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Abstract

Addressing Out-Of-Distribution (OOD) Segmentation and
Zero-Shot Semantic Segmentation (ZS3) is challenging, ne-
cessitating segmenting unseen classes. Existing strategies
adapt the class-agnostic Mask2Former (CA-M2F) tailored
to specific tasks. However, these methods cater to singular
tasks, demand training from scratch, and we demonstrate cer-
tain deficiencies in CA-M2F, which affect performance. We
propose the Class-Agnostic Structure-Constrained Learning
(CSL), a plug-in framework that can integrate with exist-
ing methods, thereby embedding structural constraints and
achieving performance gain, including the unseen, specifi-
cally OOD, ZS3, and domain adaptation (DA) tasks. There
are two schemes for CSL to integrate with existing meth-
ods (1) by distilling knowledge from a base teacher network,
enforcing constraints across training and inference phrases,
or (2) by leveraging established models to obtain per-pixel
distributions without retraining, appending constraints during
the inference phase. We propose soft assignment and mask
split methodologies that enhance OOD object segmentation.
Empirical evaluations demonstrate CSL’s prowess in boost-
ing the performance of existing algorithms spanning OOD
segmentation, ZS3, and DA segmentation, consistently tran-
scending the state-of-art across all three tasks.

Introduction
Semantic segmentation is a fundamental task in computer
vision, which associates with each pixel in a given im-
age probabilities of belonging to different classes. Recent
approaches have achieved remarkable results on several
closed-set benchmarks that contain images from known
classes, called In-Distribution (ID) images. However, the
segmentation with the unseen, e.g., Out-Of-Distribution
(OOD), Zero-shot-semantic (ZS3) segmentation, is always
challenging because it requires segmentation and discrimi-
nation based on training on only ID images.

The existing methods for such tasks can be distinguished
by whether they use OOD data for training. Some methods
expand the training set to include OOD images from other
datasets (Hendrycks, Mazeika, and Dietterich 2018a; Chan,
Rottmann, and Gottschalk 2021a; Kang, Kwak, and Kang
2022; Tian et al. 2022), or utilize large-scale models, e.g.,
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SAM (Kirillov et al. 2023) to generate region proposals.
Such expansion-based approaches are not of great interest
in this paper since we aim to solve the general problem of
OOD segmentation without having access to any OOD im-
ages for training. We propose to learn models of objects that
extend to classes beyond those in the ID set.

Existing segmentation methods typically infer OOD if
some properties of the outputs are sufficiently different from
those seen on ID images. An example of properties used
is the uncertainty in pixel label prediction, as in the SML
methods (Figure 2). Other examples of properties used are
errors in image reconstruction (Lis et al. 2019), and the sim-
ilarity to which results are perturbed by adversarial attacks
(Liang, Li, and Srikant 2017; Besnier et al. 2021). However,
these methods result in noisy predictions due to a lack of
structured knowledge. Current techniques, such as those in
(Nayal et al. 2023; Grcić, Šarić, and Šegvić 2023), tackle
this issue using the region-based framework, Mask2Former
(M2F) (Cheng et al. 2021). However, to achieve optimal per-
formance, they necessitate OOD data and complete train the
model from scratch. For ZS3 or open-word semantic seg-
mentation, existing methods (Ding et al. 2022; Xu et al.
2022) typically leverage CA-M2F, trained on the ID set, as
a region generator and utilize CLIP (Radford et al. 2021) to
identify the semantic class for each region. Some works (Qi
et al. 2022) empirically demonstrate that CA training ben-
efits the performance on OOD data and since M2F de-
couples the per-pixel prediction task into 2 sub-tasks: (1)
mask prediction and (2) per-mask class prediction optimized
by the mask loss and class loss, a straightforward way is
removing the class loss and leverage hard assignment as
post-processing during inference. However, our observa-
tions reveal that such adjustments are insufficient in elim-
inating class information. The process of hard assignment
frequently results in unanticipated outcomes. For instance,
certain objects might not have corresponding masks, and
in certain situations, multiple objects may be erroneously
blended into a single mask.

