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Abstract
With the great achievement of vision transformers (ViTs),
transformer-based approaches have become the new
paradigm for solving various computer vision tasks. How-
ever, recent research shows that similar to convolutional
neural networks (CNNs), ViTs are still vulnerable to adver-
sarial attacks. To explore the shared deficiency of models
with different structures, researchers begin to analyze the
cross-structure adversarial transferability, which is still
under-explored. Therefore, in this work, we focus on the
ViT attacks to improve the cross-structure transferability
between the transformer-based and convolution-based
models. Previous studies fail to thoroughly investigate the
influence of the components inside the ViT models on
adversarial transferability, leading to inferior performance.
To overcome the drawback, we launch a motivating study
by linearly down-scaling the gradients of components inside
the ViT models to analyze their influence on adversarial
transferability. Based on the motivating study, we find
that the gradient of the skip connection most influences
transferability and believe that back-propagating gradients
from deeper blocks can enhance transferability. There-
fore, we propose the Virtual Dense Connection method
(VDC). Specifically, without changing the forward pass, we
first recompose the original network to add virtual dense
connections. Then we back-propagate gradients of deeper
Attention maps and Multi-layer Perceptron (MLP) blocks
via virtual dense connections when generating adversarial
samples. Extensive experiments confirm the superiority of
our proposed method over the state-of-the-art baselines, with
an 8.2% improvement in transferability between ViT models
and a 7.2% improvement in cross-structure transferability
from ViTs to CNNs.

Introduction
Transformers have become the dominant solutions in the
natural language processing field with the state-of-the-art
performance on various downstream tasks. Vision trans-
formers (ViTs) (Dosovitskiy et al. 2020) first adapt the self-
attention mechanism of the transformers (Vaswani et al.
2017) to the computer vision field for image recognition.
Subsequently, diverse transformer-based approaches (Tou-
vron et al. 2021a; Heo et al. 2021) have been proposed to
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better adapt the transformer structure to the computer vision
field. Nowadays, ViTs have become the new paradigm for
solving various vision tasks such as object detection (Zhang
et al. 2021) and semantic segmentation (Zheng et al. 2021),
with competitive performance compared with convolutional
neural networks (CNNs).

Recent research reveals that both convolution-based and
transformer-based models are vulnerable to adversarial at-
tacks (Wu et al. 2020c; Zhang et al. 2023b). Adversarial at-
tacks inject human-imperceptible noise into the original im-
age to mislead the deep neural network (DNN) models with
high confidence. This phenomenon raises security concerns
with the wide application of deep neural networks (Zhang
et al. 2023c,d; Wu et al. 2019). Furthermore, the adversar-
ial examples crafted by the attacking algorithms manifest
adversarial transferability. That is, the adversarial examples
generated from a local surrogate model have the ability to
mislead the target victim model (Wu et al. 2020b; Zhang
et al. 2022). Therefore, adversarial transferability provides
an efficient way to craft adversarial examples for testing the
victim models without any access to the victim model un-
der the black-box setting. Since victim models are usually
deployed in the black-box setting, it is imperative to devise
transferable attacking algorithms to assess their robustness
before their deployment in real-world applications.

The transfer-based attacks have achieved high attack
success rates against convolution-based models. Never-
theless, recent studies have discovered the robustness of
the transformer-based models and the low cross-structure
transferability, when we transfer the adversarial examples
generated by attacking transformer-based models to mis-
lead convolution-based models or vice versa (Zhang et al.
2023b). Some research believes that the low cross-structure
transferability is due to the model structure difference
between transformer-based models and convolution-based
ones (Naseer et al. 2021). Convolution-based models utilize
the convolutional layers to capture the local information of
the input features in a small receptive field (Luo et al. 2016).
Transformer-based models divide the input image into small
patches and feed a sequence of small patches into the net-
work. With the help of the self-attention mechanism, ViT
models can learn the global features at each stage of the
network, which shows distinct properties to CNN models.
Therefore, enhancing the adversarial transferability from
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transformer-based models to other transformer-based and
convolution-based models is of great significance, which
facilitates finding the common defects inside transformer-
based and convolution-based models in practice.

