GCN TCN unit shown in Figure 1.
Unlike the conventional two-stream GCN model, the adja-
cency matrix in FRF-GCN is based on different focuses on
input data characteristics. After the front fusion stage, the
adjacency matrix AJB is selected based on the fact that the
joint and bone fusion flow information is more focused on
large-amplitude movements (Figure 2, left). And to focus
more on small-amplitude movements as well as the motion
of the joint points themselves, we also select adjacency ma-
trix AJBM (Figure 2, right) based on the features that the
joint motion and bone motion fusion streams provide. The
features obtained from the two tributaries enter a rear fusion
phase. This process can be described as the following equa-
tion.

fout = αfc (GAP (fJB)) + βfc (GAP (fJBM )) (1)

The final output scores of the FRF-GCN model are shown
in equation (1). α and β are set to 0.6 and 0.4, respectively,
as the backward fusion weights after a small grid search.
fc is the fully connected layer, GAP is the average pool-
ing layer, fJB is the behavioral discriminant score of joint
plus bone fusion flow, and fJBM is the behavioral discrimi-
nant score of joint motion plus bone motion fusion flow. This
reduces the model’s parameter count by half and enhances
performance through targeted adjacency matrices compared
to pure front fusion. Relevant experiments are presented in
Table 4.

Targeted Spatial Graph Convolution
In the model of 2S-AGCN (Shi et al. 2019b), the original
adjacency matrix can be represented as the following equa-
tion. Where I stands for the joint point itself, Aske records
the physical connections inherent in the body.

A = I +Aske (2)

Motivated by previous research (Fang et al. 2022), we stud-
ied whether different adjacency matrices should be used
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Figure 2: Illustration of targeted adjacency matrix, the left
is AJB , contains only the newly learned relationships be-
tween joints, and the right is AJBM , includes both the in-
herent connections between joints (the orange connections)
and the motion patterns of individual joints themselves (the
red connections), best view in the color mode.

for different information streams. Through extensive experi-
mentation, we found that considering relationships between
all joints may lead to misjudgments by the model. However,
using only identity matrix I and learnable masks is not suffi-
cient for the fused information after front fusion. Moreover,
existing attention mechanisms often prioritize actions with
larger variations by the connections learned with adjacency
matrix, which may not be suitable for subtle actions with
smaller variations. Additionally, using a fixed adjacency ma-
trix for different information streams is not always optimal,
as it introduces more computilities and overlooks data char-
acteristics.

To alleviate these issues, FRF-GCN performs targeted
adjacency matrix selection for different information flows.
This approach increases the utilization of effective computil-
ity and reduces the chances of redundant information inter-
fering with action judgments.

For joint and bone fusion streams, both joint and bone
information represent absolute positional information. The
coordinates of the data indicate the positions of the respec-
tive joints or bones. In this case, it is important to focus on
the newly generated relationships, as illustrated in the left
diagram of Figure 2.

Thus, we utilize an adjacency matrix AJB to represent
the fused information of joint and bone. AJB represents the
parameterized initial physical topology relationship (A) as
shown in the left side of Figure 2. The parameters in the
matrix indicates whether there is a connection between two
articulations and the strength of the connection. The param-
eters are updated each time by back propagation and there
is no restriction on the parameters in AJB to maintain its
learning capability. The formula for the joint and bone fu-
sion flow is shown in equation (3), where AJB is initial-
ized by A. Where Kv follows the setting of ST-GCN (Yan,
Xiong, and Lin 2018), which is set to 3, and Wk is the cor-
responding weight.

fout =

Kv∑
k=1

Wkfin (AJBk + Pk) (3)

For the joint motion and bone motion fusion streams, both
fused information belong to relative position information,
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which is different to joint and bone information. Moreover,
the fusion flow information of joint motion and bone motion
itself focuses on motion information, adding I and Aske can
make it fully exploit small-amplitude movements. AJBM is
shown in the right of Figure 2, and its calculation formula is
as in Eq. (4),

fout =

Kv∑
k=1

Wkfin (AJBMk + Pk) (4)

AJBMk = I +Aske +AJBk, I represents the movement
of the joint itself, and Aske is the normalized relationship
matrix between the joints. Pk is a unique graph learned for
each sample, obtained by calculating the similarity between
two vertices by two normalized embedding Gaussian func-
tions (θ and φ) and then normalizing, as in equations. Where
θ and φ are realized by two 1*1 convolutions, N is the num-
ber of joints in a single human skeleton, i and j ∈ [1, N ].
The computation process of f can be expressed as Equation
(6).

