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Abstract

Amodal scene analysis entails interpreting the occlusion re-
lationship among scene elements and inferring the possi-
ble shapes of the invisible parts. Existing methods typically
frame this task as an extended instance segmentation or a
pair-wise object de-occlusion problem. In this work, we pro-
pose a new framework, which comprises a Holistic Occlusion
Relation Inference (HORI) module followed by an instance-
level Generative Mask Completion (GMC) module. Unlike
previous approaches, which rely on mask completion re-
sults for occlusion reasoning, our HORI module directly pre-
dicts an occlusion relation matrix in a single pass. This ap-
proach is much more efficient than the pair-wise de-occlusion
process and it naturally handles mutual occlusion, a com-
mon but often neglected situation. Moreover, we formulate
the mask completion task as a generative process and use a
diffusion-based GMC module for instance-level mask com-
pletion. This improves mask completion quality and provides
multiple plausible solutions. We further introduce a large-
scale amodal segmentation dataset which consists of high-
quality human annotations for amodal masks and occlusion
relations, including mutual occlusions. Experiments on the
newly proposed dataset and two public benchmarks demon-
strate the advantages of our method on both efficient occlu-
sion reasoning and plausible amodal mask completion. code
public available at https://github.com/zbwxp/Amodal-AAAI.

Introduction
Humans can naturally perceive the occlusion relationship
among multiple scene elements and infer the possible shapes
for the invisible parts, and this ability is known as amodal
perception (Nanay 2018; Mohan and Valada 2022; Zhu et al.
2017). In computer vision, amodal scene analysis has been
proposed to match the human intelligence (Li and Malik
2016), and this task can provide useful information for many
real-world applications. For example, occlusion reasoning
can facilitate risk assessment in AI systems, where exist-
ing methods are data-driven and may become less reliable
when applied on heavily occluded objects (Zhu et al. 2019;
Kortylewski et al. 2020). Amodal scene analysis can also
benefit image editing tasks. By decomposing the 2D scene
into layer-wise representations based on the predicted occlu-
sion relationship and amodal shapes, users can easily move
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things around and generate new RGB content (Zhan et al.
2020a; Zheng et al. 2021).

Many existing works try to solve amodal problems by ex-
tending traditional instance segmentation methods, such as
Mask R-CNN (He et al. 2017) and DETR (Carion et al.
2020). In those methods, heads for amodal mask predic-
tion are added to the instance segmentation model (Foll-
mann et al. 2019; Qi et al. 2019; Xiao et al. 2021; Tran
et al. 2022). These methods treat amodal segmentation as an
object recognition task, and entangle instance segmentation
and amodal mask completion in a single framework. Conse-
quently, the problem becomes too challenging and satisfying
results can hardly be obtained. In addition, these methods
only focus on amodal mask prediction and do not explic-
itly address the occlusion reasoning problem, which is an
essential part for amodal scene analysis. They also often use
mean Average Precision (mAP) as the main evaluation met-
ric, which cannot reflect the mask quality or fidelity in many
cases. Furthermore, since these methods are often trained for
a set of predefined object classes, their application is strictly
constrained by the training data.

Another approach decouples amodal analysis from a per-
spective on object recognition. Taking instance masks of
visible regions as input, these methods interpret the occlu-
sion relationship among the objects of interest and perform
amodal mask completion in a separate step (Yan et al. 2019a;
Ling et al. 2020; Zhan et al. 2020b; Nguyen and Todorovic
2021). These approaches focus more on amodal analysis and
can generally achieve better results for occlusion reasoning
and mask completion. However, current approaches in this
direction typically rely on a time-consuming process of pair-
wise object de-occlusion. The occlusion order reasoning is
based on mask completion results, making the overall per-
formance unstable due to the difficulty of the amodal seg-
mentation task. In addition, many prior works utilize a de-
terministic method to solve amodal mask completion, which
is limited in its ability to capture multiple potential and plau-
sible shapes that may exist under occlusion.

