
High-Quality Real-Time Rendering
Using Subpixel Sampling Reconstruction

Boyu Zhang1, 3, Hongliang Yuan2, 3*

1University of California, Los Angeles
2Xiaomi Cooperation

3Tencent AI Lab
bobo8496@ucla.edu, hercules.yuan@gmail.com

Abstract

Generating high-quality, realistic rendering images for real-
time applications generally requires tracing a few samples-
per-pixel (spp) and using deep learning-based approaches
to denoise the resulting low-spp images. Existing denoising
methods necessitate a substantial time expenditure when ren-
dering at high resolutions due to the physically-based sam-
pling and network inference time burdens. In this paper, we
propose a novel Monte Carlo sampling strategy to acceler-
ate the sampling process and a corresponding denoiser, sub-
pixel sampling reconstruction (SSR), to obtain high-quality
images. Extensive experiments demonstrate that our method
significantly outperforms previous approaches in denoising
quality and reduces overall time costs, enabling real-time ren-
dering capabilities at 2K resolution.

Introduction
Rendering realistic images for virtual worlds is a key objec-
tive in many computer vision and graphics tasks (Huo and
Yoon 2021; Xu et al. 2022; Huang et al. 2023; Li et al.
2023; Li, Ngo, and Nagahara 2023), with applications in
animation production (Dahlberg, Adler, and Newlin 2019),
VR/AR world generation (Overbeck et al. 2018), virtual
dataset synthesis (Ge et al. 2022), etc. One widely used tech-
nique for this purpose is Monte Carlo (MC) sampling (Seila
1982), which is highly versatile but typically requires a large
number of samples to achieve accurate results. Despite the
relentless advancements in computational capabilities, the
temporal expenditure for executing realistic rendering re-
mains a practical constraint, with high-quality images of-
ten taking hours to generate. Using low samples-per-pixel
(spp) can speed up this process but lead to visually distract-
ing noise. To mitigate this issue, post-processing techniques
have been developed, known as MC denoising, which nor-
mally have lower time costs than physically-based render-
ers and are widely used in modern game engines(Chaitanya
et al. 2017; NVIDIA 2021; Xiao et al. 2020).

Most existing MC denoising methods (Edelsten,
Jukarainen, and Patney 2019; Xiao et al. 2020; Chaitanya
et al. 2017; Işık et al. 2021; Meng et al. 2020; Hasselgren
et al. 2020; Fan et al. 2021) employ deep learning-based

*Corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

approaches to remove noise from images generated with
more than 1-spp. While (Chaitanya et al. 2017; Meng
et al. 2020; Fan et al. 2021; Thomas et al. 2022) attempt
to develop methods to accelerate the overall process by
working with low-sample data, they have yet to achieve
real-time frame rates at high resolutions, as 1-spp remains
time-consuming. Other approaches (Edelsten, Jukarainen,
and Patney 2019; Xiao et al. 2020; Işık et al. 2021) focus
on designing more efficient post-processing modules in
the image space to handle noisy images, but they tend to
produce aliased rendered pixels at low-sample images.
Additionally, the complex network structures of these works
impose heavy burdens on inference time.

To achieve real-time performance for the generation of
high-resolution, realistic images, we introduce a novel MC
sampling strategy, subpixel sampling. This strategy is de-
signed to curtail the temporal demands of physically-based
rendering. Complementing this, we also propose a denois-
ing method subpixel sampling reconstruction (SSR), which
is tailored to the subpixel sampling strategy.
Subpixel sampling. The subpixel sampling strategy gener-
ates images with less than 1-spp. To obtain this, we divide
each frame at the target resolution into consecutive, non-
overlapping tiles with size 2 × 2 and then compute only
one ray-traced pixel per tile (we refer to it as 1/4-spp). This
strategy allows us to use these reliable samples to interpo-
late the missing pixels with the GBuffers (OpenGL 1998) at
the target resolution. We developed a vulkan-based (Sellers
and Kessenich 2016) hybrid ray tracer to export datasets. By
utilizing subpixel sampling, the cost of rendering time can
be reduced by a third.
Subpixel sampling reconstruction. Our reconstruction
contains two parts: a temporal feature accumulator and a re-
construction network. The former warps previous frames to
align with the current frame at the target resolution and ac-
cumulates subpixel samples and GBuffers from the previous
frame based on the temporal accumulation factor, which is
computed according to the correlation of the current and pre-
vious frames, effectively expanding the perception field of
pixels. Once subpixel samples are collected, we move on to
the second component, our reconstruction network. This is
a multi-scale U-Net (Ronneberger, Fischer, and Brox 2015)
with skip connections, which enables us to reconstruct the
desired high-resolution image.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

7006

The key points of our contribution can be summarized as
follows:

• We propose a novel Monte Carlo sampling strategy
termed as subpixel sampling, which significantly curtails
the sampling time required for physically-based render-
ing to one-third.

• We introduce a denoising network, SSR, to reconstruct
high-quality image sequences at real-time frame rates
from rendering outcomes utilizing the subpixel sampling
strategy.

• Our model yields superior results compared to existing
state-of-the-art approaches and achieves real-time recon-
struction performance of 2K resolution with 130 FPS.

• A realistic synthesised dataset is built through our sub-
pixel sampling ray tracer. We will release the dataset and
code for research purpose.