However, the adversarial transferability of transformer-
based models is still under-explored. Although some works
have been proposed to improve the adversarial transferabil-
ity based on the special design of the transformer-based
models, they still fail to thoroughly investigate the influ-
ence of the components inside the ViT models on adversar-
ial transferability, leading to inferior performance. To over-
come the drawback, we launch a motivating study by lin-
early down-scaling the gradient of selected components in-
side the transformer-based models to find their influences on
adversarial transferability. Based on the motivating study,
we find that the skip connections influence transferability
the most and believe that back-propagating deeper gradi-
ents to generate adversarial samples can boost their transfer-
ability. Therefore, we propose the Virtual Dense Connection
method (VDC). Specifically, without changing the forward
pass, we first recompose the original model to add virtual
dense connections. We then densely back-propagate gradi-
ents of Attention maps and Multi-layer Perceptron (MLP)
blocks via virtual dense connections to generate adversar-
ial samples. Extensive experiments show that our proposed
approach significantly outperforms the state-of-the-art base-
lines by an 8.2% improvement in the transferability between
transformer-based models and a 7.2% improvement in the
cross-structure transferability.

In summary, the contributions of this paper are:

• We launch a motivating study to analyze the influence
of each component inside the transformer-based mod-
els on adversarial transferability. To this end, we linearly
down-scale the gradient of each component to observe
the transferability changes. We find that the gradient of
the skip connection most influences the adversarial trans-
ferability.

• Based on the motivating study, we believe that back-
propagating the gradient from deeper blocks to gener-
ate adversarial samples can improve their transferabil-
ity. Therefore, we propose the Virtual Dense Connection
method (VDC). VDC recomposes the original network to
add virtual dense connections and then back-propagates
gradients via virtual dense connections to generate trans-
ferable adversarial samples.

• Extensive experiments confirm that our method can out-
perform the state-of-the-art attacking approaches by a
margin of 8.2% on the transferability between ViT mod-
els, and 7.2% on the cross-structure transferability from
ViT models to CNN models.

Related Work
Transfer-based Adversarial Attacks
The transfer-based adversarial attack is one category of ad-
versarial attacks under the black-box setting, which is built
on the transferability of adversarial examples. Transferabil-
ity is the phenomenon that the adversarial examples crafted

by a local surrogate model can also mislead the target vic-
tim model. Therefore, black-box attackers can generate ad-
versarial examples of a fully accessible surrogate model by
white-box attacking algorithms and directly transfer the ex-
amples to the target victim model. Representative white-box
attacks include Fast Gradient Sign Method (FGSM) (Good-
fellow, Shlens, and Szegedy 2014) and Project Gradient De-
scent (PGD) (Madry et al. 2017). However, those white-box
approaches reveal limited transferability, because the adver-
sarial examples are model-specific and fail to mislead other
models.

Therefore, researchers begin to boost the transferability of
adversarial examples. The current state-of-the-art transfer-
based attacks can be roughly classified into two trends:
gradient-based approaches, and input transformation-based
approaches. The gradient-based approaches utilize advanced
optimizers (Dong et al. 2018), or model structures (Wu et al.
2020a; Xu et al. 2023; Deng et al. 2023) to modify the gra-
dient to escape from the local optima and stabilize the up-
date gradient. Momentum Iterative Method (MIM) (Dong
et al. 2018) combines the momentum optimizer with the
BIM to improve the adversarial transferability. Skip Gra-
dient Method (SGM) (Wu et al. 2020a) utilizes the skip
connection in the model structure to improve the trans-
ferability. SGM uses a decay factor to reduce the gradi-
ent from the residual module and focuses on the transfer-
able low-level information to regularize the gradient. Input
transformation-based approaches combine the gradients of
the transformed images for generating transferable perturba-
tion (Wu et al. 2021; Dong et al. 2019; Lin et al. 2019; Zhang
et al. 2023a). Although those approaches have achieved
state-of-the-art performance on boosting the transferability
of convolution-based models, their performance drops dra-
matically on increasing the transferability of transformer-
based models, because of the model structure difference
between convolution-based models and transformer-based
models.

Another category of black-box attacks is query-based at-
tacks (Andriushchenko et al. 2020; Bai et al. 2020; Wu
et al. 2023). However, query-based attacks require additional
queries to the victim model, which lacks in efficiency in the
real-world scenarios. Therefore, we focus on transfer-based
attacks in this paper.