f (vi, vj) =
eθ(vi)

Tφ(vj)∑N
j=1 e

θ(vi)
Tφ(vj)

(5)

Pk = softmax
(
fT
inW

T
θkWφkfin

)
(6)

In theory, large-scale movements often prioritize newly
generated relationships. Small-scale movements typically
emphasize the motion of individual joints or the motion
of initial physical connections. The joint and bone fusion
streams using AJB are better able to focus on the behaviors
that serve as criteria for large-scale movements. Meanwhile,
the fusion of joint motion and bone motion streams using
AJBM is more attentive to behaviors that serve as criteria
for small-scale movements. These two types of information
complement each other in the rear fusion stage, resulting
in improved fusion performance. The relative experiments
could be seen in experiments section.

Multi-Field Temporal Depth-Point Convolution
To address the issues with conventional temporal convo-
lution in terms of parameter explosion and limited tem-
poral receptive field, FRF-GCN replaces it with a multi-
scale depth-point convolution, which combines depth-wise
and point-wise convolutions with different receptive field
sizes achieved through dilated convolutions. This allows for
a more comprehensive extraction of temporal information.
The number of parameters in the whole model drops dra-
matically due to the effective splitting of the convolution
process, achieving lightweight design.

The multi-scale depth-point temporal graph convolution
used in FRF-GCN was called MD-TGCN. MD-TGCN is
shown in Figure 3 and consists of three branches, regular
depth-point convolution, large field of view depth-point con-
volution, and residual connection. The regular depth-point
convolution captures the local detail information, the large
field of view depth-point convolution captures the global in-
formation, and the residual join is added with the informa-
tion from the other two branches after stitching to optimize
the training process.

iC / C

i iC / Ci iC / C

riC / C riC / C

1* 1 Conv

5* 1 D - Conv(dil = 1)

1* 1 P - Conv 1* 1 P - Conv res(1* 1)

concat
C

5* 1 D - Conv(dil = 3)

Figure 3: Temporal convolution flow chart, where Ci is the
number of embedded channels, Cr is the number of single-
branch output channels, D−Conv and P −Conv represent
depth-wise convolution and point-wise convolution, respec-
tively.

The depth-point convolution model with multiple fields of
view operates on the input sequence as in equation (7) and
(8), where fin is the input data, fD1 is the depth-wise con-
volution with an expansion factor of 1, fD2 is the expansion
depth-wise convolution with an expansion factor of 3, fP is
the 1∗1 point-wise convolution, ⊕ represents the splicing in
the channel dimension, fD−P is the combined output of the
depth-point convolution, Res is the residual connection.

fD−P = fP (fD1 (fin))⊕ fP (fD2 (fin)) (7)

fout = Res (fD−P , fin) (8)

STC-P Attentional Mechanisms
In addition to the intuitive spatio-temporal features, the hid-
den channel features should not be ignored in the extraction
of attention. As the number of channels changes, during the
learning process of the model, many channels start to con-
tribute less to the overall performance, but expend consid-
erable computilities to re-learn their weights, especially in
convolutional layers with a large number of channels. To
alleviate this impunity, we propose the Spatial-Temporal-
Channel Parallel Attention Module (STC-P), which inte-
grates channel-level attention based on the Squeeze-and-
Excitation Network concept (Hu, Shen, and Sun 2018).

The specific operations are illustrated in Figure 4. The ex-
traction of spatio-temporal attention (Song et al. 2022) is
shown in the upper left corner of Figure 4. However, an addi-
tional branch is introduced to extract channel attention. The
whole process is simple and is divided into three major steps
as shown in the bottom left corner of Figure 4: T-Pooling,
S-Pooling, and FC. The resulting channel attention map is
multiplied element-wise with the input feature map to ob-
tain the final channel attention-weighted feature map. The
final output is obtained via a fusion module.