Related Work
Monte Carlo Denoising
Monte Carlo (MC) denoising techniques are extensively
applied in the realm of rendering realistic images. Tradi-
tional best-performing MC denoisers were mainly based
on local neighborhood regression models (Zwicker et al.
2015), includes zero-order regression (Rousselle, Knaus,
and Zwicker 2012; Delbracio et al. 2014; Li, Wu, and
Chuang 2012; Kalantari, Bako, and Sen 2015; Rousselle,
Manzi, and Zwicker 2013; Moon et al. 2013), first-order
regression (Bauszat, Eisemann, and Magnor 2011; Bitterli
et al. 2016; Moon, Carr, and Yoon 2014) and even higher-
order regression models (Moon et al. 2016).The filtering-
based methods are based on using the auxiliary feature
buffers to guide the construction of image-space filters.
Most of the above methods run in offline rendering. To in-
crease the effective sample count, real-time denoisers lever-
age temporal accumulation between frames over time to
amortize supersampling (Yang et al. 2009), i.e. temporal
anti-aliasing (TAA). The previous frame is reprojected ac-
cording to the motion vector and blended with the current
frame using a temporal accumulation factor, which can be
constant (Schied et al. 2017; Mara et al. 2017; Meng et al.
2020) or changed (Schied, Peters, and Dachsbacher 2018)
across different frames. The fixed temporal accumulation
factor inevitably leads to ghosting and temporal lag. By
adaptively setting the parameters, the temporal filter can
rapidly adapt to temporal variations, efficiently responding
to abrupt frame-to-frame changes. Yang et al. (Yang, Liu,
and Salvi 2020) survey recent TAA techniques and provide
an in-depth analysis of the image quality trade-offs with
these heuristics. Koskela et al. (Koskela et al. 2019) propose
a blockwise regression for real-time path tracing reconstruc-
tion and also do accumulation to improve temporal stability.

Deep Learning-Based Denoising
Recently, in the wake of advancements in powerful mod-
ern GPUs, numerous studies have leveraged CNN to con-
struct MC denoisers. (Bako et al. 2017; Vogels et al. 2018)

use deep CNN to estimate the local per-pixel filtering ker-
nels used to compute each denoised pixel from its neighbors.
Layer-based denoiser (Munkberg and Hasselgren 2020) de-
signs a hierarchical kernel prediction for multi-resolution
denoising and reconstruction. Owing to the substantial
burdens of predicting large filtering kernels, these meth-
ods mostly target offline renderings. There are also other
methods (Kuznetsov, Khademi Kalantari, and Ramamoor-
thi 2018; Xu et al. 2019; Gharbi et al. 2019; Yu et al. 2021;
Back et al. 2022) that target denoising at more than 4 spp.
To reduce the overhead of kernel prediction, Fan et al. (Fan
et al. 2021) predict an encoding of the kernel map, followed
by a high-efficiency decoder to construct the complete ker-
nel map. Chaitanya et al. (Chaitanya et al. 2017) propose
a recurrent connection based on U-Net (Ronneberger, Fis-
cher, and Brox 2015) to improve temporal stability. Has-
selgren et al. (Hasselgren et al. 2020) introduce a neural
spatio-temporal joint optimization of adaptive sampling and
denoising with a recurrent feedback loop. Hofmann et al.
(Hofmann et al. 2021) also utilize the neural temporal adap-
tive sampling architecture to denoise rendering results with
participating media. Xiao et al. (Xiao et al. 2020) presente a
neural supersampling method for TAA, which is similar to
deep-learned supersampling (DLSS) (Edelsten, Jukarainen,
and Patney 2019). Meng et al. (Meng et al. 2020) denoise
1-spp noisy input images with a neural bilateral grid at real-
time frame rates. Mustafa et al. (Işık et al. 2021; Thomas
et al. 2022) adopte spatial kernels to filter the noisy image
guiding by features. (Firmino, Frisvad, and Jensen 2023)
designe adaptive sampling for optimizing MC denoising.
(Balint et al. 2023) employe pyramid filters to recover ren-
derings. Compared with these denoising frameworks target-
ing more than 1-spp, our approach is tailored to operate effi-
ciently with 1/4-spp, cutting off rendering time expenditure.

Method
Subpixel Sampling
To mitigate the substantial computational cost associated
with rendering in cases where the samples-per-pixel (spp)
exceeds 1, we devise subpixel sampling that empowers us to
produce images with 1/4-spp.
1/4-spp pattern Our strategy involves dividing each frame
into non-overlapping 2 × 2 tiles and applying MC ray trac-
ing methods to solve the rendering equation (Kajiya 1986)
for one pixel in each tile. We term this process 1/4-spp pat-
tern. To maintain data balance, we shift the sampling posi-
tion to ensure that each pixel is sampled in the consecutive
four frames at time steps t to t+ 3, as illustrated in Fig. 1a.
GBuffers We leverage the rasterization pipeline to ef-
ficiently produce high-resolution GBuffers. In detail, we
dump 1/4-spp RGB color c ∈ R3 (Fig. 2a) and features f ∈
R15. These features comprise four 3D vectors (albedo, nor-
mal, shadow, and transparent) and three 1D vectors (depth,
metallic, and roughness), as shown in Figs. 2b to 2h.
Mask map As the sampled subpixels undergo ray tracing at
a high resolution, their RGB values are reliable for the target
resolution. In this context, we generate an additional mask
map to denote reliable pixels. This map distinctly assigns a