Transformer-based Models
The transformer is a neural network architecture utilizing the
self-attention mechanism originating from the natural lan-
guage processing field. Recently, the transformer design has
been adapted into the computer vision field. Vision trans-
formers (ViTs) (Dosovitskiy et al. 2020) divide the input
image into a sequence of small image patches similar to a
sequence of tokens for the language model. ViTs capture the
relationship between image patches based on the multi-head
self-attention mechanism. Besides the basic version of the
ViT, advanced ViTs have been proposed to enhance the per-
formance of ViTs on computer vision tasks. The pooling-
based vision transformer (PiT) (Heo et al. 2021) decreases
the spatial dimension and increases the channel dimension
with pooling to improve the model capability. The data-
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Figure 1: Illustration of the down-scaled gradients in the
transformer block. All the dashed lines (red & black) de-
pict the normally back-propagated gradients. The red dashed
lines represent the selected gradient to analyze their influ-
ence on adversarial transferability.

efficient Vision Transformer (DeiT) (Touvron et al. 2021a)
deploys a distillation token to learn knowledge from CNNs.
The vision-friendly transformer (Visformer) (Chen et al.
2021) transits a transformer-based model to a convolution-
based model.

With the development of transformer-based models, some
researchers (Bhojanapalli et al. 2021; Shao et al. 2021) as-
sess the robustness of ViTs based on white-box and black-
box attacks. Other research (Mahmood, Mahmood, and
Van Dijk 2021) also finds that the cross-structure transfer-
ability from transformer-based to convolution-based models
is low. To understand the influence of the components in the
network on adversarial transferability, we launch a motivat-
ing study to explore the influence of the gradient from each
network component.

Attacks on Transformer-based Models
Researchers aim to improve transferability by exploring the
unique structure of transformer-based models. Naseer et al.
proposed Self-Ensemble (SE) to utilize the class token on
each layer of ViTs with a shared classification head for the
gradient ensemble and Token Refinement module (TR) to re-
fine the class token with fine-tuning (Naseer et al. 2021). The
Pay No Attention (PNA) (Wei et al. 2022) method explores
the attention mechanism and skips the gradient of the at-
tention during back-propagation to improve the transferabil-
ity of adversarial examples. Although previous approaches
utilize the special architecture of transformer-based models
for transferable adversarial attacks, they fail to thoroughly
explore the influence of each component on adversarial
transferability, leading to limited improvement of transfer-
ability. Unlike previous methods, we analyze the influence
of the gradient from each component in the transformer-
based models on adversarial transferability with a motivat-
ing study, and then design an effective attacking method ac-
cordingly.

Motivating Study
In this motivating study, we analyze the influence of the gra-
dient from each component in the transformer-based mod-
els on adversarial transferability. We select a representa-
tive transformer-based model, ViT-B/16 (Dosovitskiy et al.
2020), as the source model to craft adversarial examples.

Block Component ViT CNN Adv-CNN

Attention
QKV 45.4 24.1 16.6

Attention Map 64.9 35.8 24.5
skip Connection 19.0 13.3 8.8

MLP MLP Layer 44.6 24.5 17.3
Skip Connection 17.5 11.7 7.1

Table 1: The average adversarial transferability (%) against
ViTs, CNNs, and adversarially-trained CNNs by scaling the
gradients of different components in ViT-B/16.

We then measure the average transferability of the gener-
ated adversarial examples to multiple transformer-based and
convolution-based models. The details of the target models
are in Section . In order to reflect the influence of each com-
ponent’s gradient on transferability, we follow the idea of at-
tribution (Sundararajan, Taly, and Yan 2017). Therefore, we
gradually down-scale the gradient and compute the average
adversarial transferability during the down-scaling process.

Specifically, we down-scale the gradient from each com-
ponent using a linear sampling strategy, where we down-
scale the gradient from 1 to 0 with a step size of 0.25.
The transformer-based models consist of several transformer
blocks. Each transformer block contains an Attention block
and a MLP block. The Attention block first computes the
QKV values and the attention map by the product of the
query and key. Then the Attention block outputs the multi-
plication of the attention map and the QKV value. The MLP
block passes the input through fully connected layers. Both
the input and the output of the Attention block and MLP
block are connected with a skip connection. Therefore, the
components we select are QKV, attention map, the skip con-
nection from the Attention block, MLP layers, and the skip
connection from the MLP block, as shown in Figure 1.