In this work, we propose a new amodal scene analysis
framework based on the second approach, where we decou-
ple the problem from object recognition. Since many exist-
ing works (Cheng et al. 2022; Jain et al. 2022; Li et al.
2022a) on instance and panoptic segmentation tasks already
achieved impressive performance, in this work we assume
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Figure 1: Overview of the proposed framework. Given an image with visible object masks, we propose the Holistic Occlusion
Relation Inference (HORI) module to infer the occlusion relationship matrix for all objects in a single pass. The colored edges
of the rows and columns in the matrix match the corresponding colored object mask on the left. ‘O’ and ‘X’ in the matrix
indicate whether an object is occluding or occluded by another object, while ‘M’ indicates mutual occlusion. For instance,
region A′ is occluded by B, and B′ is occluded by A. The occlusion relation matrix, along with the image and its visible
masks, is then fed to our Generative Mask Completion (GMC) module to generate the amodal masks at the instance level.

instance segmentation masks are available for objects of in-
terest in the scene. As shown in Fig. 1, we first introduce
a Holistic Occlusion Relation Inference (HORI) module
which achieves single-pass occlusion reasoning by directly
predicting an occlusion relationship matrix. We then present
a Generative Mask Completion (GMC) module which per-
forms instance-level amodal completion through a diffusion-
based sampling process and enables multiple plausible out-
puts. More specifically, the HORI module adapts the archi-
tecture of Mask2former (Cheng et al. 2022) and takes in-
stance masks as additional inputs. It leverages the attention
mechanism of Mask2former and attends to the visible re-
gion of each instance directly to learn a dense ordering rela-
tionship. By outputting an occlusion relationship matrix, the
module is much more efficient than the previous pair-wise
de-occlusion methods (Yan et al. 2019a; Ling et al. 2020;
Zhan et al. 2020b; Nguyen and Todorovic 2021) and can nat-
urally handle mutual occlusion, which is a common but often
neglected situation. Then, given the instance masks and or-
dering relationship for objects in the scene, we apply a GMC
module to perform instance-level amodal mask completion.
The GMC module adapts a diffusion-based sampling pro-
cess and is conditioned on the visible mask to infer multiple
potential shapes of an amodal mask. Compared with previ-
ous deterministic methods, the GMC module also produces
amodal masks with higher fidelity.

In our experiments, we evaluate our model on two pop-
ular amodal benchmarks, COCOA (Zhu et al. 2017) and
KINS (Qi et al. 2019), where we demonstrate that our HORI
module achieves new state-of-the-art results for Ordering
Accuracy (O-Acc) with highly efficient single-pass infer-
ence. Additionally, our GMC module outperforms existing
methods not only on mean Intersection-over-Union (mIoU),
but also on more advanced metrics that evaluate the fidelity
of the predicted shapes for amodal mask completion. To fa-
cilitate a more comprehensive model evaluation for amodal
scene analysis, especially for the case of mutual occlu-
sion, we further introduce a large-scale amodal segmentation
dataset, Amodal Scene in the Wild (ASW). The evaluation
set of ASW will be released with the paper, which consists
of 2, 000 images of diverse scenes and 14, 969 high-quality
amodal masks with occlusion ordering. Among the 13, 240
occlusion relationships revealed in the annotation, 2, 515 are
mutual. We demonstrate our proposed method can achieve

accurate mutual occlusion prediction both quantitatively and
qualitatively on the ASW dataset.

We summarize our main contributions as follows:

• We propose a new framework to solve amodal scene
analysis by two modules. The Holistic Occlusion Rela-
tion Inference (HORI) module interprets the occlusion
relationship among multiple scene elements in a sin-
gle pass, while the Generative Mask Completion (GMC)
module predicts diverse high-fidelity amodal shapes by
formulating the task as a generative sampling process.

• We investigate mutual occlusion, a common situation
in real-world scenes but largely overlooked by previ-
ous methods and benchmarks. To this end, we introduce
a new dataset that consists of diverse scenes and high-
quality annotations for amodal masks and occlusion re-
lations, including 2, 515 mutual occlusion cases.