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

7007

(a) Subpixel sampling strategy

(b) Pixels (c) Mask map

Figure 1: (a) Sampling of a 2× 2 tile from consecutive four
frames. The sampled and unsampled pixels are drawn in
color and in black (with value 0), respectively. (b) Pixels
of a sub-patch example in a rendered image. (c) The corre-
sponding mask map of patch (b) is depicted in white pixels
with a value of 1, while black pixels indicate a value of 0.

value of 1 to sampled positions and 0 to unsampled posi-
tions, as shown in Fig. 1c. It performs as a confidence map
and is expected to guide our temporal feature accumulator to
predict reasonable weights. To this end, we incorporate the
mask map into the GBuffers.
Demodulation Similar to the previous approach (Chaitanya
et al. 2017), we utilize the albedo (or base color) to demod-
ulate the RGB image. Then, the resulting untextured irradi-
ance x is transformed into log space using the natural log-
arithm function, i.e., ln(1 + x). However, our method dif-
fers in that once the untextured irradiance has been recon-
structed, we re-modulate it using the accumulated albedo
predicted by our temporal feature accumulator.

Subpixel Sampling Reconstruction
We designed subpixel sampling reconstruction (SSR) to re-
cover temporally stable video from 1/4-spp image sequences
at real-time frame rates. Fig. 3 shows the detailed architec-
ture of SSR, which comprises two modules: the temporal
feature accumulator (in green) and the reconstruction net-
work (in blue).

Temporal Feature Accumulator The temporal feature
accumulator module consists of two neural networks, each
with two convolution layers that have a spatial support of
3 × 3 pixels. One network receives all features and mask
of current frame as input and outputs reference embedding.
The other computes embeddings for the current features ft

and warped previous features ft−1. These two embeddings
are then pixel-wise multiplied to the reference embedding
and then through softmax(·) to get α and β (α + β = 1)
blending factors for current features and previous features,

(a) RGB Color (b) Albedo (c) Normal (d) Transparent

(e) Shadow (f) Depth (g) Metallic (h) Roughness

Figure 2: Dumped buffers from our ray tracer.

respectively.
All features in Fig. 2 are accumulated through above pro-

cess. Take untextured irradiance as an example, as illustrated
in Fig. 4, we use the following equation to accumulate un-
textured irradiance e over the frame:

eat = αW(eat−1) + βet, (1)

where eat is accumulated irradiance until t frame, et is ir-
radiance for t frame. For the first frame, we set eat−1 to et.
W(·) is a warping operator that reprojects previous frame to
current one using motion vector.

The temporal feature accumulator serves a vital role in
producing temporally stable results. Firstly, it can detect and
remove disoccluded pixels and ghosting artifacts that tradi-
tional motion vectors cannot handle accurately. Secondly,
since our input images are sparsely sampled, this module
helps gather more finely sampled pixels across frames.

Reconstruction Network Our reconstruction network ex-
tends U-Net (Ronneberger, Fischer, and Brox 2015) with
skip connections (Mao, Shen, and Yang 2016). In contrast
to other U-Net-based denoising methods (Chaitanya et al.
2017), our approach predicts two coarse-scale images at the
first two decoder stages rather than predicting dense features
at these stages. This modification not only leads to faster in-
ference but also results in high-quality images with superior
quantitative metrics (see network ablation).

To generate a high-quality image for the current frame,
we concatenate the current and accumulated features and
feed them into our reconstruction network. Additionally, we
input the warped denoised image from the previous frame,
which enhances the temporal stability of image sequences
(see network ablation). The reconstruction network consists
of three encoder layers that produce three scale features.

Retaining temporal feedback at multiple scales is also a
crucial step. To achieve this, we downsample the warped
denoised image from the previous frame using a pool with
a stride of two and pass it to each encoding stage. At the
decoder stage, we concatenate the features and the warped
denoised image at the same scale and feed them into a tile
with two convolution layers. At the first two decoder stages,
the image in RGB space is produced and upsampled. This
upsampled image is then passed to the next decoder stage.
The multi-scale feedback enables our network to own a suf-
ficiently large temporal receptive field and efficiently gener-
ate high-quality, temporally stable results.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

7008

Figure 3: Subpixel sampling reconstruction consists of two modules: the temporal feature accumulator (left) and the reconstruc-
tion network (right) . The numbers under each network layer represent the output channels at corresponding layers. The operator
⊙ denotes dot product between features. c⃝ indicates concatenation operation. ⊕ and ⊗ represent element-wise addition and
multiplication, respectively. Note that all frames shown here are demodulated by albedo.

Figure 4: Illustration of accumulating untextured irradiance
by our temporal feature accumulator. Warped irradiance by
motion vector has ghosting artifacts (red arrow), which can
be removed by giving lower weight in these areas.

Loss
We use the symmetric mean absolute percentage error
(SMAPE):

ℓ(r, d) =
1

3N

p=N∑
p=1

c=3∑
c=1

|dp,c − rp,c|
|dp,c|+ |rp,c|+ ε

, (2)

where N is the number of pixels and ε is a tiny perturba-
tion, d and r are the denoised frame and the corresponding
reference frame, respectively.