In this paper, we present Class-Agnostic Structure-
Constrained Learning (CSL) framework for seamless inte-
gration with existing methodologies, including OOD, ZS3,
and DA segmentation, to improve their performance by in-
corporating structure constraints. CSL offers two plug-in in-
tegration schemes: (1) Knowledge distillation from a base
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Figure 1: Overview of our CSL framework. CSL consists of a backbone, a pixel decoder, a transformer decoder, a base teacher
network, and MLPs. N learnable region queries and the image features are fed to the transformer decoder and MLPs, to obtain
N pairs of latent region prototypes and their validity scores. We calculate the normalized similarity between each element Eh,w
of per-pixel embeddings and each Pn, n ∈ {1, 2, ...N} by simple dot production followed by the sigmoid function to get N
region scores. The validity scores indicate the degree of the region prototypes are valid for given images. During training, a
valid loss, a region loss, and a distillation loss are used to optimize the model. Instead of assigning each pixel from the input
image to one of the prior fixed classes, CSL assigns it to one of N learnable region prototypes by our proposed soft assignment.
During inference, we introduce structure-constrained Fusion to calculate the final prediction.

teacher network, potentially any existing method, with struc-
ture constraints imposed during training and inference. (2)
Direct application of existing methods for per-pixel predic-
tion, incorporating structure constraints solely during infer-
ence, bypassing retraining. While the first style facilitates
end-to-end training, the second negates the need for retrain-
ing, and both surprisingly yield comparable gains over foun-
dational methods. In semantic segmentation, annotations
commonly amalgamate all instances of a class into a singular
mask. We split this mask into multiple isolated components
for training, mitigating bias from seen classes. During infer-
ence, CSL employs a soft assignment to derive region pro-
posals at the disconnected-component level. Compared with
the prevalent hard assignment, the soft assignment boosts
the performance of unseen samples. The main contributions
of this paper are as follows:

• We present CSL, a modular plug-in framework with 2
2 schemes, designed for seamless integration with estab-
lished methodologies, enhancing the segmentation of un-
seen classes by incorporating structural constraints.

• We propose mask split preprocessing, splitting class
masks into isolated components, effectively attenuating
the bias of seen class data. Furthermore, we employ a soft
assignment in post-inference for region proposal genera-
tion and elucidate the driving factors behind the observed
performance enhancements.

• Through extensive experimental validation, we ascertain
that CSL markedly enhances 10 prevailing techniques
across all three segmentation tasks, including OOD seg-
mentation, ZS3, and DA segmentation, consistently out-
stripping state-of-the-art benchmarks.

Related Work
Out-of-Distribution Segmentation
Uncertainty-based Methods. Leveraging pixel-wise
prediction uncertainty, OOD segmentation methods
(Hendrycks and Gimpel 2016; Lee et al. 2017; Liang, Li,
and Srikant 2017; Tian et al. 2021; Zhang and Zhang 2022)
avoid retraining, thus saving computation. However, issues
arise in hard-predicted regions. Jung et al. (Jung et al. 2021)
refine boundary anomaly scores, while others (Kendall and
Gal 2017; Lakshminarayanan, Pritzel, and Blundell 2017;
Mukhoti and Gal 2018) apply MC dropout, often with
limited success. Image Reconstruction. Autoencoders
and GANs dominate reconstruction methods (Baur et al.
2019; Creusot and Munawar 2015; Di Biase et al. 2021;
Haldimann et al. 2019; Liu et al. 2020). Notably, ID-only
trained models (Xia et al. 2020; Lis et al. 2020; Ohgushi,
Horiguchi, and Yamanaka 2020; Creusot and Munawar
2015; Lis et al. 2019; Vojir et al. 2021) effectively recon-
struct ID samples, but falter with OODs, hindered further
by domain sensitivity and extended training/inference
times. Adversarial Attacks. Adversarial attacks serve as
OOD data simulators in image classification (Goodfellow,
Shlens, and Szegedy 2014) and detection (Ma et al. 2018).
Besnier et al.’s ObsNet, though utilizing Local Adversarial
Attacks, faces noisy prediction challenges due to struc-
tural information absence. Outlier Exposure. The outlier
exposure (OE) strategy by Hendrycks et al. (Hendrycks,
Mazeika, and Dietterich 2018b) augments the training set
with non-overlapping outliers. Conversely, some methods
(Chan, Rottmann, and Gottschalk 2021b; Bevandić et al.
2019; Vandenhende et al. 2020; Bevandić et al. 2018; Liu
et al. 2022; Tian et al. 2022) embed OOD objects from
datasets like COCO (Lin et al. 2014) and ADE20K (Zhou
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et al. 2019), potentially reducing OOD segmentation to
mere binary segmentation due to overlaps.