We gradually down-scale the gradient of a selected com-
ponent, fixing the other back-propagated gradients and com-
puting the average transferability during the down-scaling
process. As we can see from Table 1, the adversarial trans-
ferability drops dramatically with the reduction of the gra-
dient from skip connections in the Attention block or the
MLP block. Thus, we believe that the skip connection in-
side the transformer-based models influences the adversarial
transferability the most. This phenomenon implies that the
gradient from the deeper block through the skip connection
enhances the adversarial transferability, which motivates us
to back-propagate more gradients from deeper blocks to im-
prove the adversarial transferability.

Method
Preliminary
We first set up some notations adopted in this paper. We re-
gard a DNN image classifier as f(·). Given a sequence of
image patches xp = {x1

p,x
1
p, · · · ,xN

p } divided from the
original image x with a shape of H × W × C, f(x) is the
output of the image classifier. H , W , and C are the origi-
nal image’s height, width, and channel number, respectively.
xi
p denotes the i-th patch of the original image. The patch

shape is P × P × C, where P is the predefined patch size.
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Figure 2: Illustration of model reparametrization by adding
virtual dense connections. The inputs of the current blocks
are propagated to all later blocks via virtual dense connec-
tions. We also modify the weights of the original block to
guarantee that the input to the next block remains the same,
keeping the forward pass of the original model.

Moreover, the total patch number N of an image is H·W
P 2 .

We set xadv as the adversarial example of image x with
true label y. Adversarial examples satisfy two conditions:
f(xadv) ̸= f(x) and

∥∥x− xadv
∥∥
p
< ϵ.

The first condition implies that adversarial examples can
mislead the image classifier with a wrong prediction. The
second condition guarantees the difference between the ad-
versarial example and the original image is smaller than a
budget ϵ, so it is hard for a human to detect the distortion.
∥·∥p represents the Lp norm, and we measure the distortion
by L∞ norm in this paper, which is widely adopted in the
literature (Dong et al. 2018).

Model Recomposition
In order to utilize the gradient from deeper blocks, one intu-
itive idea is to directly back-propagate the gradient through
skip connections. However, there are no long-range connec-
tions in transformer-based models. Thus, we propose to re-
compose the original model to add additional virtual con-
nections.

As shown in the upper part of Figure 2, we suppose
there are n blocks in the network, and the output of blocki
is zi = fi(zi−1) with input zi−1. Therefore, the out-
put of the original network is zn = fn(zn−1) = · · · =
fn(fn−1(· · · f2(f1(x)) · · · )).

Then, without changing the forward pass of the network,
we aim to recompose the original model to add virtual dense
connections. As shown in the lower part of Figure 2, we add
virtual dense connections so that the output of each block is
densely connected to the input of all the later blocks. There-
fore, the additional input to blocki+1 through virtual dense
connections is x+z′

1+· · ·+z′
i−1, because we densely prop-

agate all the outputs of previous blocks (block1 - blocki−1)
and input x to the input of blocki+1. Since we should keep
the original forward pass of the model, we need to guarantee
the input to each block of the recomposed model remains
the same. Therefore, the function of blocki is changed from
fi(zi−1) to f ′

i(zi−1) = fi(zi−1)− x−
∑i−1

k=1 z
′
k.

As a result, we recompose the original model to add vir-
tual dense connections without changing the functionality
of the original model. The transformation facilitates back-
propagating more gradients from deep blocks to shallow
blocks.

Virtual Dense Connection Method
Based on the observation in the motivating study, we think
that back-propagating more gradients from deeper blocks in
the network can enhance adversarial transferability. There-
fore, our Virtual Dense Connection method (VDC) back-
propagates more gradients through virtual dense connec-
tions after model recomposition.