Our loss combines two parts, the first one is computed
on a sequence of 5 continuous frames, including spatial
loss ℓs = ℓ(r, d), temporal loss ℓt = ℓ(∆r,∆d) where
∆ is temporal gradient computed between two consecutive
frames, relative edge loss ℓe = L1(

∇d
r+ε ,

∇r
r+ε), where gra-

dient ∇ is computed using a High Frequency Error Norm
(HFEN), an image comparison metric from medical imag-

(a) BistroInterior (b) BistroExterior (c) Sponza

(d) Diningroom (e) Angel (f) Warmroom

Figure 5: An overview of our generated dataset.

ing (Ravishankar and Bresler 2011). As suggested by Chai-
tanya et al. (Chaitanya et al. 2017), we assign higher weight
to three loss functions (ℓs, ℓt and ℓe) of frames later in the
sequence to amplify temporal gradients. For a training se-
quence of 5 images, we use (0.05, 0.25, 0.5, 0.75, 1). The
second part is warped temporal loss ℓwt = ℓ(ωr, ωd) where
ωr = r4−W(r3), W(·) is a warping operator that reprojects
previous frame to current one. We also include albedo loss
ℓa = ℓ(aacc, ar). aacc is accumulated albedo computed by
our temporal feature accumulator. We only compute albedo
loss on the last frame and warped temporal loss on the last
two frames.

We use a weighted combination of these losses as the
overall loss:

ℓ = λsℓs + λtℓt + λeℓe + λwℓwt + λaℓa. (3)

Experiments
Datasets and Metrics
Datasets As subpixel sampling is a novel strategy, the
field currently lacks dedicated datasets specifically designed
for this purpose. We utilized a vulkan-based (Sellers and

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

7009

(a) Ours (b) Input (c) AFS (d) ANF (e) NSRR (f) RAE (g) SSR (h) Ref

Figure 6: Visual results on scenes BistroInterior, BistroExterior and Sponza.

Kessenich 2016) hybrid ray tracer to generate our subpixel
sampling dataset. To optimize our approach for application
in games and advanced virtual rendering, we conducted dis-
tinct training sessions for each 3D scene instead of collective
training. This approach is in concordance with the paradigm
utilized in NVIDIA DLSS (NVIDIA 2021). Since our in-
put images were generated at 1/4-spp, a large number of im-
ages were imperative to train a robust denoiser. The training
process was carried out across six scenes, see Fig. 5. The
BistroInterior and BistroExterior (Lumberyard 2017) scenes
contain more than one million triangles and transparency,
diffuse, specular, and soft shadow effects. All scenes con-
tain 100 to 1000 frames with a resolution of 1024×2048. We
also rendered a validation set of 10 frames and a 50 frames
test set for each scene. The ground truth image is rendered
at 32768-spp for reference.
Metrics All comparison approaches are evaluated by three
image quality metrics: peak signal to noise ratio (PSNR),
structural similarity index (SSIM) (Wang et al. 2004), and
root mean squared error (RMSE). Higher PSNR and SSIM
imply superior performance, while lower RMSE indicates
better.

Implementation Details
We randomly selected 5 consecutive frames for training
each scene. To maximize the utilization of the GPUs, we
also randomly cropped the inputs, including the noisy im-
age and auxiliary features, to a resolution of 256x256. The
kernel size is 3 × 3 at all layers. The weight coefficients

for Ls, Lt, Le, Lw, and La are 0.7, 0.1, 0.2, 0.4, and 5.0,
respectively. We conducted all experiments using the Py-
Torch framework (Paszke et al. 2019) on 8 NVIDIA Tesla
A100 GPUs. Adam optimizer (Kingma and Ba 2015) with
β1 = 0.9, β2 = 0.999, and ϵ = 1e − 8 is used with the ini-
tial learning rate set to 1× 10−4. The learning rate is halved
at one-third and two-thirds of the total number of iterations.
We set batch size to 8 and trained our model for 200 epochs.
Each scene required approximately 9 hours of training time.

We compare our method to several cutting-edge Monte
Carlo denoising and reconstruction techniques, including
the fastest-running method RAE (Chaitanya et al. 2017),
ANF (Işık et al. 2021), which achieves the best denoising
performance on more than 1-spp images, the offline method
AFS (Yu et al. 2021), and the super-resolution approach
NSRR (Xiao et al. 2020). Notably, while NSRR is primarily
designed for super-resolution, it demonstrates adaptability
for the sparse sampling task, as elucidated in the supple-
mentary materials. Meanwhile, its practical applications in
3A game rendering further establish NSRR as a pertinent
benchmark in our evaluation. We replicated all the methods
using their default settings.

Time Analysis
Rendering To showcase the efficiency of our subpixel
sampling, we test the rendering time of each stage on the
NVIDIA RTX 3090 GPU at a resolution of 1024 × 2048,
see Tab. 2. The subpixel sampling strategy significantly re-
duced the sampling time from 12.79ms to 4.35ms, resulting

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

7010

Method BistroInterior BistroExterior Sponza Diningroom Warmroom Angel Ave

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

AFS 22.86 .7650 24.60 .8071 25.50 .8119 25.41 .8637 29.55 .8021 22.06 .8601 25.00 .8183
ANF 23.20 .7583 22.14 .7201 23.98 .8219 22.23 .7226 30.91 .8774 25.86 .8813 24.72 .7969
NSRR 23.87 .8104 25.54 .8538 24.93 .8113 27.17 .8843 36.40 .9740 34.94 .9804 28.81 .8857
RAE 24.03 .8351 24.11 .8006 27.74 .8898 29.87 .9007 34.32 .9675 29.18 .9161 28.21 .8849
SSR 28.99 .8945 29.97 .9121 31.79 .9410 32.48 .9375 37.34 .9799 38.04 .9876 33.10 .9421

Table 1: Quantitative comparison results on six scenes. We choose four baseline methods to compare with our SSR method.
The best result is in bold, and the second-best is underlined in each column.