Therefore, the STC-P module completes the task of si-
multaneously obtaining attention scores in three dimensions:
spatial, temporal, and channel. The learned spatial features
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Figure 4: The STC-P attention module, “Hardswish” refers to the activation function used, and rd, ra denote reduction factors,
temporal pooling and spatial pooling are denoted as T-pooling and S-pooling, respectively. The variants of STC-P were also be
shown, where STC-P2 is in the green area and STC-P3 is in the yellow area, only shows how they differ from the STC-P.

of the STC-P module are connected to the prior features
learned by the preceding spatial convolutional neural net-
work, which makes the learned spatial attention map more
accurate. During the experiment, it was found that the best
results were achieved after adding STC-P only to layers 5,
6 and 7. The other cases caused different degrees of per-
formance loss. Based on the experimental results, it may be
due to the close relationship between the channel attention
mechanism and the distribution of the number of channels
in the convolutional layers. The function of the STC-P atten-
tion module can be represented by the following equation,

fst = θ ((poolt (fin)⊕ poolv (fin)) · w) (9)

fstj = fin ⊙ (σ (fst · wt)⊗ σ (fst · wv)) (10)
fc = σ (wk (wl · pooltv (fin)))⊙ fin (11)

fout = ∅ (BN (fstj ⊕ fc)) (12)
where fstj is the spatial-temporal joint attention fraction, fc
is the channel attention fraction, and fout is the three parallel
attention features of the final output. w, wt and wv are the
corresponding weights, which are updated with backpropa-
gation, and θ , σ and ∅ are activation functions.

Additionally, we designed two other variants of STC-P,
referred to as STC-P2 and STC-P3, to compare their perfor-
mance with the proposed STC-P attention mechanism. This
comparison aims to validate the importance of the joint re-
lationship between spatial, temporal, and channel attention
for action recognition. The design diagrams are shown in the
figure 4 right.

Experiments
In this section, we conducted experimental evaluations of the
proposed FRF-GCN model on three large-scale datasets. We
also performed extensive ablation experiments to validate

the effectiveness of the proposed components. To reduce the
complexity of the experiments, unless otherwise stated, the
experiments in the ablation study were conducted only on
the CS evaluation metric of the NTURGB-D 60 dataset for
validation purposes.

Datasets
NTU RGB+D 60 NTU RGB+D 60 dataset (Shahroudy
et al. 2016), which is a large-scale skeleton dataset used
for human action recognition models. It contains a total of
56,880 action sequences, 60 action categories, performed by
different people, of which 40 actions are daily behaviors, 9
health-related actions, and 11 two-person interaction behav-
iors. The dataset is evaluated using two different evaluation
protocols: Cross-Subject and Cross-View.

NTU RGB+D 120 The NTU RGB+D 120 dataset (Liu
et al. 2019) is a supplement to the NTU RGB+D 60 dataset.
The evaluation is conducted using two protocols: Cross-
Subject and Cross-Setup. In the Cross-Subject evaluation,
the 106 participants are divided into training and testing
sets, with each set containing 53 subjects. In the Cross-Setup
evaluation, action sequences from even-numbered setup IDs
are used for training, while action sequences from odd-
numbered setup IDs are used for testing.

Kinetics-Skeleton 400 Kinetics-Skeleton 400 (Carreira
and Zisserman 2017) is a very large dataset for behavior
recognition. It contains 400 actions, each video lasts about
10 seconds, and includes both indoor and outdoor, which not
only has a wide variety of actions but also interacts with the
scene, making it challenging to correctly identify behavior
categories. The data were processed in the same way as 2S-
AGCN (Shi et al. 2019b), and the experiments provided the
Top-1 and Top-5 accuracies of the model.
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J+B J M+B M Acc(%) Param(M)
I I +Aske 89.57 2.38

I +Aske I 90.03 2.38
I +Aske I +Aske 90.19 2.38
I +Aske AJB 90.45 2.40
AJB I +Aske 91.19 2.40
AJB AJB 91.18 2.42
AJBM AJB 91.10 2.42
AJBM AJBM 90.90 2.42

AJB(ours) AJBM (ours) 91.29 2.42

Table 1: Selection and comparison of adjacency matrix for
different fusion flows

Attention mechanism Acc(%) Param(M)
STC-P 91.29 2.42
STC-P2 90.95 2.42
STC-P3 91.18 2.44

ST-joint-Att (Song et al. 2022) 89.72 2.42

Table 2: Performance Comparison of Different Attention
Mechanisms(ntu60 cs)

Implementation Details
All experiments were conducted using the PyTorch deep
learning framework. The stochastic gradient descent (SGD)
with Nesterov momentum (0.9) was employed as the opti-
mization strategy, with a batch size of 56. The cross-entropy
function was selected as the loss function for backpropaga-
tion gradients. A weight decay of 0.0003 and a learning rate
of 0.1 were set. For NTU60,120 and Kinetics-Skeleton, the
total epochs were set to 50, 60, and 65, respectively. The
two-phase auto-attenuation renditions were 30, 40, 30, 50,
45, and 55, respectively.