First, we denote the gradient of blocki as gi =
∂fi(zi−1)
∂zi−1

.
Then the gradient of the recomposed blocki is:

g′
i =

∂f ′
i(zi−1)

∂zi−1
=

∂(fi(zi−1)− x−
∑i−1

k=1 z
′
k)

∂zi−1
(1)

z′
i−1 is the output of the recomposed blocki−1, and zi−1

is the input to blocki. In the recomposed model with virtual
dense connections, we have:

zi−1 = x+
i−1∑
k=1

z′
k. (2)

Therefore, the gradient g′
i = ∂(fi(zi−1)−zi−1)

∂zi−1
= gi − 1,

where 1 is the identity matrix.
To craft adversarial perturbation, we compute the gradient

of the loss to the input x of the recomposed model:

∂loss

∂x
=

∂loss

∂zn

∂zn

∂x
=

∂loss

∂zn

∂(z′
n + x+

∑n−1
k=1 z

′
k)

∂x

=
∂loss

∂zn

∂(f ′
n(zn−1) + x+

∑n−1
k=1 z

′
k)

∂x

=
∂loss

∂zn

∂(f ′
n(zn−1) + zn−1)

∂x

=
∂loss

∂zn

∂(f ′
n(zn−1) + zn−1)

∂zn−1

∂zn−1

∂x

=
∂loss

∂zn
(g′

i + 1)
∂zn−1

∂x
= · · · = ∂loss

∂zn

n∏
k=1

(g′
k + 1).

(3)

To back-propagate more gradients from deeper blocks,
VDC reduces the gradient inside recomposed blocks to
back-propagate more gradients from deeper blocks via vir-
tual dense connections. We utilize a factor 0 < λ < 1 to
reduce the gradient of each recomposed block. Therefore,
the updated gradient on the input is:

Grad =
∂loss

∂zn

n∏
k=1

(λg′
k + 1) =

∂loss

∂zn

n∏
k=1

(λ(gk − 1) + 1)

=
∂loss

∂zn

n∏
k=1

(λgk + (1− λ)1).

(4)

We divide Grad by λn for simplicity and denote γ = 1−λ
λ .

Then the gradient is simplified to:

Grad =
∂loss

∂zn

n∏
k=1

(gk + γ1). (5)
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Nevertheless, it is hard to compute Grad because we cannot
directly obtain the gradient gk inside each block. The com-
putation of gk is expensive, which requires O(H×W ×C).
Instead, we could acquire the gradient of the loss to the input
of each block in O(1), which we denote as Gradi =

∂loss
∂zi−1

.
We expand the terms in Grad and denote their patterns

by the expansion of gk or 1. For example, we denote the
term ∂loss

∂zn
(gk)(γ1) · · · (γ1) by the pattern [gk,1, · · · ,1].

For the purpose of computing Grad in O(1), we only con-
sider the terms in Grad with one consecutively skip, which
means that there is only one consecutive substring of 1 in the
pattern, and the previous example is one consecutively skip
term. Under one consecutive skip assumption, Grad can be
approximated by fusing the Gradi with all Gradj , when
i < j ≤ n. Therefore, the combined gradient ConGradi of
blocki can be expressed as follows:

ConGradi = Gradi + s ·
n∑

j=i+1

Gradj · γn−j+1, (6)

where we set a scaling factor 0 < s < 1 to control the
ratio of the back-propagated gradients from virtually con-
nected deeper blocks. As a result, under the approximation
assumption, the gradient from deeper blocks can be easily
back-propagated in the backward pass and the computation
of Grad in O(1). Finally, VDC updates the target image
with the sign of Grad by a small step size ϵ′ = ϵ

T in each
iteration, where T is the iteration number. The update rule is
formulated as:

xadv
t+1 = xadv

t + ϵ′ · sgn{Grad}. (7)

Implementation
We aim to implement our proposed VDC on transformer-
based models, taking the special design of ViTs into con-
sideration. We demonstrate the components we select for
utilizing VDC. The illustration of implementing VDC on
transformer-based models is shown in Figure 3.

Attention Map. The Attention map is the core function-
ality of the transformer-based models, which computes the
relationship between image patches. Although the receptive
field of the transformer-based model is the whole image, the
deep blocks capture more high-level semantics compared
with shallow blocks (Dosovitskiy et al. 2020). The gradi-
ents of the attention map from deep blocks are meaningful
because the gradients from deep blocks avoid overfitting to
the model. Therefore, we deploy VDC on Attention block to
densely connect the attention map in the Attention block.

MLP Block. The MLP block is another indispensable
component in transformer-based models. Unlike the Atten-
tion block, the MLP block aggregates the channel-wise in-
formation of each patch. The skip connection of the MLP
block also shows the most influence on adversarial trans-
ferability in the motivating study. Therefore, we also apply
VDC to the MLP block.