Related Work
Occlusion Reasoning. A number of works have studied oc-
clusion reasoning as a multi-view problem (Kang, Szeliski,
and Chai 2001; Yamaguchi, McAllester, and Urtasun 2014;
Gilroy, Jones, and Glavin 2019) while inferring occlu-
sion relationship from a single image is more challeng-
ing (Hoiem et al. 2007; Hsiao and Hebert 2014; Jiang
et al. 2020). Earlier works have explored prior and template-
based methods (Tighe, Niethammer, and Lazebnik 2014;
Wu, Tenenbaum, and Kohli 2017). Another line of works
uses closed contour to express the object, and the orienta-
tion of each contour pixel to describe the order relation-
ship (Ren, Fowlkes, and Malik 2006; Wang and Yuille 2016;
Lu et al. 2019). In the domain of amodal analysis, the order-
ing recovery method introduced in (Zhan et al. 2020b) works
by learning the relationship between pairwise synthetic data
and it has inspired several later works, such as (Nguyen and
Todorovic 2021; Yan et al. 2019a).
Amodal Segmentation and Mask Completiong. Amodal
segmentation aims at detecting objects and recovering their
complete shapes. Many existing works inherit the network
architecture from popular instance segmentation methods
and apply amodal mask supervision on top of the train-
ing (Zhu et al. 2017; Qi et al. 2019; Sun, Kortylewski, and
Yuille 2022; Xiao et al. 2021; Mohan and Valada 2022).
These methods usually apply multiple layers of convolu-
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tions and deformable convolutions to strengthen the model’s
ability to infer the invisible region. Although they perform
well on some simple rigid objects, they are more likely to
fail on objects with irregular or elongated shapes (e.g. ta-
ble legs and human arms). Another line of work focuses
on amodal mask completion, where instance segmentation
masks are provided as input. This approach simplifies the
problem by decoupling amodal analysis from object recog-
nition and thus can achieve better results. Besides early un-
supervised contour completion methods that are constrained
on toy examples (Kimia, Frankel, and Popescu 2003; Silber-
man et al. 2014), 3D templates and synthetic data have been
used broadly (Kar et al. 2015; Ehsani, Mottaghi, and Farhadi
2018; Yan et al. 2019b). (Zhan et al. 2020b) proposes a self-
supervised scene de-occlusion method by learning amodal
masks from 2D synthetic occlusions, which is followed by
(Nguyen and Todorovic 2021; Yan et al. 2019a), while (Ling
et al. 2020) learns from synthetic data similarly but develops
a variational generative framework for the task.
Diffusion Models. Diffusion probabilistic models (Sohl-
Dickstein et al. 2015; Ho, Jain, and Abbeel 2020) employ a
forward Markov chain to diffuse the data to noise and learn
the reversal of such a diffusion process. Conditional dif-
fusion models encode additional information (e.g., seman-
tic layout) into the generation process and improve largely
the generation performance, inspiring a variety of tasks in-
cluding image generation (Jolicoeur-Martineau et al. 2020;
Dhariwal and Nichol 2021; Vahdat, Kreis, and Kautz 2021;
Rombach et al. 2022; Ho et al. 2022), image editing (Nichol
et al. 2021; Saharia et al. 2022a; Kawar et al. 2022; Coua-
iron et al. 2022; Zeng et al. 2022), super-resolution (Li et al.
2022b; Saharia et al. 2022b), etc. In this work, we use diffu-
sion model to complete binary masks instead of generating
RGB values, which has rarely been explored.

Methods

The task of amodal segmentation involves generating the
amodal mask Mamodal for an input image I ∈ RH×W×3

and its corresponding instance masks Minst ∈ RH×W×N ,
where N represents the number of objects present in the im-
age. The instance masks provide information about the visi-
ble areas of the objects, while the amodal masks provide the
complete shapes, including the occluded regions.

