
Controllable Mind Visual Diffusion Model

Bohan Zeng1*, Shanglin Li1*, Xuhui Liu1, Sicheng Gao1

Xiaolong Jiang3, Xu Tang3, Yao Hu3, Jianzhuang Liu4, Baochang Zhang1,2,5†

1Institute of Artificial Intelligence, Hangzhou Research Institute, Beihang University, China
2Nanchang Institute of Technology, Nanchang, China

3Xiaohongshu Inc
4Shenzhen Institute of Advanced Technology, Shenzhen, China

5 Zhongguancun Laboratory, Beijing, China
{bohanzeng, shanglin, bczhang}@buaa.edu.cn

Abstract

Brain signal visualization has emerged as an active research
area, serving as a critical interface between the human vi-
sual system and computer vision models. Diffusion-based
methods have recently shown promise in analyzing functional
magnetic resonance imaging (fMRI) data, including the re-
construction of high-quality images consistent with original
visual stimuli. Nonetheless, it remains a critical challenge
to effectively harness the semantic and silhouette informa-
tion extracted from brain signals. In this paper, we propose
a novel approach, termed as Controllable Mind Visual Diffu-
sion Model (CMVDM). Specifically, CMVDM first extracts
semantic and silhouette information from fMRI data using
attribute alignment and assistant networks. Then, a control
model is introduced in conjunction with a residual block
to fully exploit the extracted information for image synthe-
sis, generating high-quality images that closely resemble the
original visual stimuli in both semantic content and silhou-
ette characteristics. Through extensive experimentation, we
demonstrate that CMVDM outperforms existing state-of-the-
art methods both qualitatively and quantitatively. Our code is
available at https://github.com/zengbohan0217/CMVDM.

Introduction
Understanding the cognitive processes that occur in the hu-
man brain when observing visual stimuli (e.g., natural im-
ages) has long been a primary focus for neuroscientists.
Both objective visual stimuli and subjective cognitive activ-
ities can elicit the transmission of intricate neural signals in
the visual cortex of the brain, thus laying the foundation for
higher-order cognitive and decision-making processes. With
the advancement of techniques such as functional magnetic
resonance imaging (fMRI), it has become possible to capture
real-time brain activity signals with greater accuracy and
finer granularity, thereby accelerating the progress of neu-
roscientific research. Deciphering and reconstructing from
these intricate signals remain a great challenge to both cog-
nitive neuroscience and downstream applications like Brain-
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Ground Truth (GT) Ours MinD-Vis

Figure 1: Illustration of synthesis results. A recent method
MinD-Vis (Chen et al. 2023) can generate photo-realistic re-
sults, but they cannot well match the visual stimuli in terms
of semantics and silhouette. Our method can generate better
results more consistent with the GT visual stimuli.

Computer Interfaces (BCI) (Nicolas-Alonso and Gomez-Gil
2012; Milekovic et al. 2018).

Early attempts (Van Gerven et al. 2010; Damarla and Just
2013; Horikawa and Kamitani 2017; Akamatsu et al. 2020)
at analyzing brain activity on visual tasks mainly focus on
matching human subjects’ brain activity with observed nat-
ural images, or reconstructing visual patterns of simple ge-
ometric shapes (Miyawaki et al. 2008; Schoenmakers et al.
2013; Van Gerven, De Lange, and Heskes 2010). These ex-
plorations demonstrate the feasibility of deriving semantic
information for perceived images from brain signals, yet
they have poor generalization to unseen semantic categories
or complicated reconstruction tasks.

Recent studies (Beliy et al. 2019; Gaziv et al. 2022; Ozce-
lik et al. 2022; Chen et al. 2023; Takagi and Nishimoto
2023) have made significant progress in reconstructing vi-
sual stimuli from brain signals. (Beliy et al. 2019; Gaziv
et al. 2022) can generate images that are similar in shape
to the original visual stimuli, but the images suffer from se-
vere distortion and blur issues. (Ozcelik et al. 2022; Chen
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et al. 2023; Takagi and Nishimoto 2023) have employed
commonly used generative models, such as Generative Ad-
versarial Networks (GAN) or diffusion models, to gener-
ate high-quality RGB images that maintain semantic con-
sistency with the original visual stimuli conditioned on cor-
responding fMRI signals. However, such methods struggle
with positional inconsistency, as shown in Fig. 1. In general,
existing methods have not effectively utilized the semantic
and spatial features inherent in fMRI signals.