Proposed Method
As shown in Figure 1, CSL provides two schemes to plug in
existing methods. The first is an end-to-end scheme, which
distills the knowledge from the base teacher network to the
CSL framework. The second scheme directly utilizes the ex-
isting models as a base teacher network to obtain per-pixel
distributions and fuse them with the class-agnostic region
proposals during inference without retraining them. Validity
loss, region loss, and distill loss, which is the mean Huber
loss between the predicted per-pixel distribution and the out-
put of the base teacher network (only for scheme1), are used
for optimization.

Class-Agnostic Training. To capture the essential fea-
tures of semantic classes that are applicable beyond the
training classes, we design CSL in a class-agnostic way. It
learns region prototypes characterized by visual appearance
and spatial features and uses them to generate region pro-
posals. CSL firstly uses a backbone and a pixel decoder to
generate multi-level feature embeddings E l ∈ RHl×Wl×Dl ,
where l ∈ {4, 8, 16, 32} indicating the downsampled size
of feature map compared to the original image. Dl is the
dimension of the embeddings. In addition, we have N learn-
able queries, which cascadely interact with multi-level fea-
ture embeddings E l, where l ∈ {8, 16, 32}, to generate N re-
gion prototypes P ∈ RN×256. These prototypes act as cen-
ters for grouping the per-pixel embeddings E ∈ RH

4 ×W
4 ×256

and follows by a upsampling to get the region prediction
R ∈ [0, 1]N×H×W . The region scores R, and the validity
scores V ∈ [0, 1]N are fed into the soft assignment module
(Sec 3.3) and generate region proposals.

Comparison with CA-M2F. In Mask2Former (Cheng
et al. 2021), they use the semantic class predictions V ∈
[0, 1]N×C instead of the validity score, where C is the num-
ber of classes, and it empirically yields exceptional semantic
segmentation results Y ∈ RH×W×C by matrix multiplica-
tion between V and R. We explain this matrix multiplica-
tion as the calculation of the likelihood p(xh,w ∈ c), where
xh,w and c denote the pixel at location (h,w) of input image
X and the class c ∈ C:

max
c

p(xh,w ∈ c) = max
c

N∑
n=1

p( xh,w ∈ Rn ∩ xh,w ∈ c)

= max
c

N∑
n=1

p(xh,w ∈ Rn)× p(xh,w ∈ c|xh,w ∈ Rn)

= max
c

N∑
n=1

rn,h,w × vn,c = max
c

(R⊤ ·V)h,w,c,

(1)

where the rn,h,w and vn,c at R and V indicate the proba-
bility of pixel xh,w belonging to region Rn and region Rn

belonging to class c. Given that the pixels in the same region
follow the same class distribution, we have p(Rn ∈ c) =
p(xh,w ∈ c|xh,w ∈ Rn).

CA-M2F removes the class loss and uses R as the re-
gion proposals, which are demonstrated to be unsatisfactory
due to the redundancy of regions. To reduce useless regions,
some methods keep the class prediction but reduce it to a bi-
nary classification indicating the validity of the region. And
they utilize hard assignments during inference to generate
the region proposals.

Soft Assignment. However, the hard assignment requires
a manually selected threshold, which limits the generaliza-
tion, and multiple experiments demonstrate its limited per-
formance on OOD objects (Figure 3). Thus, we creatively
propose a soft assignment module to maximize the objec-
tive of the class-agnostic semantic segmentation: p(xh,w ∈
Rn ∩ Rn ∈ V), where Rn ∈ V denotes region Rn be-
ing valid. In CSL, we use binary cross-entropy losses for
optimal validity score and region score by maximizing the
likelihoods of p(xh,w ∈ Rn) and p(xh,w ∈ V|xh,w ∈ Rn).
This allows us to interpret vn, in the validity score matrix V,
as the probability of the pixels in the region Rn being valid,
which we call as the region’s validity score. Since multiple
overlapping region prototypes exist, V helps select the valid
masks. For instance, simple images with few objects result
in fewer valid regions than complex ones. Similarly, we can
interpret rn,h,w, in the region prediction matrix R, as the
probability that pixel xh,w belongs to region Rn, which we
call as the region score. The objective for class-agnostic seg-
mentation can be derived from these two likelihoods as fol-
lows:

max
n

p(xh,w ∈ Rn ∩Rn ∈ V)
= max

n
p(xh,w ∈ Rn)× p(xh,w ∈ V | xh,w ∈ Rn)

= max
n

(rn,h,w × vn) = max
n

(R⊤ ∗V)h,w,n,
(2)

which maximizes the probability that the pixel xh,w is from
region Rn and the region Rn is valid, where * denotes pixel-
wise multiplication. Note that given that pixel xh,w belongs
to region Rn, the validity of Rn can be represented by xh,w

because the validity score is assigned per region.