To achieve this, our approach involves first inferring the
occlusion relationships between all the objects using holis-
tic occlusion relation inference. This provides a holistic un-
derstanding of how each object occludes other objects in
the image. This occlusion relationship is then used as input
for the generative mask completion module, which gener-
ates the complete amodal mask Mamodal for each object. It
should be noted that the inference of instance masks Minst

is typically done using instance or entity segmentation meth-
ods, which are not the focus of this paper. Instead, we focus
on the generation of amodal masks, which is a critical task in
many computer vision applications such as object tracking,
scene understanding, and robotic perception.

Holistic Occlusion Relation Inference Module
To enable concurrent ordering, an efficient method is re-
quired to encode arbitrary numbers of binary masks into
a model structure for further processing. As illustrated in
Fig. 2, our framework first passes the image through a
Resnet50 backbone and a deformable-DETR decoder to pro-
duce feature maps of different levels with rich semantic in-
formation. The binary masks Minst indicating the object’s
visible parts are provided, and the number of masks N can
vary for different images. We dynamically duplicate the ini-
tial token N times to match the number of visible masks, and
these tokens are then passed through the Occlusion Reason-
ing Block (ORB).

Each ORB block requires three inputs: the feature map
F ∈ Rh×w×C where C representing the number of channels
of the feature map, the visible binary masks Minst, and the
tokens T ∈ RN×C to be matched with the visible masks.
These three inputs are first passed through a masked multi-
head cross-attention (MMHCA) module, where T serves as
queries, F as keys and values, and Minst as the attention
mask. The computation is as follows with l indicating the
layer index.

Ql = fQ(Tl),Kl = fK(Fl),Vl = fV (Fl).

M =

{
0 if Minst = 1
−∞ otherwise

Tl+1 = softmax (M+QlK
T
l )Vl +Tl

(1)

This masked attention will gather the information in Fl

within the Minst and update the Tl. During the inference,
the first T0 is generated by repeating a random initialized
learnable token embedding for N times. After the first ORB
block, the originally identical tokens will become diverse
and gradually correspond to each mask region in Minst.
We use this mechanism to encode the spatial information
of Minst into the model. The output Tl+1 is then carried
out by a self-attention module and a feed-forward network
(FFN) as in a regular transformer decoder.

Each ORB block produces three outputs: an occlusion re-
lation matrix, N occlusion ratio predictions, and N binary
mask predictions. The occlusion relation matrix is gener-
ated from the attention map of the multi-head self-attention
(MHSA) process on T. The attention map naturally encodes
the ordering relationships between all elements in T, and we
use it to generate the occlusion relation matrix. To introduce
more non-linearity, we attach an additional MLP module to
the attention map. The produced occlusion relation matrix
is then used for ordering recovery. The occlusion ratio pre-
diction and the binary mask predictions of the ORB block
follow a similar structure to DETR. First, the T tokens are
attached to a fully-connected layer that predicts the occlu-
sion ratio of the current token. Then, the output is attached
to another MLP module that generates the kernel for a 1× 1
convolution operation. The kernel is then applied to the 1/4
resolution feature map to generate a binary mask prediction,
representing the current token’s amodal prediction. Those
outputs are then supervised with their corresponding amodal
masks and occlusion ratios sequentially where nine ORB
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Figure 2: The overall structure of the Holistic Occlusion Relation Inference (HORI) module. The HORI module combines a
Resnet50 backbone and a deformable DETR decoder to extract variable-resolution features from input images. Then the core
component, the Occlusion Reasoning Block (ORB), employs feature maps as keys and values and employs N visible instance
masks for masked attention during the learning of token embeddings, which are later used for occlusion reasoning. Importantly,
the HORI module’s role is to incorporate visible instances and amodal masks into the attention process through the ORB. It
does NOT aim to predict amodal masks but rather enhances occlusion reasoning capabilities.

blocks are attached to feature maps of three resolutions se-
quentially, with each ORB having its corresponding super-
vision.
Training Supervisions. The corresponding losses for the
ORB block are as follows:

Lmask = LCE + Ldice

Lmatrix = LCE + Ldice

Lall = λ1Lmask + λ2Lmatrix + λ3Lratio

(2)

The first loss function is Lmask, which is inherited from
DETR for amodal mask supervision. This loss function is
used to ensure that the generated amodal masks are accurate
and match the ground truth masks. The target for Lmask is
the ground truth amodal mask.