Strategy R (ms) T&S (ms) Sampling (ms) Overall(ms)

w-SS 0.85 1.72 4.35 6.92
w/o-SS 0.85 1.72 12.79 15.36

Table 2: Average rendering time of six scenes. R implies the
rendering stage rasterization, and T&S stands for rendering
transparent and shadow stage. w-SS denotes rendering with
our subpixel sampling (1/4-spp), while w/o-SS means with-
out it (1-spp).

Methods 1024×2048 1024×1080
Time (ms) FPS Time (ms) FPS

AFS 41.8 24 25.6 39
ANF 33.0 30 19.8 51
NSRR 34.5 29 21.7 46
RAE 10.4 96 6.22 160
SSR 7.6 131 4.56 220

Table 3: Comparison results of inference time. Our SSR
achieves 130 frames per second (FPS) at 2K resolution and
220 FPS at 1080p resolution.

in a 34% reduction in time. With the employment of subpixel
sampling, the average total rendering time is 6.92 ms, com-
pared to 15.36 ms without it, resulting in an approximate 3×
improvement.

Reconstruction We also conducted an evaluation of the
inference time for SSR and compared it against other meth-
ods. The comparison was carried out using the same frame
for each scene, and the average results are presented in
Tab. 3, which shows the average inference time for all six
scenes at 1024 × 2048 and 1024 × 1080 resolution using an
NVIDIA Tesla A100. Our SSR is capable of reaching a re-
markable 130 FPS when operating at 2K resolution and 220
FPS at 1080p images. At both resolutions, SSR provides a
frame rate improvement of approximately 37% compared to
the previously fastest method.

Tab. 2 and Tab. 3 show the time of rendering and recon-
struction respectively, while their combined cost is displayed
in Fig. 7.

Figure 7: Speed-quality comparison on the 1-spp and 1/4-
spp scenes at resolution 1024×2048, where higher PSNR
and FPS (top right) is most desirable.

Quantitative Evaluation
Quantitative comparison results are shown in Tab. 1. Aver-
age results are reported on the 50 test videos of six scenes.
Our method delivers the best performance in all scenes. We
only show the results of PSNR and SSIM due to space lim-
itations, and please refer to our supplemental material for
more comparison results.

To show the improvements in speed and quality achieved
by our method, we generated six scenes at 1-spp instead of
using the subpixel sampling strategy, maintaining all other
parameters identical to 1/4-spp scenes. We assessed the en-
tire generation time, including both rendering and recon-
struction, and reported the speed and quality comparisons
in Fig. 7. SSR performs best on both 1-spp and 1/4-spp
datasets, with tiny declines in quality performance as the
sampling rate decreases (FPS ranges from 43 to 68 and
PSNR varies from 34.40 to 33.10). In contrast, previous
methods aimed at datasets larger than 1-spp exhibited dra-
matic performance degradation.

Qualitative Evaluation
Here we provide qualitative evaluations of our model. How-
ever, we encourage the reader to watch supplementary
videos for a more comprehensive understanding. Fig. 6 com-
pares reconstructed images in several scenes visually. We
included all comparison results for six scenes in the supple-
mentary material. Our method outperforms all other meth-
ods by a considerable margin across all scenes. Previous

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

7011

(a) w/o-shadow (b) w-shadow (c) Noisy (d) Ref

Figure 8: (a) and (b) show the reconstruction results with-
out and with employing shadow(c), respectively. (d) is the
32768-spp reference image. The shadow feature assists SSR
in pinpointing more precise contours.

Method RN TFA WP PSNR/SSIM

Base ✓ 23.55/.8152
Base+TFA ✓ ✓ 32.13/.9245
Base+TFA+WP ✓ ✓ ✓ 33.10/.9421

Table 4: Ablation study. We evaluate different modules on
six scenes. PSNR and SSIM are shown on average.

state-of-the-art methods, designed for denoising renderings
with more than 1-spp, are not as effective at denoising ren-
derings at 1/4-spp. AFS was originally designed for offline
rendering, and transformer models (Vaswani et al. 2017; Liu
et al. 2021) require significant memory to train and perform
inference. RAE, NSRR, and ANF feed previous and current
features directly into the network, which leads to blurred and
aliased details. Different from them, SSR computes the cor-
relation for each pixel between normal and depth features of
the current and previous frames, thus having the capacity to
generate high-quality details.

Ablation Study
GBuffers ablation We incorporated certain features from
the Gbuffers that have not been utilized in existing Monte
Carlo denoising methods and conducted corresponding ab-
lation experiments to investigate their effectiveness.
Shadow. Our training images are generated by subpixel
sampling. As a result of 1/4-spp light occlusion, more than
three-quarters of the pixels remain at a value of zero, which
motivates us to identify reliable pixels to train our model.
Thus, we took the shadow feature as an additional input. Our
feature accumulator collects the noisy shadows from the cur-
rent frame and combines them with the history shadow. This
accumulated shadow information aids in detecting contin-
uous edges of shadows and improves temporal stability, as
shown in Fig. 8.
Transparent. We also appended the transparent feature to
SSR for training, but we do not accumulate transparent be-
fore feeding it into the reconstruction network. This is due to
the transparent feature is scarce and contains rare noise in a
whole image, as shown in Fig. 2d. Accumulating the trans-
parent feature yields a minor improvement but also comes
with an increased time cost. So we chose to feed the trans-
parent feature into our reconstruction network directly. By
utilizing transparent, SSR acquires the ability to produce

(a) w/o-T (b) w-T (c) Transparent (d) Ref

Figure 9: (a) and (b) show the reconstruction results without
and with employing transparent (c), respectively. (d) is the
32768-spp reference image. SSR can capture the informa-
tion from the transparent features and restore clear transpar-
ent objects.

transparent objects, such as clear glass cups, as illustrated in
Fig. 9. Additionally, in cases where a scene does not contain
any transparent objects, such as the BistroExterior scene, we
included the transparent feature with a value of zero.