Unlike most of the previous studies, FRF-GCN uses a pre-
processing method of data interpolation to supplement the
skeleton sequence to 300 frames. Defaults to two individu-
als per sample, supplemented with zeros if there is only one.
Additionally, a warm-up strategy (He et al. 2016) was ap-
plied during the first 5 epochs to enhance training stability.
All experiments were conducted on RTX 3080 GPUs.

Ablation Studies
Adjacency Matrix Targeting In Table 1, the effect of us-
ing AJBM for all information is worse than using AJB for
all information, which shows that the establishment of more
relations does not necessarily make the recognition better,
and the selection of a suitable adjacency matrix is very im-
portant. The best performance is obtained with the targeted
adjacency matrix used in FRF-GCN, which fully reflects the
complementary nature of the concerns generated by using
targeted adjacency matrices, again in agreement with our
analysis. Because Pk is a plot unique to each sample and
exists by default, it is no longer shown in the Table 1.

Comparison of the Effects of Different Attention Mech-
anisms As mentioned in Model architecture, STC-P2 re-
duces the fusion step of temporal and spatial features, while

Model Acc(%) Param(M)
Conventional TCN 90.13 6.94

MD-TGCN 91.29 2.42

Table 3: Comparison between different temporal convolu-
tions

Category Acc(%) Param(M)
Joint 88.55 1.21
Bone 89.63 1.21

Joint motion 86.37 1.21
Bone motion 86.23 1.21

BF-GCN 91.56 4.84
FF-GCN 90.03 1.21

Joint+Bone 89.93 1.21
Joint motion+Bone motion 86.79 1.21

FRF-GCN 91.29 2.42

Table 4: Comparison between different fusion strategies

keeping the same number of parameters in the attention
module. However, this modification results in a certain de-
gree of performance degradation, indicating the importance
of joint processing of temporal and spatial information.
STC-P3 fuses temporal, spatial and channel attention and
then extracts the attention between the three separately. The
recognition rate decreases slightly compared with STC-P,
and there is a slight increase in the number of model param-
eters, which indicates that channel attention plays a moder-
ating role in the learning of joint spatial-temporal attention.
But if the weight of the channel attention score is too large,
it will hinders the normal learning of spatial-temporal atten-
tion and makes the performance decrease.

Compared to ST-joint-Att, STC-P significantly improves
the performance of FRF-GCN while almost not increasing
the parameter count.

The Temporal Depth-Point Convolutional Layer As
shown in Table 3, after replacing the conventional tempo-
ral convolution with multi-field depth-point convolution, the
number of parameters of the model is reduced to about 35%
of the original one and the performance is further improved.
This demonstrates the effectiveness of fusing different tem-
poral sensory fields and the efficiency of depth-point convo-
lution.

Comparison Among Different Fusion Strategies Table
4 shows the comparison between different fusion strategies,
where BF-GCN refers to a pure backward fusion strategy
and FF-GCN refers to a pure forward fusion strategy.

From Table 4, we can conclude that the performance of
these two forward fusion stream information is complemen-
tary. FRF-GCN makes a trade-off between performance and
number of parameters, and consumes only half the number
of parameters of the former while losing very little accuracy
compared to BF-GCN, which further reflects the advantages
of the front-rear dual fusion strategy.
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Algorithm Cross Subject(%) Cross View(%) X-sub120 X-set120 Param(M)
ST-GCN(Yan, Xiong, and Lin 2018) 81.5 88.3 – – 3.10

AS-GCN(Li et al. 2019) 86.8 94.2 – – 9.50
DGNN(Shi et al. 2019a) 89.9 96.1 – – 26.24

2S-AGCN(Shi et al. 2019b) 88.5 95.1 – – 6.94
SGN(Zhang et al. 2020) 89.0 94.5 79.2 81.5 0.69

4S-Shift-GCN(Cheng et al. 2020) 90.7 96.5 85.9 87.6 2.76
MS-G3D(Liu et al. 2020) 91.5 96.2 86.9 88.4 6.40

MS-AAGCN(Shi et al. 2020) 90.0 96.2 – – 3.77
Dynamic-GCN(Ye et al. 2020) 91.5 96.0 87.3 88.6 14.40

AdaSGN(Shi et al. 2021) 90.5 95.3 85.9 86.8 2.05
SEFN(Kong, Deng, and Jiang 2021) 90.7 96.4 86.2 87.8 34.7