The second loss function is Lmatrix, which is used to su-
pervise the occlusion relationships between objects. The tar-
get for Lmatrix is a N × N binary matrix indicating the
occlusion relationships between the N objects in the image.
This loss function is designed to ensure that the model cor-
rectly infers occlusion relationships between objects in the
image. Since the target can also be treated as a binary mask,
we use the same loss as in Lmask.

The third loss function is Lratio, which is used to super-
vise the occlusion ratio of each object in the image. The oc-
clusion ratio r ∈ [0, 1) indicates the amount of occlusion
a given object is experiencing, with 0 indicating no occlu-
sion and 1 indicating complete occlusion. This loss function
ensures that the model learns to accurately predict the occlu-
sion ratio of each object in the image. The loss is computed
using mean squared error. The weights λ1, λ2, λ3 are hyper-
parameters that control the relative importance of each loss
function in the training process.

Noting that during the generation of the amodal predic-
tion, the binary mask Minst is concatenated to the feature

map. This approach can sometimes result in instances with-
out occlusion converging to a trivial solution, where the vis-
ible mask channel has a very high weight. However, we in-
tentionally designed the structure in this way to reduce the
burden on the model to handle instances without occlusion.
In experiments, we found this strategy to be highly effective.

The ORB block is essential for producing accurate or-
dering recovery, with all pairs playing a crucial role. The
masked attention mechanism encodes the visible parts and
trains the model to interpolate the invisible parts of the
amodal prediction, resulting in reasonable ordering relation-
ships. The ORB structure facilitates the tokenization of bi-
nary masks into tokens that pair with feature maps. Supervi-
sion of the amodal predictions helps the model encode vis-
ible information accurately and interpret the invisible parts.
Lastly, supervision on the order map enables the model to
learn the ordering relationships within all the objects.
Handling Mutual Occlusion. Existing datasets assume
that the occlusion relationship between objects is bipartite,
meaning that one object can only be the ‘occluder’ or the
‘occludee’ in one object pair. However, during our exper-
iments, we found that this assumption is often invalid, and
there are instances where the occlusion relationship between
two objects is mutual, typically happening when objects are
interacting with each other. Examples of mutual occlusion
relationships can be seen in Fig. 3. To avoid mutual occlu-
sion annotations, previous datasets such as COCOA (shown
in the first row of the figure) split instances into multiple
parts. However, this approach can result in inconsistent an-
notations (see Fig. 3). To construct our ASW dataset (see
Sec. ), we purposefully allow mutual occlusion to make the
amodal mask annotation consistent.

Previous methods for pairwise ordering, such as those
proposed in (Zhan et al. 2020b; Nguyen and Todorovic
2021), rely on comparing the sizes of the intruding areas
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Figure 3: COCOA (1st row) splits instances into multiple
parts (indexed by numbers) to avoid the need for mutual oc-
clusion annotations, resulting in inconsistent instance and
amodal masks. Our ASW dataset (2nd row) addresses this
by annotating each instance with its complete shape directly.

of the predicted amodal mask of one object with the visi-
ble mask of the other object to make their ordering predic-
tions. These methods were designed and trained on synthetic
data with pairwise bipartite ordering relationships. It is non-
trivial to generate synthetic data with mutual occlusion. As a
result, these previous methods fail to adapt to our newly pre-
sented fully annotated ASW dataset. In contrast, our HORI
module (Fig. 2) can easily handle the mutual occlusion pre-
diction by simply having two output channels for the MLP
in the ORB block to encode both ‘occluder’ and ‘occludee’
status, which can be true at the same time, for each object
with respect to another one.

Generative Mask Completion Module
After successfully inferring the order relationships among
the objects, the next step in our approach is to process the
mask completion in order to obtain the final amodal mask
predictions. Previous methods are typically trained deter-
ministically using human-annotated or synthesized amodal
masks, which is not well-suited for amodal segmentation.
Though the annotations are carefully annotated by human
experts, they represent only one possible solution while
other plausible shapes may exist in the invisible region.