Comparison with hard assignment. For panoptic seg-
mentation, Mask2Former and EntitySeg employ hard as-
signment during inference Specifically, a binary region mask
is generated from each region prediction by checking at each
pixel if the mask score exceeds a certain threshold. The re-
gion masks are then stacked in ascending order of validity
score, where a mask with a higher validity score covers those
with lower scores. However, this approach has limitations.
First, hard assignment employs a fixed threshold to filter out
low-score regions, which often results in missed pixels that
are not allocated to any region (a, c, and d in Figure 3). Sec-
ond, it performs poorly in complex and detailed scenes as the
final results are obtained based on hard region masks instead
of per-pixel scores in the soft assignment (f in Figure 3).

Mask Split. Another problem is that existing methods
such as entity segmentation (Qi et al. 2022) work well
when training with instance-wise labels while failing with
semantic-wise labels. We believe and demonstrate it’s be-
cause the semantic-wise labels still contain class informa-
tion, which introduces the bias of seen class. Therefore, we
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Figure 2: Visualisations for hard mask predictions at TPR=95% and per-pixel Out-of-distribution (OOD) scores. We compare
the results of SML, and ObsNet with our proposed CSL. In the hard mask predictions, white and gray indicate being predicted
to be OOD. In the OOD scores, the red and blue intensity values correspond to the magnitudes of the OOD scores above and
below the decision boundary, respectively. (d) shows the region proposals from our CSL with scheme2.

Method OOD Pixel Level Component Level
AUPR FPR95 sIoU gt mean F1

PEBAL 49.1 40.8 38.9 14.5
ME 85.5 15.0 49.2 28.7
DH 78.0 9.8 54.2 31.1

SynBoost 56.4 61.9 34.7 10.0
IR 52.3 25.9 39.7 12.5

ObsNet 75.4 26.7 44.2 45.1
+CSL1 79.9 7.1 46.1 50.2
+CSL2 80.1 7.2 46.5 50.4

Table 1: Results on SMIYC-AT.

Method OOD Pixel Level Component Level
AUPR FPR95 sIoU gt mean F1

ME 85.1 0.75 47.9 50.4
DH 80.8 6.02 48.5 55.6

SynBoost 71.3 3.15 44.3 37.6
RI 54.14 47.1 57.6 36.0
IR 37.7 4.7 16.6 8.4

DaCUP 81.5 1.13 37.7 46.0
+CSL1 86.8 0.9 44.3 50.7
+CSL2 87.1 0.7 44.7 51.0

Table 2: Results on SMIYC-OT.

present a simple yet effective preprocessing method named
mask split. Annotation of semantic segmentation often con-
sists of multiple disconnected regions of the same class in
a single mask, which forces the model to predict all pixels
from the same class to the same mask, thereby enforcing the
embeddings of the pixels from the same semantic class to
be similar, which causes the bias. To overcome this limita-
tion, we propose a simple yet effective method called Mask
Split to overcome this limitation. We split these two discon-
nected components as depicted in Supplementary Material.
This approach reduces the class information and allows the
model to predict instances without being biased toward any
particular class.

Structure-Constrained Fusion. Intuitively, making pre-
dictions at each pixel independently does not benefit from
the predictions at other, nearby pixels, which are correlated.

Method OOD Pixel Level Component Level
AUPR FPR95 sIoU gt mean F1

ME 77.90 9.70 45.90 49.92
SynBoost 81.71 4.64 36.83 48.72

RI 82.93 35.75 49.21 52.25
DaCUP 81.37 7.36 38.34 51.24
+CSL1 83.07 6.88 40.43 51.57
+CSL2 83.41 6.92 40.89 51.36

NFlowJS 89.28 0.65 54.63 61.75
+CSL1 89.48 0.48 54.78 62.25
+CSL2 89.79 0.51 55.01 62.37

Table 3: Results on LAF NoKnown.