Without using shadow and transparency, SSR only
achieves a PSNR of 27.67 when tested on BistroInterior,
while employing shadow brings an improvement to 28.22.
By including both shadow and transparency, our model pro-
duces a higher PSNR of 28.99.

Network ablation We verified the effectiveness of differ-
ent modules in our approach, including the temporal feature
accumulator (TFA) and the warped previous output (WP), as
shown in Tab. 4. Results are presented as an average across
six scenes. TFA demonstrates a noticeable enhancement, ex-
hibiting a 36.4% increase in PSNR and a 13.4% improve-
ment in SSIM. Similarly, the application of WP showcases
its effectiveness in the third row.

Conclusion

We presented a novel Monte Carlo subpixel sampling strat-
egy to facilitate accelerated rendering. Additionally, we pro-
posed a denoising network, subpixel sampling reconstruc-
tion (SSR), to effectively restore high-quality image se-
quences in real-time from subpixel sampling pattern. Ex-
periments substantiated that our approach yields superior
denoised results in comparison to prevailing cutting-edge
methods while also achieving real-time performance at 2K
resolution.
Limitations and Future Work. While our method offers
a real-time pattern for reconstructing high-quality images,
there is still potential for enhancing the inference time. 16-
bit precision TensorRT can be leveraged to expedite pro-
cessing. We intend to deploy SSR within our game engine
in the coming stages. Furthermore, we explored the integra-
tion of Swin Transformer (Liu et al. 2021) into the initial
layer of our reconstruction network, resulting in a PSNR
improvement of approximately 0.23 and a 1.1 ms increase
in inference time. Striking the right balance between speed
and quality remains a pivotal objective in our forthcoming
research.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

7012

References
Back, J.; Hua, B.-S.; Hachisuka, T.; and Moon, B. 2022.
Self-Supervised Post-Correction for Monte Carlo Denois-
ing. In Proceedings of ACM SIGGRAPH Conference (SIG-
GRAPH).
Bako, S.; Vogels, T.; Mcwilliams, B.; Meyer, M.; NováK,
J.; Harvill, A.; Sen, P.; Derose, T.; and Rousselle, F. 2017.
Kernel-Predicting Convolutional Networks for Denoising
Monte Carlo Renderings. ACM Transactions on Graphics
(TOG), 36(4).
Balint, M.; Wolski, K.; Myszkowski, K.; Seidel, H.-P.; and
Mantiuk, R. 2023. Neural Partitioning Pyramids for Denois-
ing Monte Carlo Renderings. In Proceedings of ACM SIG-
GRAPH Conference (SIGGRAPH).
Bauszat, P.; Eisemann, M.; and Magnor, M. 2011. Guided
Image Filtering for Interactive High-Quality Global Illumi-
nation. In Proceedings of the Eurographics Conference on
Rendering (EG), 1361–1368. Goslar, DEU: Eurographics
Association.
Bitterli, B.; Rousselle, F.; Moon, B.; Iglesias-Guitián, J. A.;
Adler, D.; Mitchell, K.; Jarosz, W.; and Novák, J. 2016.
Nonlinearly Weighted First-Order Regression for Denois-
ing Monte Carlo Renderings. Computer Graphics Forum
(CGF), 35(4): 107–117.
Chaitanya, C.; Kaplanyan, A.; Schied, C.; Salvi, M.; Lefohn,
A.; Nowrouzezahrai, D.; and Aila, T. 2017. Interactive re-
construction of Monte Carlo image sequences using a recur-
rent denoising autoencoder. ACM Transactions on Graphics
(TOG), 36: 1–12.
Dahlberg, H.; Adler, D.; and Newlin, J. 2019. Machine-
Learning Denoising in Feature Film Production. In ACM
SIGGRAPH 2019 Talks. New York, NY, USA: Association
for Computing Machinery. ISBN 9781450363174.
Delbracio, M.; Musé, P.; Chauvier, J.; Phelps, N.; and Morel,
J.-M. 2014. Boosting Monte Carlo Rendering by Ray His-
togram Fusion. ACM Transactions on Graphics (TOG), 33.
Edelsten, A.; Jukarainen, P.; and Patney, A. 2019. Truly
next-gen: Adding deep learning to games and graphics.
In NVIDIA Sponsored Sessions (Game Developers Confer-
ence).
Fan, H.; Wang, R.; Huo, Y.; and Bao, H. 2021. Real-time
Monte Carlo Denoising with Weight Sharing Kernel Predic-
tion Network. Computer Graphics Forum (CGF), 40(4): 15–
27.
Firmino, A.; Frisvad, J. R.; and Jensen, H. W. 2023.
Denoising-Aware Adaptive Sampling for Monte Carlo Ray
Tracing. In Proceedings of ACM SIGGRAPH Conference
(SIGGRAPH).
Ge, Y.; Behl, H.; Xu, J.; Gunasekar, S.; Joshi, N.; Song, Y.;
Wang, X.; Itti, L.; and Vineet, V. 2022. Neural-Sim: Learn-
ing to Generate Training Data with NeRF. In Proceedings
of the European Conference on Computer Vision (ECCV),
477–493. Springer.
Gharbi, M.; Li, T.-M.; Aittala, M.; Lehtinen, J.; and Durand,
F. 2019. Sample-Based Monte Carlo Denoising Using a
Kernel-Splatting Network. ACM Transactions on Graphics
(TOG).