Figure 3: Illustration of Virtual Dense Connection method.
The dark dash lines are the backward gradient through re-
composed virtual connections on Attention maps and MLP
blocks, which are in red and green dash lines to back-
propagate more gradient from the deeper blocks.

Comparison with Previous Approaches
We recompose the original model without changing the for-
ward functionality of the original transformer-based mod-
els and only modify the backward path through virtual
dense connections to the Attention maps and MLP blocks.
Previous ViT attacking methods explore the structure of a
transformer-based model for boosting adversarial transfer-
ability (Wei et al. 2022). Nevertheless, they fail to investi-
gate the advantages of each component in transformer-based
models thoroughly. We do a motivating study to explore the
benefit of the skip connection and the gradient from deeper
blocks.

SGM (Wu et al. 2020a) assigns a decay factor on the
gradients of residual modules to use more gradients from
existing skip connections. In contrast, VDC utilizes model
recomposition to construct virtual dense connections with-
out changing the forward pass. Therefore, SGM can only
be applied to models with skip connections, while VDC
does not rely on such specific model structures. Moreover,
VDC can back-propagate more gradients from deeper blocks
through virtual dense connections. For efficiency, we imple-
ment VDC under the one consecutive skip approximation to
compute the update gradient in O(1).

Experiments
In this section, we first explain our experimental setup.
Then we compare our approach with state-of-the-art ad-
versarial attacks against transformer-based models and
convolution-based models to demonstrate the effectiveness
of our approach on improving the transferability between
transformer-based models and the cross-structure transfer-
ability. Finally, we do an ablation study on the two compo-
nents in our VDC as well as the hyper-parameters to under-
stand our proposed approach better.

Experimental Setup
Our experiments mainly focus on the ImageNet dataset
(Russakovsky et al. 2015) to attack image classification
models, including transformer-based and convolution-based
models. For fair comparisons, we follow the protocol (Wei
et al. 2022) in the literature for the model and dataset.

Dataset. To align with the previous work, we follow the
baseline method (Wei et al. 2022) to randomly sample 1000
images of different classes from the ILSVRC 2012 valida-
tion set (Russakovsky et al. 2015). We ensure that almost
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Model Attack ViT-B/16 PiT-B DeiT-B Visformer-S CaiT-S/24 TNT-S LeViT-256 ConViT-B

ViT-B/16

MIM 100.0 34.5 64.3 36.5 64.1 50.2 33.8 66.0
SE 99.9 31.8 68.3 40.5 67.4 59.3 43.8 63.7

SGM 100.0 34.3 72.8 38.3 72.2 59.4 39.8 75.0
PNA 100.0 45.2 78.6 47.7 78.6 62.8 47.1 79.5
VDC 100.0 54.8 85.8 57.4 84.1 74.8 58.1 85.9

PiT-B

MIM 24.7 100.0 33.9 44.5 34.7 43.0 38.3 37.8
SE 31.7 99.8 40.9 52.1 42.2 52.6 47.3 44.9

SGM 30.3 100.0 44.3 62.3 47.7 62.6 56.4 47.1
PNA 47.9 100.0 62.4 74.6 62.6 70.6 67.3 61.7
VDC 57.7 100.0 74.4 83.1 72.8 83.4 79.4 75.1

DeiT-B

MIM 86.3 68.4 100.0 71.9 97.7 89.8 68.3 98.3
SE 91.6 93.7 99.9 82.7 98.4 94.6 80.7 97.8

SGM 88.3 65.7 100.0 73.1 97.7 92.3 74.3 97.4
PNA 91.0 74.2 100.0 82.5 98.1 94.4 80.1 98.4
VDC 91.8 79.9 100.0 84.9 98.6 95.5 85.5 98.8

Visformer-S

MIM 28.1 50.3 36.9 99.9 41.0 51.9 49.4 39.6
SE 35.2 57.0 46.2 99.6 49.4 59.1 56.4 45.4

SGM 15.5 39.6 25.9 100.0 29.5 45.4 41.3 26.3
PNA 35.4 61.5 51.0 100.0 54.7 66.3 64.6 50.7
VDC 43.2 72.7 63.9 100.0 65.6 76.9 77.1 58.3

Table 2: The attack success rates (%) against eight models by various transfer-based attacks. The best results are in bold.

all of the selected images can be correctly classified by the
target models.