For instance, consider the example shown in Fig. 3 (Row
2, 3rd image from left) where two people are standing next
to each other and their arms can be at any arbitrary angles.
Thus, training a deterministic model using a single amodal
ground truth won’t capture the stochastic nature of the prob-
lem. To overcome this challenge, we propose to formulate
the amodal mask completion as a generative process and
use a diffusion-based Generative Mask Completion (GMC)
module to achieve instance-level mask completion. More
specifically, we inherit from the basic structure of the latent-
diffusion model proposed in (Rombach et al. 2022). Our
model requires the original image, the visible mask of an
object, and a condition mask indicating the areas that are
possibly under occlusion (which do not need to be very ac-
curate). Using the result from the previous HORI module,
we can easily interpolate the condition mask by grouping
all the occluders together. With these inputs, the diffusion
model is then trained following the standard procedure as in
(Rombach et al. 2022).

(a) img (b) gt (c) de-occ (d) ASBU (e) Ours

Figure 4: Visual comparison of the amodal mask comple-
tion results from different methods. Though de-occ (c) and
ASBU (d) got higher IoU in these cases, Ours (e) generates
more sharp and reasonable shapes .

The GMC module largely improves mask completion
quality and provides multiple plausible solutions to infer
the amodal shapes in the invisible regions. Qualitative com-
parisons between our approach and existing deterministic
approaches are shown in Fig. 4. It is important to note
that, though our GMC predictions are visually better, its
Intersection-over-Union (IoU) results may not necessarily
be higher. For example, in the first row, the output of ‘ASBU’
has a slightly higher IoU than ‘Ours’ (82.4 vs 80.1). How-
ever, ‘Ours’ looks more natural, resembling a human stretch-
ing an arm, while the ‘ASBU’ output is not very sensible.
This phenomenon applies to the other examples as well:
man-made objects, such as the paper bag, the sugar bag,
and the chair, should have sharp corners and straight edges,
but these cannot be captured by the regular deterministic ap-
proaches, resulting in round corners and uneven edges. This
urges us to use more advanced metrics to evaluate the plau-
sibility and fidelity of the predicted amodal shapes in the
following experiments.

Experiments
Datasets. We conducted extensive experiments to demon-
strate the effectiveness of our model on multiple datasets
compared with various works. We evaluated our model on
three datasets: COCOA, KINS, and ASW. COCOA is a sub-
set of COCO2014 and comprises 2, 500 images with 22, 163
instances as the training split and 1, 323 images with 12, 753
instances as the evaluation split. The dataset includes gen-
eral scenes, such as indoors, outdoors, portraits, and sports
events, making it a comprehensive dataset for amodal seg-
mentation. KINS is a subset of the KITTI dataset, which
is a large-scale traffic dataset. KINS includes 7, 474 images
with 95, 311 instances as the training split and 7, 517 images
with 92, 492 instances as the testing split. All the scenes
in KINS are related to traffic, making it a suitable dataset
for testing our model’s effectiveness in traffic-related scenar-
ios. ASW is our proposed amodal scene in the wild dataset,
which includes images collected from daily life situations.
The dataset contains 33, 049 images with 316, 592 anno-
tations as the training split and 2, 000 images with 14,969
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annotations as the evaluation split. The evaluation split in-
cludes 13, 240 occlusion relationships, of which 2, 515 are
mutual occlusions. This indicates that mutual occlusion is
rather common in daily life situations. More details about
ASW dataset are included in the supplementary material.
Training schedule. For our HORI module, we trained on
the training split of each dataset and evaluated on their re-
spective evaluation split. We used a batch size of 4 globally,
and we trained for 20, 000 iterations on all three datasets.
Regarding our GMC diffusion model, we only trained it us-
ing the training set of ASW and applied it globally to all
three datasets for mask completion. We followed the stan-
dard diffusion training schedule, including multiple periods
of cosine learning schedule until convergence.
Evaluation metrics. We assessed the accuracy of order-
ing recovery by calculating the average pairwise accuracy
among pairs with occlusion (O-Acc), a commonly-used met-
ric in this area. It should be noted that each pair (e.g., A,
B) has two predictions. There are four possible outcomes:
A not adjacent to B, A occluding B, B occluding A, and
A and B mutually occluding. In addition, we used mean
intersection-over-union (mIoU) to evaluate the quality of
predicted amodal masks for amodal completion. To ensure
the fidelity of the predicted shapes, we measured Fréchet
Inception Distance (FID) and Kernel Inception Distance
(KID). These metrics are commonly used to evaluate the
similarity between the distributions of predicted and ground
truth masks. Note that, GMC can predict multiple amodal
masks for a given visible instance mask as shown in Fig. 6,
for a fair comparison, we fix the prediction to be one.