Hasselgren, J.; Munkberg, J.; Salvi, M.; Patney, A.; and
Lefohn, A. 2020. Neural temporal adaptive sampling and
denoising. In Computer Graphics Forum (CGF), volume 39,
147–155.

Hofmann, N.; Hasselgren, J.; Clarberg, P.; and Munkberg, J.
2021. Interactive Path Tracing and Reconstruction of Sparse
Volumes. volume 4. New York, NY, USA: Association for
Computing Machinery.

Huang, X.; Zhang, Y.; Ni, B.; Li, T.; Chen, K.; and Zhang,
W. 2023. Boosting point clouds rendering via radiance map-
ping. In Proceedings of the AAAI conference on artificial
intelligence (AAAI).

Huo, Y.; and Yoon, S.-e. 2021. A survey on deep learning-
based Monte Carlo denoising. Computational visual media,
7: 169–185.

Işık, M.; Mullia, K.; Fisher, M.; Eisenmann, J.; and Gharbi,
M. 2021. Interactive Monte Carlo Denoising Using Affinity
of Neural Features. ACM Transactions on Graphics (TOG).

Kajiya, J. T. 1986. The Rendering Equation. In ACM on
Computer Graphics and Interactive Techniques (CGIT).

Kalantari, N. K.; Bako, S.; and Sen, P. 2015. A Machine
Learning Approach for Filtering Monte Carlo Noise. ACM
Transactions on Graphics (TOG), 34(4).

Kingma, D. P.; and Ba, J. 2015. Adam: A Method for
Stochastic Optimization. In Bengio, Y.; and LeCun, Y.,
eds., International Conference on Learning Representations
(ICLR).

Koskela, M.; Immonen, K.; Mäkitalo, M.; Foi, A.; Viitanen,
T.; Jääskeläinen, P.; Kultala, H.; and Takala, J. 2019. Block-
wise Multi-Order Feature Regression for Real-Time Path-
Tracing Reconstruction. volume 38. New York, NY, USA:
Association for Computing Machinery.

Kuznetsov, A.; Khademi Kalantari, N.; and Ramamoorthi,
R. 2018. Deep Adaptive Sampling for Low Sample Count
Rendering. Computer Graphics Forum (CGF), 37: 35–44.

Li, C.; Ngo, T. T.; and Nagahara, H. 2023. Inverse Rendering
of Translucent Objects using Physical and Neural Renderers.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 12510–12520.

Li, T.-M.; Wu, Y.-T.; and Chuang, Y.-Y. 2012. SURE-Based
Optimization for Adaptive Sampling and Reconstruction.
ACM Transactions on Graphics (TOG), 31(6).

Li, Z.; Wang, Q.; Cole, F.; Tucker, R.; and Snavely, N. 2023.
Dynibar: Neural dynamic image-based rendering. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 4273–4284.

Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.;
Lin, S.; and Guo, B. 2021. Swin Transformer: Hierar-
chical Vision Transformer using Shifted Windows. CoRR,
abs/2103.14030.

Lumberyard, A. 2017. Amazon Lumberyard
Bistro, Open Research Content Archive (ORCA).
http://developer.nvidia.com/orca/amazon-lumberyard-
bistro.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