In this paper, we present a Controllable Mind Visual Dif-
fusion Model (CMVDM) that enables the mind diffusion
model with a control network to leverage the extracted faith-
ful semantic and silhouette information for high-fidelity hu-
man vision reconstruction. Specifically, we first finetune a
pretrained latent diffusion model (LDM) with a semantic
alignment loss and pretrain a silhouette extractor to estimate
accurate semantic and silhouette information of the fMRI
data. Taking inspiration from ControlNet, we then introduce
a control network, which takes the silhouette information as
a condition, into the pretrained LDM to guide the diffusion
process to generate desired images that match the original
visual stimuli in terms of both semantic and silhouette infor-
mation. Fig. 1 shows two examples where CMVDM outper-
forms the previous state-of-the-art approach, MinD-Vis.

In summary, the main contributions of this paper are as
follows:

• We propose a novel Controllable Mind Visual Diffusion
Model (CMVDM) that leverages both semantic and spa-
tial visual patterns in brain activity to reconstruct photo-
realistic images. A control network is utilized to enable
effective manipulation over the positions of generated
objects or scenes in the reconstructed images, providing
a much better structural similarity to the original visual
stimuli.

• We design two extractors to extract semantic and silhou-
ette attributes to provide accurate information for gener-
ating images that closely resemble the visual stimuli. Be-
sides, we build a residual module to provide information
beyond semantics and silhouette.

• We conduct comprehensive experiments on two datasets
to evaluate the performance of our method. It achieves
state-of-the-art qualitative and quantitative results com-
pared to existing methods, demonstrating the efficacy of
CMVDM for decoding high-quality and controllable im-
ages from fMRI signals.

Related Work
Diffusion Probabilistic Models. Diffusion models (DMs)
were initially introduced by (Sohl-Dickstein et al. 2015)
as a novel generative model that gradually denoises im-
ages corrupted by Gaussian noise to produce samples. Re-
cent advances in DMs have demonstrated their superior per-
formance in image synthesis, with notable models includ-
ing (Ho, Jain, and Abbeel 2020; Song, Meng, and Ermon
2020; Dhariwal and Nichol 2021; Vahdat, Kreis, and Kautz
2021; Rombach et al. 2022; Peebles and Xie 2022). DDGAN
(Xiao, Kreis, and Vahdat 2022) is a model that reduces the

number of sampling steps by directly predicting the ground
truth in each timestep. DMs have also achieved state-of-the-
art performance in other synthesis tasks, such as text-to-
image generation with GLIDE (Nichol et al. 2021), speech
synthesis with (Kong et al. 2020; Liu et al. 2021), and super-
resolution with (Li et al. 2022a; Saharia et al. 2022; Gao
et al. 2023). In addition, DMs have been applied to text-to-
3D synthesis in (Poole et al. 2022; Lin et al. 2022), and other
3D object syntheses in (Anciukevičius et al. 2022; Li et al.
2022b; Luo and Hu 2021). Furthermore, DMs have found
applications in video synthesis (Ho et al. 2022b,a), semantic
segmentation (Baranchuk et al. 2021), text-to-motion gener-
ation (Tevet et al. 2022), face animation (Zeng et al. 2023),
and object detection (Chen et al. 2022). (Kulikov et al. 2022;
Wang et al. 2022) are models that generate diverse results by
learning the internal patch distribution from a single image.
ControlNet employs a control network on a pretrained text-
conditioned LDM for controllable image synthesis. Overall,
DMs have shown promising results and have been widely
adopted in various synthesis tasks.