Main Results
Comparison of the performance on COCOA dataset. Per-
formance comparison of our model and previous methods on
the COCOA dataset is presented in Tab. 1. Our HORI mod-
ule demonstrates the strongest O-Acc performance on CO-
COA with a score of 90.9%. In terms of mIoU, both HORI-
predicted masks and GMC-refined masks exhibit stronger
performance than previous methods with a score of 86.89%.
However, as noted before, a higher mIoU score may not nec-
essarily indicate better performance. In this case, although
both HORI and GMC models have strong mIoU scores,
HORI has the lowest fidelity among all methods. This sug-
gests that mIoU may not be the most suitable metric for non-
deterministic tasks such as amodal completion. Our GMC
model exhibits the strongest fidelity toward the ground truth.
Comparison of the performance on KINS dataset. The
KINS dataset solely contains traffic scenes and exhibits a
strong inductive bias where larger objects are closer to the
camera. Our HORI module can holistically perform ordering
recovery and potentially leverage this bias better, whereas
previous methods trained pairwise may not capture this in-
formation. Therefore, as shown in Tab. 2, HORI outperforms
previous methods in ordering recovery by a significant mar-
gin. While our GMC module is not specifically trained on
traffic-related scenes, it still achieves competitive perfor-
mance in terms of mask completion quality. However, since
the mIoU scores are already high (over 94%) and amodal
shapes are relatively uniform in this dataset, the ordering

Methods COCOA
O-Acc mIoU FID KID

CSDNet 84.7 - - -
De-occlusion 87.10 81.35 9.391 0.0034
ASBU 90.33 84.22 - -
ASBU† 88.00 82.17 8.816 0.0033

HORI (ours) 90.90 86.36 12.579 0.0062
GMC (ours) - 86.89 7.204 0.0019

Table 1: Comparison of ordering recovery and amodal com-
pletion on the COCOA dataset. Our method outperforms
previous approaches on both tasks. We further evaluated
the fidelity of predicted masks to the ground truth masks
(smaller is better). † indicates results obtained by retrain-
ing using officially released code.

Methods KINS
O-Acc mIoU

CSDNet 86.4 -
De-occlusion 92.50 94.76
ASBU 92.65 94.83
HORI (ours) 95.22 93.79
GMC (ours) - 93.53

Table 2: Comparison of ordering recovery and amodal com-
pletion on the KINS dataset. Our O-Acc score outperforms
previous methods by a large margin, demonstrating the supe-
rior ability of HORI to predict ordering in complex scenes.

recovery task, rather than mask completion, is the primary
factor affecting the overall performance.
Comparison of the performance on ASW dataset. We re-
implement de-occlusion and ASBU on the ASW datasets
under the same settings to obtain results for a fair com-
parison. However, these methods cannot predict mutual oc-
clusion relationships, resulting in a significant performance
gap compared to our proposed method (87.27% vs. 82.01%
vs. 80.93%) as shown in Tab. 3. Similar to the COCOA re-
sult, both HORI-predicted masks and GMC-refined masks
exhibit stronger performance in terms of mIoU than previ-
ous methods. However, HORI has the poorest fidelity among
all methods. By applying GMC, we can obtain mask predic-
tions that are not only good in mIoU but also more sensible
predictions. Visualization results on the ASW testing set are
shown in Fig. 5. Results in Fig. 6 also show GMC is capable
of generating multiple reasonable predictions.