7013

Mao, X.-J.; Shen, C.; and Yang, Y.-B. 2016. Image Restora-
tion Using Very Deep Convolutional Encoder-Decoder Net-
works with Symmetric Skip Connections. In Proceedings
of the International Conference on Neural Information Pro-
cessing Systems (NeurIPS).
Mara, M.; McGuire, M.; Bitterli, B.; and Jarosz, W. 2017.
An Efficient Denoising Algorithm for Global Illumination.
In Proceedings of High Performance Graphics (HPG).
Meng, X.; Zheng, Q.; Varshney, A.; Singh, G.; and Zwicker,
M. 2020. Real-time Monte Carlo Denoising with the Neural
Bilateral Grid. In Dachsbacher, C.; and Pharr, M., eds., Eu-
rographics Symposium on Rendering - DL-only Track. The
Eurographics Association. ISBN 978-3-03868-117-5.
Moon, B.; Carr, N.; and Yoon, S.-E. 2014. Adaptive Ren-
dering Based on Weighted Local Regression. ACM Trans-
actions on Graphics (TOG), 33(5).
Moon, B.; Jun, J. Y.; Lee, J.; Kim, K.; Hachisuka, T.; and
Yoon, S.-E. 2013. Robust Image Denoising Using a Vir-
tual Flash Image for Monte Carlo Ray Tracing. Computer
Graphics Forum (CGF), 32(1): 139–151.
Moon, B.; McDonagh, S.; Mitchell, K.; and Gross, M. 2016.
Adaptive Polynomial Rendering. ACM Transactions on
Graphics (TOG), 35(4).
Munkberg, J.; and Hasselgren, J. 2020. Neural Denoising
with Layer Embeddings. Computer Graphics Forum (CGF),
39(4): 1–12.
NVIDIA. 2021. Deep Learning Super Sampling
(DLSS) Technology. https://www.nvidia.com/en-
us/geforce/technologies/dlss/.
OpenGL. 1998. Deferred Shading. https://learnopengl.com
/Advanced-Lighting/Deferred-Shading.
Overbeck, R. S.; Erickson, D.; Evangelakos, D.; and De-
bevec, P. 2018. The making of welcome to light fields VR.
In Proceedings of ACM SIGGRAPH 2018 Conference (SIG-
GRAPH).
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga,
L.; Desmaison, A.; Köpf, A.; Yang, E. Z.; DeVito, Z.; Rai-
son, M.; Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.;
Bai, J.; and Chintala, S. 2019. PyTorch: An Imperative
Style, High-Performance Deep Learning Library. CoRR,
abs/1912.01703.
Ravishankar, S.; and Bresler, Y. 2011. MR Image Recon-
struction From Highly Undersampled k-Space Data by Dic-
tionary Learning. IEEE Transactions on Medical Imaging
(TMI), 30(5): 1028–1041.
Ronneberger, O.; Fischer, P.; and Brox, T. 2015. U-Net:
Convolutional Networks for Biomedical Image Segmenta-
tion. CoRR, abs/1505.04597.
Rousselle, F.; Knaus, C.; and Zwicker, M. 2012. Adaptive
Rendering with Non-Local Means Filtering. ACM Transac-
tions on Graphics (TOG), 31(6).
Rousselle, F.; Manzi, M.; and Zwicker, M. 2013. Robust
Denoising using Feature and Color Information. Computer
Graphics Forum (CGF).

Schied, C.; Kaplanyan, A.; Wyman, C.; Patney, A.; Chai-
tanya, C. R. A.; Burgess, J.; Liu, S.; Dachsbacher, C.;
Lefohn, A.; and Salvi, M. 2017. Spatiotemporal Variance-
Guided Filtering: Real-Time Reconstruction for Path-Traced
Global Illumination. In Proceedings of High Performance
Graphics (HPG).
Schied, C.; Peters, C.; and Dachsbacher, C. 2018. Gradi-
ent Estimation for Real-Time Adaptive Temporal Filtering.
Proc. ACM Comput. Graph. Interact. Tech., 1(2).
Seila, A. F. 1982. Simulation and the Monte Carlo method.
Sellers, G.; and Kessenich, J. 2016. Vulkan programming
guide: The official guide to learning vulkan. Addison-
Wesley Professional.
Thomas, M. M.; Liktor, G.; Peters, C.; Kim, S.;
Vaidyanathan, K.; and Forbes, A. G. 2022. Temporally
stable real-time joint neural denoising and supersampling.
In ACM on Computer Graphics and Interactive Techniques
(CGIT).
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. In Proceedings of the Interna-
tional Conference on Neural Information Processing Sys-
tems (NeurIPS).
Vogels, T.; Rousselle, F.; Mcwilliams, B.; Röthlin, G.;
Harvill, A.; Adler, D.; Meyer, M.; and Novák, J. 2018. De-
noising with Kernel Prediction and Asymmetric Loss Func-
tions. ACM Transactions on Graphics (TOG), 37(4).
Wang, Z.; Bovik, A.; Sheikh, H.; and Simoncelli, E. 2004.
Image quality assessment: from error visibility to structural
similarity. IEEE Transactions on Image Processing (TIP),
13(4): 600–612.
Xiao, L.; Nouri, S.; Chapman, M.; Fix, A.; Lanman, D.; and
Kaplanyan, A. 2020. Neural Supersampling for Real-Time
Rendering. ACM Transactions on Graphics (TOG), 39(4).
Xu, B.; Zhang, J.; Wang, R.; Xu, K.; Yang, Y.-L.; Li, C.; and
Tang, R. 2019. Adversarial Monte Carlo Denoising with
Conditioned Auxiliary Feature Modulation. ACM Transac-
tions on Graphics (TOG), 38(6).
Xu, J.-P.; Zuo, C.; Zhang, F.-L.; and Wang, M. 2022.
Rendering-aware hdr environment map prediction from a
single image. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI).
Yang, L.; Liu, S.; and Salvi, M. 2020. A Survey of Temporal
Antialiasing Techniques. Computer Graphics Forum (CGF),
39(2): 607–621.
Yang, L.; Nehab, D.; Sander, P. V.; Sitthi-amorn, P.;
Lawrence, J.; and Hoppe, H. 2009. Amortized Supersam-
pling. ACM Transactions on Graphics (TOG), 28(5): 1–12.
Yu, J.; Nie, Y.; Long, C.; Xu, W.; Zhang, Q.; and Li, G. 2021.
Monte Carlo Denoising via Auxiliary Feature Guided Self-
Attention. ACM Transactions on Graphics (TOG).
Zwicker, M.; Jarosz, W.; Lehtinen, J.; Moon, B.; Ramamoor-
thi, R.; Rousselle, F.; Sen, P.; Soler, C.; and Yoon, S.-E.
2015. Recent Advances in Adaptive Sampling and Recon-
struction for Monte Carlo Rendering. Computer Graphics
Forum (CGF), 34(2): 667–681.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

7014