Neural Decoding of Visual Stimuli. Neural decoding of
visual stimuli has been a topic of growing interest in re-
cent years. Numerous studies have explored the possibility
of using machine learning algorithms to decode visual infor-
mation from patterns of neural activity in the human brain.
For instance, (Naselaris et al. 2009) demonstrates that it is
possible to reconstruct natural images from fMRI data us-
ing a linear decoder. Similarly, (Kay et al. 2008) shows that
the orientation of gratings from patterns of activity in the
early visual cortex can be decoded using a support vector
machine. More recent studies have built on these findings
by exploring more complex visual stimuli, such as natural
scenes (Nishimoto et al. 2011) and faces (Kriegeskorte et al.
2007), and by developing more sophisticated machine learn-
ing algorithms, such as deep neural networks (Yamins et al.
2014). To enable decoding of novel scenarios, some works
use an identification-based approach (Horikawa and Kami-
tani 2017; Akamatsu et al. 2020; Kay et al. 2008), where
they model the relationship between brain activity and vi-
sual semantic knowledge such as image features extracted
by a CNN (Horikawa and Kamitani 2017; Akamatsu et al.
2020). These studies provide valuable insights into the inter-
pretation of human brain signals in the visual cortex, which
can help the development of more effective decoding algo-
rithms for a wide range of neuroimaging applications, such
as Brain-Computer Interfaces. However, these methods re-
quire a large amount of paired stimuli-responses data that is
hard to obtain. Therefore, decoding novel image categories
accurately remains a challenge.

fMRI-to-Image Reconstruction With the remarkable ad-
vancements in generative models, recent studies have fo-
cused on the reconstruction of images from human brain
activity. These studies employ various approaches, such as
building an encoder-decoder structure to align image fea-
tures with corresponding fMRI data, as demonstrated by
(Beliy et al. 2019) and (Gaziv et al. 2022). To further en-
hance the quality of image reconstruction, researchers have
turned to more sophisticated techniques, including genera-
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Figure 2: Overview of our proposed method. Initially, we train Efmri and Dslh in the “Finetuning LDM” and “Silhouette
Extraction” parts, respectively. Subsequently, we utilize Efmri, Dslh, and Fres to extract semantic, silhouette, and supplement
information from fMRI signals as conditions. Finally, we integrate the control network with the LDM to generate high-fidelity
and controllable results tailored to the aforementioned conditions.

tive adversarial networks (GAN) (Ozcelik et al. 2022) and
diffusion models (Takagi and Nishimoto 2023; Chen et al.
2023). These methods have shown promise in achieving
more plausible image reconstruction. Nonetheless, the ap-
proaches described above have limitations in terms of image
reconstruction quality and localization accuracy, resulting in
unreliable reconstruction outcomes and inadequate utiliza-
tion of the deep semantic and shallow positional information
inherent in fMRI signals.

Method
In this section, we describe the CMVDM model, which com-
bines attribute extractors and a control model to produce pre-
cise and controllable outcomes from fMRI signals. Fig. 2
illustrates the architecture of CMVDM.

Problem Statement and Overview of CMVDM

Let the paired {fMRI, image} dataset Ω =
{(cfmri,i, Ii)}ni=1, where cfmri,i ∈ R1×N and
Ii ∈ RH×W×3. The fMRI data is extracted as a 1D
signal from the region of interest (ROI) on the visual cortex
averaged across the time during which the visual stimuli are
presented. N denotes the number of voxels of the extracted
signal. We adopt the pretrained image encoder of the LDM
(Rombach et al. 2022) to encode the observed image I into
the latent code z. Our CMVDM aims to learn an estimation
of the data distribution p(z|cfmri) through a Markov chain
with T timesteps. Following (Ho, Jain, and Abbeel 2020;
Song, Meng, and Ermon 2020; Rombach et al. 2022), we

define the fixed forward Markov diffusion process q as:

q (z1:T | z0) =
T∏

t=1

q (zt | zt−1) ,

q (zt | zt−1) = N
(
zt |

√
1− βtzt−1, βtI

)
,

(1)

where z0 denotes the latent code of an image. This
Markov diffusion process propagates by adding Gaussian
noise, with variances βt ∈ (0, 1) in T iterations. Given z0,
the distribution of zt can be represented by:

q (zt | z0) = N (zt |
√
γtz0, (1− γt)I) , (2)

where γt =
∏t

i=1 (1− βi). In the inference pro-
cess, CMVDM learns the conditional distributions
pθ(zt−1|zt, cfmri) and conducts a reverse Markov process
from Gaussian noise zT ∼ N (0, I) to a target latent code
z0 as:

pθ (z0:T | cfmri) = p (zT )

T∏
t=1

pθ (zt−1 | zt, cfmri) ,

p (zT ) = N (zT | 0, I) ,
pθ (zt−1 | zt, cfmri) = N

(
zt−1 | µθ (cfmri, zt, t) , σ

2
t I
)
,

(3)

where σt = 1−γt−1

1−γt
βt. The pretrained image decoder of

the LDM (Rombach et al. 2022) turns the final latent code
to an image.