Discussions
Ablations on the structure of HORI. The proposed HORI
module includes multiple novel structural designs, which are
ablated one-by-one in Tab. 4. By simply using masked atten-
tion to encode visible instance masks to the model structure,
the O-Acc score reaches 85.6. The ‘ins concat’ operation
involves concatenating visible instance masks with feature
maps before amodal prediction. ‘Matrix inference’ uses the
predicted occlusion relationship matrix instead of amodal
predicted masks to interpolate the final occlusion relation-
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Figure 5: Amodal mask completion results on ASW evaluation set. Compared with existing methods, our approach generates
more visually plausible amodal shapes. The inferred amodal masks are more consistent with the ground truth. Particularly for
man-made objects, our GMC module generates sharper edges and corners with higher quality.

gt 1st generate 2nd generate

Figure 6: Amodal completion results showcasing GMC’s ca-
pability of generating multiple reasonable predictions.

Methods ASW
O-Acc mIoU FID KID

De-occlusion 80.93 88.32 4.466 0.0012
ASBU 82.01 88.84 4.438 0.0011

HORI (ours) 87.27 90.24 4.946 0.0022
GMC (ours) - 90.53 4.046 0.0009

Table 3: Comparison of ordering recovery and amodal com-
pletion on the ASW dataset. Beyond the mIoU score, our
model also achieves better FID and KID, indicating the su-
perior ability to generate high-quality amodal masks.

ship. ‘Upsample inputs’ involves scaling the image’s short-
est edge to 1024 during inference. These operations all have
a positive impact on O-Acc.
Efficiency on object occlusion reasoning. As we pro-
posed a novel occlusion relation matrix to infer the occlu-
sion relationship among all the instances, our method is
more efficient than the pair-wise relation reasoning frame-
work (Nguyen and Todorovic 2021; Zhan et al. 2020b), es-
pecially for complicated real-world scenarios. Our end-to-
end method only requires one forward pass to infer all the
occlusion correlations among the instances in the images. In
contrast, previous methods require a complicated pipeline
by first segmenting all the instances, then inputting every
instance pair into the relation reasoning network. Hence,

MA IC MI UI O-Acc

✓ 85.6
✓ ✓ 87.2
✓ ✓ ✓ 89.4
✓ ✓ ✓ ✓ 90.9

Table 4: Ablations for the HORI module on COCOA dataset.
O-Acc is reported here. As different components are added
to the HORI module, the performance gradually improves.
MA refers to Masked Attention, IC refers to Ins Cancat, MI
refers to Matrix Inference and UI refers to Upsample Inputs.

the computational cost and the inference time will increase
linearly according to the number of occlusion pairs. Tak-
ing COCOA as an example, there are 1323 images with
22630 occlusion pairs. We test the inference speed on a
single 3090Ti GPU card for our framework and the pair-
wise reasoning framework (Nguyen and Todorovic 2021).
We achieve an average inference speed of 5 FPS to get the
occlusion relationship while ASBU (Nguyen and Todorovic
2021) only achieves 1.68 FPS.

Conclusion
In this paper, we propose a novel framework for amodal
scene analysis that comprises the Holistic Occlusion Re-
lation Inference (HORI) module and the Generative Mask
Completion (GMC) module. The HORI module predicts an
occlusion relationship matrix in a single pass, which largely
improves the inference efficiency and enables reasoning for
mutual occlusion. The GMC module formulates amodal
mask completion as a generative process and provides mul-
tiple high-quality plausible solutions. Our experimental re-
sults on COCOA, KINS, and the proposed ASW benchmark
demonstrate state-of-the-art performance and robustness to
various occlusion scenarios. Our framework and benchmark
can serve as essential baselines for future amodal scene anal-
ysis research, with potential applications in robotics, au-
tonomous driving, and image editing.
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