Graph2Net(Wu, Wu, and Kittler 2021) 90.1 96.0 86.0 87.6 0.9
MST-GCN(Chen et al. 2021d) 91.5 96.6 87.5 88.8 12.00

FR-AGCN(Hu et al. 2022) 90.5 95.8 86.6 87.0 13.88
EfficientGCN-B0(Song et al. 2022) 90.2 94.9 86.6 85.0 0.29
SMotif-GCN+TBs(Wen et al. 2022) 90.5 96.1 87.1 87.7 –

ASE-GCN(Xiong et al. 2022) 89.4 96.2 – – 6.00
4s-ACE-Ens(Qin et al. 2022) 91.6 96.3 88.2 89.2 5.80
ML-STGNet(Zhu et al. 2022) 91.9 96.2 88.6 90.0 5.76

2M-STGCN(Zhang et al. 2023) 90.8 96.2 – – –
4s STF-Net(Wu, Zhang, and Zou 2023) 91.1 96.5 86.5 88.2 6.80

FRF-GCN(ours) 91.3 96.5 87.1 88.4 2.42

Table 5: Performance comparison with various methods on NTURGB+D dataset and NTURGB+D 120 dataset

Algorithm Top-1 Top-5
ST-GCN(Yan, Xiong, and Lin 2018) 30.7 52.8

AS-GCN(Li et al. 2019) 34.8 56.5
2S-AGCN(Shi et al. 2019b) 36.1 58.7
MS-G3D(Liu et al. 2020) 38.0 60.9

MST-GCN(Chen et al. 2021d) 38.1 60.8
SMotif-GCN+TBs(Wen et al. 2022) 37.8 60.6

ASE-GCN(Xiong et al. 2022) 36.9 59.7
ML-STGNet(Zhu et al. 2022) 38.9 62.2

2M-STGCN(Zhang et al. 2023) 39.0 61.6
STF-Net(Wu, Zhang, and Zou 2023) 36.1 58.9

FRF-GCN(ours) 37.9 60.7

Table 6: Performance comparison with various methods on
Kinetics-Skeleton dataset

Comparisons With SOTA Methods
Apart from the direct comparison with other methods, Ta-
ble 5 highlights three methods that deserve our special at-
tention: ST-GCN, MS-G3D, and EfficientGCN. ST-GCN,
has become a baseline model for many subsequent research
studies and has had a significant impact. Our FRF-GCN im-
proves accuracy by 9.8% and 8.2% relative to ST-GCN on
two different evaluation criteria, CS and CV, respectively,
while reducing model complexity by about 22%. MS-G3D,
as one of the state-of-the-art methods in the industry. It
achieves slightly higher recognition accuracy compared to
FRF-GCN. However, FRF-GCN has significantly fewer pa-
rameters, achieving comparable performance with approxi-
mately 38% of the parameter count.

EfficientGCN, as one of our baselines, to maintain

variable consistency, we will only compare FRF-GCN
with EfficientGCN-B0 (without composite scaling strategy).
From Table 5, it can be observed that although our model
has a higher parameter count compared to EfficientGCN-B0,
FRF-GCN outperforms it in terms of performance. More-
over, FRF-GCN’s input stream information is easier to ob-
tain compared to EfficientGCN-B0, and the forward fusion
process is simpler and more practical. It is worth noting that
not only does FRF-GCN exhibit competitive performance
compared to multiple current SOTA methods, but it also has
a lightweight overall model and a lower parameter count.

Table 5 also demonstrates the competitiveness of FRF-
GCN on the NTURGB+D120 dataset compared to main-
stream methods. NTU 120 is a larger dataset than NTU
60, which contains more subtle actions as well as simi-
lar actions. 4s-ACE-Ens and ML-STGNet employed inge-
nious design for this feature to improve performance on this
dataset, enable them to outperform FRF-GCN on NTU 120.
The performance results of each model on Kinetics-Skeleton
400 are shown in Table 6, and the results show that FRF-
GCN is still superior for action classes with less regularity.

Conclusion
In this work, we have developed a novel lightweight model,
FRF-GCN, for skeleton-based action recognition. It aligns
well with the targeted adjacency matrices. As a result, FRF-
GCN achieves state-of-the-art recognition results on three
large-scale action recognition datasets. Although the model
works better, FRF-GCN is not enough to discriminate ex-
tremely similar actions, the next work will continue to re-
search in this direction, such as multimodal data fusion and
the design of more complex attention mechanisms.
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