Furthermore, we extract the attributes and control the gen-
erated results. Firstly, we extract the semantic and silhouette
information by utilizing the fMRI encoder Efmri and the sil-
houette estimating network Dslh, respectively. This step en-
ables us to accurately decouple the fMRI information cfmri.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

6937



Subsequently, we utilize the control model Fctrl to generate
high-quality images that match the visual stimuli in terms
of both semantic and silhouette information. Fctrl is able to
leverage the extracted information to produce better results.
Besides, the residual module Fres is designed to provide in-
formation beyond semantics and silhouette.

Finetuning of the Pretrained LDM
Before extracting the silhouette information and controlling
the generated results, we need to finetune the pretrained
LDM (Rombach et al. 2022) to enable it to generate con-
sistent images and extract the semantic information based
on the input fMRI signals. Following MinD-Vis, we em-
ploy the fMRI encoder Efmri pretrained on the HCP dataset
(Van Essen et al. 2013) to encode the brain activity signals
to the fMRI embeddings. Besides, we use the pretrained
LDM to generate output images. By optimizing the fMRI
encoder Efmri and the cross-attention layers in the LDM,
while freezing the other blocks during the finetuning pro-
cess, we can obtain reliable consistent generated results. The
finetuning loss is defined as follows:

Lf = Ez0,t,cfmri,ϵ∼N (0,1)[||ϵ− ϵθ(zt, t, Efmri(cfmri))||22],
(4)

where ϵθ is the denoising network of the LDM. In this
way, the LDM can ensure the consistency of the generated
results. Let cctx = Efmri(cfmri) be the semantic informa-
tion extracted from the fMRI signals. Due to the lack of di-
rect semantic supervision, Efmri may be insufficient for pro-
viding enough semantic information. Therefore, we design a
noval alignment loss Lalign to further enhance the semantic
information cctx:

Lalign = e−cosine(fimg,MLP(cctx)), (5)

where cosine(·, ·) denotes the cosine similarity, fimg is
the image feature extracted by the CLIP image encoder
(Radford et al. 2021), and MLP represents a trainable multi-
layer perceptron. After this training stage, the LDM can
make the generated images consistent with the fMRI sig-
nals. Nonetheless, due to the absence of explicit positional
condition guidance, it is still a challenge for the LDM to gen-
erate silhouette-matched results. In the next two sections, we
will describe how to extract silhouette information from the
fMRI signals and control the final results.

Silhouette Extraction
In this section, we aim to extract silhouette information from
fMRI signals. (Gaziv et al. 2022) uses a combination of self-
supervised and supervised learning to reconstruct images
similar to visual stimuli.

Despite the low fidelity of the image generation quality,
their generated results demonstrate a notable ability to accu-
rately replicate the silhouette of the visual stimuli (see Fig.
3). Based on this, we devise a silhouette estimation network
that is capable of providing rough positional guidance for
CMVDM.

Our silhouette estimation network consists of two compo-
nents: an encoder Eslh and a decoder Dslh. The encoder Eslh

projects the input images to the fMRI signal space, while the
decoder Dslh performs the inverse transformation.

Let cfmri,i be the ground truth (GT) fMRI signal, Ii be
the corresponding GT image, and ˆcfmri,i = Eslh(Ii) be the
estimated fMRI signal. We define the encoder training loss
Le by a combination of the Mean Square Error (MSE) loss
and cosine similarity:

Le =
1

|Ω|

|Ω|∑
i=1

[α1 · ∥cfmri,i − ˆcfmri,i∥2

+ α2 · (1− cosine(cfmri,i, ˆcfmri,i))],

(6)

where αi∈{1,2} are the hyperparameters set empirically to
α1 = 1 and α2 = 0.3.