Models. We evaluate the transferability of adversarial ex-
amples of ViTs from two perspectives. We first assess the
transferability between transformer-based models. We select
four different transformer-based models as the local surro-
gate models to attack eight target transformer-based mod-
els, including the four surrogate models. The four surrogate
models are ViT-B/16 (Dosovitskiy et al. 2020), PiT-B (Heo
et al. 2021), DeiT-B (Touvron et al. 2021a) , and Visformer-
S (Chen et al. 2021). The additional four target models are
CaiT-S/24 (Touvron et al. 2021b), TNT-S (Han et al. 2021),
LeViT-256 (Graham et al. 2021), and ConViT-B (d’Ascoli
et al. 2021). We then evaluate the cross-structure trans-
ferability between transformer-based and convolution-based
models. We choose two kinds of convolution-based models
as the target models: normally trained undefended models
and adversarially trained defended models. We select four
undefended convolution-based models, including Inception-
v3 (Inc-v3) (Szegedy et al. 2016), Inception-v4 (Inc-v4)
(Szegedy et al. 2017), Inception-Resnet-v2 (IncRes-v2)
(Szegedy et al. 2017), and Resnet-v2-152 (Res-v2) (He et al.
2016a,b). We test three adversarially trained models (Tramèr
et al. 2017), including Inc-v3ens3, Inc-v3ens4, and IncRes-
v2adv. Besides, we evaluate the cross-transferability from
convolution-based models to transformer-based models. We
select Resnet-v2, Densenet121 (Dense-121) (Huang et al.
2017), and Mobilenetv3-small-075 (Mobile-v3) (Howard
et al. 2019) as the surrogate models and test the attack suc-
cess rate on the eight transformer-based models.

Baseline Methods. We choose MIM as our baseline ap-
proach, because all the baseline methods utilize the momen-
tum optimizer to enhance the transferability (Dong et al.
2018). In order to show the advantages of our proposed
VDC, we select SGM (Wu et al. 2020a) as our competi-
tive baseline, which utilizes the skip connection structure in-

side the network with a decay factor to reduce the gradient
from the residual module. To show the state-of-the-art per-
formance of our method, we compare our method with two
state-of-the-art attacking algorithms against transformer-
based models: PNA (Wei et al. 2022) and SE (Naseer et al.
2021). PNA leverages the attention structure in the trans-
former block to craft transferable adversarial examples, and
SE deploys the self-ensemble mechanism to augment the
gradient. We do not compare VDC with TR (Naseer et al.
2021), because TR requires more training data and compu-
tation resources for fine-tuning on the Imagenet, which is
unfair for performance comparison.

Evaluation Metric. We measure the adversarial transfer-
ability based on the attack success rate. We compute the ra-
tio of the adversarial examples that successfully mislead the
target model among all the generated adversarial examples.

Hyper-parameters. We follow the hyper-parameter set-
ting of the baseline approaches in their implementations for
a fair comparison. Following the previous setting in the lit-
erature (Wei et al. 2022), we set the budget ϵ = 16, with the
image pixel value ranging from 0 to 255. We pick the num-
ber of the iteration T = 10, so the step length α = ϵ

T = 1.6.
Since all the baselines utilize the momentum optimizer, we
set the decay factor µ = 1.0. We resize all images to
224×224 as the input and pick the patch size to be 16 for the
inputs of transformer-based models. For our proposed VDC,
we set the scaling factor and the decay factor to be 0.1 and
0.5, respectively. Some transformer-based models have the
same resolution in the whole network, while the others have
different resolutions in different stages. Therefore, for the
networks keeping the same resolution, we virtually connect
all the blocks during the back-propagation. Otherwise, we
only virtually connect the blocks with the same resolution.
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Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-v2 Inc-v3ens3 Inc-v3ens4 IncRes-v2adv