To address this, we introduce structure-constrained rectifica-
tion (SCF), which utilizes structure constraints, that interre-
late predictions at different pixels, to optimize per-pixel pre-
dictions. This helps improve performance on multiple tasks.
Our proposed approach leverages soft assignment to gener-
ate region proposals R ∈ {0, 1}H×W×N . These proposals,
along with the per-pixel distribution D ∈ RH×W×C from
scheme 1 or scheme 2, are fed into our proposed SCF. For
OOD segmentation, we set C to 1 since the prediction is
binary, and we only need to consider the probability of be-
longing to OOD. And, for the domain adaptation (DA) and
zero-shot semantic segmentation (ZS3) tasks, C is equal to
the number of classes.

Each Dc ∈ RH×W indicates per-pixel distribution for
class c, where c ∈ {1, ..., C}. We compute the region-wise
score as the average of the pixel-wise scores within each re-
gion proposal Rn ∈ {0, 1}H×W , where n ∈ {1, ..., N}.
Then we combine the region-wise scores and the pixel-wise
scores to obtain the hybrid score H using the equation:

Hc,n =

∑
h,w Dc,n ∗ Rn∑

h,w Rn
×Dc,n, n ∈ {1, ..., N} (3)

where Hc,n, Dc,n indicates the hybrid score and per-pixel
distribution for class c within region n, ∗ is the pixel-wise
multiplication and △ indicates pixel-wise multiplication.
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SMIYC (AT)-val SMIYC (AT)-test Road AnomalyMethod OOD
Data FPR95 AP AUROC FPR95 AP AUROC FPR95 AP AUROC

SML† 51.0 47.7 81.7 43.33 44.68 86.57 49.63 25.71 81.90
+CSL2 22.0↑29 55.4↑7.8 88.4↑6.7 39.7↑3.7 47.2↑2.6 87.5↑0.86 41.03↑8.60 31.78↑6.07 84.77↑2.87

IR† - - - 32.17 49.36 87.03 69.79 33.43 79.92
+CSL2 - - - 21.7↑10.4 54.5↑5.1 89.3↑2.3 59.16↑10.63 35.48↑2.05 82.45↑2.53

ObsNet† 40.2 72.7 91.9 61.73 56.91 86.22 64.25 48.13 83.18
+CSL2 25.0↑15.2 75.5↑2.8 95.2↑3.3 32.1↑29.6 64.8↑7.8 92.24↑6.02 47.21↑17.04 53.24↑5.11 86.92↑3.74

ObsNet v2† 30.3 74.5 93.7 26.69 75.44 93.80 55.75 54.64 86.78
+CSL2 5.8↑24.5 83.6↑9.1 97.4↑3.7 7.16↑19.5 80.1↑4.6 96.46↑2.66 43.80↑11.95 61.38↑6.74 91.08↑4.3

Table 4: Quantitative results on SMIYC (Anomaly Track) and Road Anomaly. We show the results obtained by combining
CSL2 with 3 well-established OOD segmentation methods (indicated by †). The best results are highlighted in bold.

Method ST RT COCO-stuff PASCAL VOC 2012
mIoU(S) mIoU(U) hIoU mIoU(S) mIoU(U) hIoU

ZegFormer 36.6 33.2 34.8 86.4 63.6 73.3
+CSL2 37.5 ↑0.9 36.2 ↑3 36.9 ↑2.1 87.1 ↑0.7 68.6 ↑5 76.9 ↑3.6
ZSSeg 39.3 36.3 37.8 83.5 72.5 77.5
+CSL2 40.1 ↑0.8 38.3 ↑2 39.2 ↑1.4 84.7 ↑1.2 76.9 ↑4.4 80.6 ↑3.1

ZegCLIP 40.2 41.4 40.8 91.9 77.8 84.3
+CSL∗

2 40.4 ↑0.2 42.8 ↑1.4 41.6 ↑0.8 92.3 ↑0.4 79.4 ↑1.6 85.5 ↑1.2

Table 5: Quantitative results for ZS3 on COCO-stuff and PASCAL VOC benchmarks. The “mIoU(S)”, “mIoU(U)”, and “hIoU”
denote the mIoU of seen classes, unseen classes, and their harmonic mean. ”ST” and ”RT” denote self-training and re-training.

Experimental Results
Experimental Setup
In all our experiments 1, we utilize ResNet50 as the back-
bone and FPN as the pixel decoder. All experiments for
OOD segmentation are performed without any OOD data.
In the DA and ZS3 experiments, we use the same training
data as the comparative methods. CSL1 and CSL2 represent
scheme 1 and 2, and CSL2 doesn’t require retraining. Addi-
tional details and results for the benchmarks and implemen-
tation can be found in the supplementary material, and we
plan to make the source code publicly available.