After completing the training of Eslh, we fix its parame-
ters and train the reverse process for the decoder Dslh. Due
to the limited availability of paired {fMRI, image} data,
mapping fMRI signals to images is challenging. Inspired by
(Gaziv et al. 2022), we utilize semi-supervised training to
extract intricate silhouette information. The self-supervised
process can be simply represented as: ϕ̂i = Dslh(Eslh(ϕi)),
where ϕi ∈ Φ denotes the image from ImageNet (without
corresponding fMRI data) (Deng et al. 2009), and ϕ̂i de-
notes the reconstructed image. By minimizing the disparity
between ϕi and ϕ̂i, the self-supervised process helps Eslh
and Dslh to learn more generalized image representation.
We employ the Structural Similarity (SSIM) loss besides the
Mean Absolute Error (MAE) loss to penalize the spatial dis-
tances between the reconstructed images and the GT images.
The two losses are:

Lmae =
1

|Ω|

|Ω|∑
i=1

|Îi − Ii|︸ ︷︷ ︸
supervised

+
1

|Φ|

|Φ|∑
i=1

|ϕ̂i − ϕi|︸ ︷︷ ︸
self−supervised

,
(7)

Lssim = 1−
(2µIµÎ + C1)(2σIÎ + C2)

(µ2
I + µ2

Î
+ C1)(σ2

I + σ2
Î
+ C2)

, (8)

where µÎ , µI , σÎ , and σI represent the mean and std val-
ues of the reconstructed images Î and GT images I, C1 and
C2 are constants to stabilize the calculation.

The decoder loss Ld is defined as the combination of the
two losses:

Ld = Lmae + Lssim. (9)

After training, Dslh is able to generate images Î from
cfmri that provide positional guidance for CMVDM. To
avoid confusion, we’ll refer to Î as cslh in the following
section.

Training of Control Model
After obtaining the enhanced semantic information cctx =
Efmri(cfmri) and the reliable silhouette information cslh =
Dslh(cfmri) from cfmri, we use them to control the gener-
ated results as shown in Fig. 2. Inspired by ControlNet, we
design a control model to control the overall composition of
the generated images. Specifically, we freeze all the parame-
ters in the denoising network ϵθ and clone the U-Net encoder
of ϵθ into the trainable Fctrl(·; Θc) with a set of parameters
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Method GOD BOLD5000

Acc (%) PCC SSIM Acc(%) PCC SSIM
Beliy (2019) 4.288 0.48285 0.51795 / / /
Gaziv (2022) 9.128 0.68326 0.64857 / / /
IC-GAN (2022) 29.386 0.44857 0.54489 / / /
MinD-Vis (2023) 26.644 0.53159 0.52669 25.918 0.54486 0.52379
CMVDM (Ours) 30.112 0.76751 0.63167 27.791 0.55691 0.53459

Table 1: Quantitative comparison with four state-of-the-art (SOTA) methods. Bold results denote the best results and underlined
results denote the second-best results.

Θc (the red blocks of control model in Fig. 2). The inputs
of Fctrl include zt, cctx, and the silhouette feature cslh. The
combined condition code x′

c,t can be formulated as:

x′
c,t = Z(Fctrl(zt + Z(cslh), cctx; Θc)), (10)

where Z(·) denotes the zero convolution operation
(Zhang and Agrawala 2023). Furthermore, in order to com-
pensate for the fMRI data loss during attribute extraction,
we utilize a trainable residual block denoted as Fres. This
block is trained in conjunction with Fctrl. The final com-
bined condition code xc,t is represented as:

xc,t =Z(Fctrl(zt+

Z(cslh + Z(Fres(cfmri))), cctx; Θc)).
(11)

Then the output features xc,t of the control model are
added to the U-Net decoder features of the frozen ϵθ, as
shown in Fig. 2.

Finally, we use the following loss Lctrl to supervise the
training of the control model and Fres in our CMVDM:

Lctrl =

Ez0,t,cfmri,ϵ∼N (0,1)[||ϵ− ϵθ(zt, t, cctx, xc,t)||22].
(12)

Note that with their losses, the control model training, the
pretrained LDM finetuning, and the Dslh training are inde-
pendent. In our framework, we separately pretrained Efmri

and Dslh and froze their weights to jointly train Fres and
Fctrl (as depicted in Fig 2).