Out-Of-Distribution Segmentation
In the context of OOD Segmentation, Cityscapes (Cordts
et al. 2016) including 19 seen classes are used as the train-
ing sets, while OOD images containing other classes beyond
the seen classes are utilized for testing purposes. Several
approaches leverage OOD images with ground truth labels
from larger datasets to enrich the training set, which over-
laps with the OOD classes in the test set. Thus, to ensure
fairness, all methods are differentiated based on the usage of
OOD data and our proposed CSL is free of OOD data.

Comparison with SOTA Methods Table 1-4 show
our results compared with existing methods on the
SMIYC (Chan et al. 2021) Anomaly Track, Obstacle Track,
LostAndFound-NoKnow (Pinggera et al. 2016), and Road
Anomaly (Lis et al. 2019). There are 5 metrics for eval-
uation: (a) pixel-wise area under the precision-recall curve

1Except for experiments marked with ∗, which uses ResNet100
as the backbone.

(AUPR), (b) pixel-wise false positive rate at a true positive
rate of 95% (FPR95), (c) adjusted Intersection over Union
averaged over all ground truth segmentation components
(sIoU gt), (d) component-wise F1-score averaged over dif-
ferent detection thresholds (mean F1), and (f) area under
the receiver operating characteristics (AUROC). SMIYC
(Anomaly Track) consists of real-world images, where each
image may contain multiple OOD samples of different sizes
from various categories. In SMIYC (AT), our proposed ap-
proach CSL outperforms all methods without OOD data by a
substantial margin based on ObsNet, e.g., CSL surpasses the
former state of art method ObsNet (Besnier et al. 2021) by
4.7%, 19.5%, 2.3%, and 5.3% in AUPR, FPR95, sIou gt, and
mean F1. CSL even reaches state-of-the-art performance in
terms of FPR95 and mean F1 across all methods including
those leverage the OOD data. SMIYC (Obstacle Track) fo-
cuses on evaluating the ability to detect small-size obstacles
on the road. In SMIYC (OT), CSL improves the former ap-
proach DaCUP (Vojı́ř and Matas 2023) by 5.6%, 0.43%, 7%,
and 5% in AUPR, FPR95, sIou gt, and mean F1 and achieve
the state of art among all approaches in AUPR, FPR95, and
mean F1. LostAndFound NoKnown also focuses on eval-
uating the ability to detect small-size obstacles on the road
and CSL improves the former approach DaCUP (Vojı́ř and
Matas 2023) by 2.04%, 0.44%, 2.55%, and 0.12% in AUPR,
FPR95, sIou gt, and mean F1. And achieves state-of-the-
art performance when combined with NFlowJS (Grcić, Be-
vandić, and Šegvić 2021). Road Anomaly has a similar set-
ting with SMIYC (AT). As shown in Table 4, CSL achieves
state of art performance among all methods including those
with OOD data by improving the performance of ObsNet
(Besnier et al. 2021) by 6.74%, 11.59%, and 4.3% in AP,

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

7082



Method ro
ad

si
de

w
al

k

bu
ild

in
g

w
al

l

fe
nc

e

po
le

lig
ht

si
gn

ve
g

te
rr

ai
n

sk
y

pe
rs

on

ri
de

r

ca
r

tr
uc

k

bu
s

tr
ai

n

m
ot

or

bi
cy

cl
e

mIoU
Source Only 79 39 75 26 25 34 34 39 82 18 84 58 37 70 19 15 5 22 54 43
+CSL2 82 36 78 28 29 40 45 48 83 25 81 68 45 81 24 20 7 24 57 47↑4

AdvEent 94 59 85 28 26 38 43 43 86 28 89 61 36 87 32 46 25 25 57 52
+CSL2 94 60 85 28 35 45 48 50 86 28 89 65 46 87 38 49 32 24 59 56↑4

DAFormer 96 73 89 40 44 49 53 60 58 49 91 71 45 91 75 77 64 55 61 65
+CSL∗

2 96 74 90 51 48 52 56 65 89 48 91 76 45 93 77 80 68 56 66 70↑4

Table 6: Quantitative results for domain adaptation on the Synscapes2Cityscapes benchmark, where the source domain is the
synthetic city scenes dataset (Synscapes) and the target domain is a real-world city scenes dataset (Cityscapes).