Experiments
Datasets and Implementation
Datasets. In this study, we employ two public datasets
with paired fMRI signals and images: Generic Object De-
coding (GOD) dataset (Horikawa and Kamitani 2017), and
Brain, Object, Landscape Dataset (BOLD5000) (Chang
et al. 2019). The GOD dataset is a well-known and exten-
sively researched collection of fMRI-based brain signal de-
coding data. It comprises 1250 distinct images belonging to
200 different categories, with 50 images designated for test-
ing. The BOLD5000 dataset is a rich resource for studying
the neural representation of visual stimuli, as it contains di-
verse images from natural and artificial domains. The im-
ages are drawn from three existing datasets: SUN (Xiao et al.
2010), COCO (Lin et al. 2014), and ImageNet (Deng et al.
2009), which contain images of various categories of ob-
jects and animals. BOLD5000 was acquired from four sub-
jects who underwent fMRI scanning while viewing 5,254

images in 15 sessions. The fMRI data were preprocessed
and aligned to a common anatomical space, resulting in
4803 fMRI-image pairs for training and 113 for testing. The
dataset provides a unique opportunity to investigate how
the human brain encodes visual information across different
levels of abstraction and complexity. Additionally, we use
the large-scale fMRI data from Human Connectome Project
(HCP) (Van Essen et al. 2013) in an unsupervised manner to
pretrain the fMRI encoder Efmri in our method, which aims
to fully extract the features of fMRI signals.

Training Details. We adopt 1 A100-SXM4-40GB GPU
for the training of Efmri and the control model, and 1 V100-
SXM2-32GB GPU for Dslh training. Both Efmri and the
control model are trained by the AdamW (Loshchilov and
Hutter 2017) with β = (0.9, 0.999) and eps = 1e − 8 for
500 epochs. Dslh is optimized using Adam (Kingma and Ba
2015) with a learning rate of 5e− 3 and β = (0.5, 0.99) for
150 epochs.

Evaluation Metrics
N-way Classification Accuracy (Acc). Following (Gaziv
et al. 2022; Chen et al. 2023), we employ the n-way top-1
classification task to evaluate the semantic correctness of the
generated results, where multiple trials for top-1 classifica-
tion accuracies are calculated in n − 1 randomly selected
classes with the correct class. Specifically, we follow MinD-
Vis and use a pretrained ImageNet-1K classifier (Dosovit-
skiy et al. 2020) to estimate the accuracy. Firstly, we input
the generated results and the ground-truth images into the
classifier, and then check whether the top-1 classification
matches the correct class.

Pearson Correlation Coefficient (PCC). The Pearson
correlation coefficient (PCC) measures the degree of linear
association between two variables. PCC is used to measure
the correlation between the pixel values of the generated re-
sults and those of the ground truth, with +1 indicating a per-
fect positive linear relationship and -1 indicating a perfect
negative linear relationship. The larger the PCC value, the
stronger the relevance between visual stimuli and generated
images.

Structure Similarity Index Measure (SSIM). We adopt
SSIM to evaluate the reconstruction faithfulness of the gen-
erated results. As analyzed in (Wang et al. 2004), the struc-
tural similarity of two images is measured by three different
factors, brightness, contrast, and structure, where the mean
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Ground Truth Ours MinD-Vis IC-GAN Gaziv Beliy

Figure 3: Comparison with four SOTA methods on the GOD dataset.

is used as the estimate of brightness, the standard deviation
as the estimate of contrast, and the covariance as the mea-
surement of structural similarity.

Comparison with State-of-the-Art Methods
Methods. We compare our CMVDM with four state-
of-the-art (SOTA) methods: MinD-Vis, IC-GANs (Ozcelik
et al. 2022), Gaziv (Gaziv et al. 2022), and Beliy (Beliy et al.
2019). We use their official pretrained models for all the
comparisons, which are trained on the GOD dataset. For the
BOLD5000 dataset, we only compare with the official pre-
trained MinD-Vis model, because other works (Beliy et al.
2019; Gaziv et al. 2022; Ozcelik et al. 2022) did not conduct
experiments and release their models on BOLD5000.

Results on the GOD Dataset. We conduct a quantitative
comparison between CMVDM and the four SOTA mod-
els using the testing dataset of GOD. Table 1 summarizes
the results, revealing that CMVDM overall outperforms the
other methods significantly. Compared to MinD-Vis and IC-
GAN, both of which yield good results, CMVDM outper-
forms them significantly in terms of SSIM. This indicates
that the images generated by CMVDM exhibit a higher de-
gree of resemblance to the visual stimuli in terms of object
silhouette and image structure. Additionally, Fig. 3 demon-
strates that CMVDM generates visually impressive images
with semantic and structural information closest to the vi-
sual stimuli. Gaziv achieves remarkable results in terms of
SSIM, but their accuracy reported in Table 1 and visual re-
sults presented in Fig. 3 demonstrate that their method is not

Method Acc (%) PCC SSIM
MinD-Vis 26.644 0.53159 0.54489
MinD-Vis+Lalign 27.362 0.56686 0.52628
MinD-Vis+Control Model 28.438 0.75730 0.63404
CMVDM 30.112 0.76751 0.63167

Table 2: Ablation study of CMVDM’s components.

capable of generating high-fidelity images.