FPR95, and AUROC.

Combination with Existing Methods without Retrain-
ing We combine CSL with three existing OOD segmenta-
tion methods (SML, Image Resynthesis, and ObsNet) with
scheme 2, which doesn’t require retraining, and compared
their performance in Table 4. Noted that the performance
of ObsNet is affected by the input size. Therefore, we use
the ObsNet and ObsNet v2 to represent the experiments we
use the original image size and fixed-smaller image size,
i.e., 512 × 1024. CSL outperformed all other methods in
both benchmarks and even surpassed methods that use OOD
data. Some methods achieved a decent AP but a poor FPR95

due to the difficulty of extracting OOD samples. ObsNet and
ObsNet v2 achieved a high FPR95 in SMIYC (AT)-test, but
our CSL significantly reduced it by 29.57 and 22.57, respec-
tively. Figure 2 visually compares our proposed CSL with
existing OOD segmentation methods, where we use ObsNet
v2 to represent ObsNet due to its better performance. SML
struggles to get acceptable results, and ObsNet produces de-
cent AP but fails to achieve high recall with low FPR as
shown in (e). In contrast, CSL demonstrates robustness to
OOD samples as shown in (e).

Zero-Shot Semantic Segmentation
Table 5 presents a comparison of our proposed CSL method
with previous state-of-the-art zero-shot semantic segmen-
tation methods. We adopt the scheme2 to integrate CSL
with existing methods, primarily due to its reduced compu-
tational cost. (Section scheme1 vs scheme2). CSL outper-
forms ZegFormer, ZSSeg (Xu et al. 2022), and ZegCLIP
by 0.9%, 0.8%, 0.2% in seen classes, 3%, 2%, 1.4% in un-
seen classes, and 2.1%, 1.4%, 0.8% in harmonic classes in
COCO-stuff benchmark and outperform those 3 methods by
5%, 4.4%, 1.6% in unseen classes in PASCAL VOC 2012
benchmark. The experiment follows the same setting as Zeg-
Former, using 156 classes for training, and testing on all 171
classes from the COCO-stuff dataset.

Domain Adaptation in Semantic Segmentation
The CSL approach demonstrates superior performance
not only on out-of-distribution (OOD) samples but also
on in-distribution (ID) samples with domain gaps. No-
tably, our method achieves excellent results on the Syn-
scapes2Cityscapes benchmark, as reported in Table 6. In

these experiments, we use Synscapes, a synthetic city scene
dataset, as the source domain, and Cityscapes, a real-world
city scene dataset, as the target domain. And we also choose
scheme2 to integrate CSL with existing methods. CSL boost
source-only by 4.02%, AdvEnt (Vu et al. 2019) by 3.5%,
and DAFormer (Hoyer, Dai, and Van Gool 2022) by 4.1%.

Ablations
Negative Impact from Class Information Traditional
methods for semantic segmentation assign each pixel from
input images to prior semantic classes. However, this ap-
proach cannot handle OOD samples. The CA-RPG method
assigns each pixel to N class-agnostic region prototypes,
which learn more fundamental features that can represent
both ID and OOD samples. Mask2Former and Zegformer
also use a query-based framework, but introducing class su-
pervision destroys the ability for OOD segmentation. The
classification loss of ID classes causes the region prototypes
to distribute within the subspace of ID classes, which makes
it difficult to represent OOD classes effectively. In Figure 4,
we can see the results of using the None-CA approach ver-
sus the CA-training approach on an image of a skier. The
embeddings for the skier and background are not easily sep-
arable using the None-CA approach, while the CA-training
approach allows for a better representation of both classes.

CA Training and Soft Assignment Quantitative results
in Table 7 demonstrate the effectiveness of CA training and
our proposed soft assignment (SA). Before evaluation, we
count the ground truth labels corresponding to all pixels in
each region proposal and select the label with the highest fre-
quency as the class of the entire region. This post-processing
method is proposed in SMIYC (Chan et al. 2021) and allows
us to use the same evaluation criteria (mIoU, fwIoU, mACC,
and pACC) as semantic segmentation to assess the quality of
region proposals.

We present a comparison of three approaches for train-
ing a region proposal generator: None-CA, which employs
binary mask and classification loss; CA+HA, which em-
ploys CA training and hard assignment during inference;
and CA+SA, our proposed approach which combines CA
training with soft assignment during inference. The model
is trained on Cityscapes and tested on COCO-stuff, where
ID represents seen classes from Cityscapes, and OOD rep-
resents those in the COCO but not in Cityscapes. Results
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Figure 3: Visualisations of the efficacy of CA-training and
soft assignment. CA+HA represents CA-M2F, where the
model is trained in a class-agnostic way and inferences
via the hard assignment, None-CA represents the model is
trained with class loss and inferences via the soft assign-
ment, and CA+SA represents CSL, where the model trained
in a class-agnostic way and inferences via the soft assign-
ment. Note that the model is only trained on the Cityscapes
and tested on COCO-stuff.

None-CA CA+HA CA+SA
mIoU 45.99 49.17↑3.18 51.34↑5.35

ID-mIoU 68.44 76.35↑7.91 77.20↑8.76
OOD-mIoU 43.83 46.56↑2.73 48.85↑5.02

mACC 58.46 60.31↑1.85 63.10↑4.64

Table 7: Ablation study of CA-training and Soft Assign-
ment. The model is trained on the Cityscapes-train and
tested on the COCO-stuff.

in Table 7 demonstrate that both CA training and soft as-
signment significantly improve performance across all met-
rics. Figure 3 visually illustrates the improvement. None-CA
fails on most unseen objects, while CA+HA produces decent
results but struggles with challenging cases such as indoor
scenes, multiple animals, and small accessories. Soft assign-
ment overcomes the limitations of hard assignment by as-
signing regions pixel-wise, providing more refined segmen-
tation results.

Comparison with Segment Anything Model A notable
contribution of CSL is its capability to segment out-of-
distribution (OOD) objects without relying on any OOD
data, utilizing only minimal training data. In this sec-
tion, we employ a foundation model, SAM (Kirillov et al.
2023), which is used by many recent works (Zhang, Li,
and Ahuja 2023), to produce CA region proposals and sub-
sequently integrate it with ObeNet (Besnier et al. 2021),
DACUP (Vojı́ř and Matas 2023), and NFlowJS (Grcić, Be-
vandić, and Šegvić 2021) in the SMIYC-AT, OT, and LAF
NoKnown benchmarks. This approach yields an improve-
ment of 1.7% in AUPR and 0.3% in FPR95 on average
across those three benchmarks compared with CSL in Ta-
ble 1, 2, and 3, which demonstrates that the quality of CA

Figure 4: Embedding visualisations of Figure 3-(e) by T-
SEN. We plot the region prototypes as red times symbols,
the per-pixel embeddings from the background as green bul-
lets, and the skier as blue bullets. The sizes of the prototypes
indicate the validity scores.

region proposals generated by CSL is satisfied, even in the
absence of any OOD data. We believe the constraining fac-
tor influencing the outcome appears to be the classification
accuracy of each region, rather than segmentation quality.
More results are shown in the Appendix.

Scheme1 vs Scheme2
In Tables 1, 2, and 3, we present results for scheme 1 and 2.
While scheme1 trails by approximately 0.3% in AUPR rel-
ative to scheme2, the results on FPR95 display a mix of ad-
vantages for both methods. Notably, scheme2 demonstrates
efficiency in training, requiring half the iterations to match
the performance of scheme1. For context, in our integra-
tion experiments with ZegCLIP (Zhou et al. 2023) on the
COCO-stuff benchmark, scheme1 demanded around 50K
iterations to achieve satisfactory results, whereas scheme2
reached similar benchmarks in just 25K iterations. However,
another key consideration is the inference time. Scheme1,
being an end-to-end solution, is more efficient during infer-
ence: in our evaluations, scheme2 took 33% longer on aver-
age across all conducted experiments.”

Conclusion
This paper presents the Class-Agnostic Structure-
Constrained Learning (CSL) method for addressing
the challenge of segmenting the unseen. CSL provides 2
different schemes, which can be utilized as an end-to-end
framework or integrated with existing methods without
retraining. Our experimental results demonstrate that CSL
outperforms existing state-of-the-art methods across 3
challenging tasks. Moreover, we have provided an analysis
of the reasons behind the effectiveness of our proposed
method. We believe that the ability of CSL to learn about
classes not seen during training, by eliciting class-agnostic
information from the ID images, is a crucial factor con-
tributing to its superior performance. Overall, CSL provides
a promising solution for segmenting the unseen, and we
hope our work will lead to other related work in this area.
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anomaly detection by robust learning on synthetic negative
data. arXiv preprint arXiv:2112.12833.
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