Results on the BOLD5000 Dataset. We conduct a com-
parative analysis between our CMVDM and the most recent
method MinD-Vis using the testing dataset of BOLD5000.
As depicted in Table 1, it is evident that CMVDM consis-
tently outperforms MinD-Vis across all evaluation metrics.
Additionally, Fig. 4 provides visualizations of some results
from both methods, clearly demonstrating that CMVDM
generates more realistic outcomes that are more similar to
the GT visual stimuli. Notably, the BOLD5000 dataset, be-
ing more complex than the GOD dataset, further validates
the effectiveness of our proposed method.

Ablation Study
We further conduct experiments on the GOD dataset to ana-
lyze the effectiveness of each module of CMVDM. Specif-
ically, we employ MinD-Vis as the baseline and design
two comparison models: (1) adding the semantic align loss
Lalign to MinD-Vis, (2) adding the control model to MinD-
Vis. The results, presented in Table 2, demonstrate the ef-
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Ground Truth Ours MinD-Vis

Figure 4: Comparison with MinD-Vis on the BOLD5000
dataset.

ficacy of both Lalign and the control model within our
CMVDM. MinD-Vis with Lalign yields improved results
in terms of ACC and PCC, which illustrate that Lalign

can improve the capability of CMVDM to obtain semantic
information. Furthermore, MinD-Vis+Control Model out-
performs MinD-Vis+Lalign in each metric, particularly in
SSIM, indicating that the silhouette contains valuable se-
mantic information that is used in the control model.

Consistency Analysis
To further verify the generative stability of CMVDM, we
conduct an analysis to compare the consistency of two
diffusion-based methods. As shown in Fig. 5, we sample
three images reconstructed by CMVDM and MinD-Vis from
the same fMRI signal. The images generated by CMVDM
demonstrate a high degree of consistency to GT images both
semantically and structurally. However, the results generated
by MinD-Vis are capable of reproducing GT images seman-
tically but are not consistent in structure.

Further Analysis
The impact of using the residual module Fres in our
CMVDM is significant on the BOLD5000 dataset, as
demonstrated in Table 3. However, the effect of Fres on the
GOD dataset is not as pronounced. We believe that there
are two reasons for this discrepancy. Firstly, the voxels of a
single fMRI signal provided by the BOLD5000 dataset are
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Figure 5: Consistency analysis of the generated results.

Dataset Method Acc(%) PCC SSIM

BOLD5000 w/o Fres 25.393 0.54184 0.52951
w Fres 27.791 0.55691 0.53459

GOD w/o Fres 29.436 0.75837 0.63894
w Fres 30.112 0.76751 0.63167

Table 3: Quantitative analysis of the residual block in
CMVDM.

much less than that provided by the GOD dataset, making
it more challenging to extract valid semantic and silhouette
information from BOLD5000. Therefore, Fres is necessary
to compensate for the information gap. Secondly, compared
to GOD, BOLD5000 has more diverse images, including
scenes that are not present in GOD. The semantic judg-
ment and position alignment of the images in BOLD5000
are more complex than those in GOD. Therefore, we utilize
Fres to provide more information and improve the recon-
struction performance.

Conclusion
In this paper, we propose a Controllable Mind Visual Diffu-
sion Model (CMVDM) for decoding fMRI signals. Firstly,
we simultaneously train a semantic encoder and perform
finetuning on a pretrained latent diffusion model to gener-
ate semantically consistent images from fMRI signals. Sec-
ondly, we incorporate a silhouette extractor to derive reli-
able position information from fMRI signals. Furthermore,
we design a control model to ensure CMVDM generates
semantically-consistent and spatially-aligned images with
the original visual stimuli. Extensive experiments demon-
strate that our approach achieves state-of-the-art perfor-
mance in generating high-quality images from fMRI signals.
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