ViT-B/16

MIM 31.7 28.6 26.1 29.4 22.3 19.8 16.5
SE 40.8 40.0 31.5 38.8 31.0 30.5 23.8

SGM 29.5 25.9 21.6 26.0 17.6 17.0 13.9
PNA 42.7 37.5 35.3 39.5 29.0 27.3 22.6
VDC 49.3 44.4 39.3 44.8 33.8 33.8 27.8

PiT-B

MIM 36.3 34.8 27.4 29.6 19.0 18.3 14.1
SE 46.4 41.2 35.0 39.4 25.3 22.3 19.5

SGM 39.8 35.4 29.8 30.8 18.1 16.4 11.5
PNA 59.3 56.3 49.8 53.0 33.3 32.0 25.5
VDC 68.2 60.3 57.0 59.5 42.2 39.8 32.3

DeiT-B

MIM 56.1 50.9 47.9 52.9 40.8 38.7 32.6
SE 63.2 57.6 59.7 63.1 48.5 44.3 38.6

SGM 52.1 45.8 43.2 46.9 31.8 31.5 27.2
PNA 66.5 60.7 60.9 64.0 49.3 46.1 40.8
VDC 69.9 63.0 63.8 65.8 53.3 52.0 45.3

Visformer-S

MIM 44.5 42.5 36.6 39.6 24.4 20.5 16.6
SE 55.5 55.0 44.9 48.3 30.9 26.6 24.4

SGM 33.1 32.7 24.6 26.2 11.7 9.4 6.9
PNA 55.9 54.6 46.0 51.7 29.3 26.2 21.1
VDC 71.9 69.8 60.9 65.0 40.8 34.8 28.3

Table 3: The attack success rates (%) against seven models by various transfer-based attacks. The best results are in bold.

Experimental Results

We present the experimental results of the adversarial trans-
ferability of our approach compared with baselines on dif-
ferent attacking settings. We craft adversarial examples by
our approach and other baselines on the surrogate models
and transfer the adversarial examples to target models. We
measure the transferability between transformer-based mod-
els and the cross-structure transferability from transformer-
based models to convolution-based models.

We first assess the transferability between transformer-
based models. We observe from Table 2 that, our proposed
VDC achieves a 100% white-box attack success rate and
outperforms all the baselines with a large margin of 8.2%
on average under the black-box setting. Compared with
SGM, which utilizes the skip connection structure in the
network, our approach deploys virtual dense connections to
the deeper blocks exerting significant improvement on the
transferability. This result validates our assumption in the
motivating study that back-propagating more gradients from
deeper blocks can boost transferability and shows the ad-
vantages of adding virtual dense connections in the back-
ward path. Compared with PNA and SE, which use differ-
ent architectures of the transformer-based models to enhance
transferability, our approach adds more connections virtu-
ally based on model recomposition. The remarkable perfor-
mance also confirms the effectiveness of our selected archi-
tecture components.

Moreover, we evaluate the cross-structure transferability
from transformer-based to convolution-based models. As
shown in Table 3, the cross-structure transferability drops
compared with the transferability between transformer-
based models, due to the structure difference of models.
Compared with baselines, our proposed VDC still enhances
the cross-structure transferability by over 7.2% on average,
validating the superiority of the proposed VDC.

Component ViT CNN Adv-CNN
None 56.2 29.0 19.5
MLP 66.0 34.4 24.1
Attention 66.8 37.0 24.6
Attention + MLP (VDC) 75.1 44.5 31.8

Table 4: The average adversarial transferability (%) against
ViTs, CNNs, and adversarially trained CNNs by using dense
connection on different components in ViT-B/16.

Ablation Study
We do an ablation study to explore the contribution of the
components in VDC by attacking the ViT-B/16 model. We
generate adversarial examples by different combinations of
the components in VDC and measure the transferability. The
experimental result is shown in Table 4. We can see that both
densely connecting the MLP blocks and the Attention maps
can enhance adversarial transferability. The transferability
improvement by densely connecting the MLP block is a little
bit inferior than the Attention map, because the Attention
map is the core functionality in transformer-based models.

Conclusion
In this paper, we start with a motivating study to conclude
that back-propagating gradients from deeper blocks can en-
hance transferability. We propose the Virtual Dense Con-
nection method (VDC) to back-propagate more gradients
from deeper blocks. Specifically, we recompose the origi-
nal model to add virtual dense connections without chang-
ing the forward pass. Then we back-propagate gradients of
deeper Attention maps and MLP blocks via virtual dense
connections when generating adversarial samples. Extensive
experiments validate the superiority of our approach over the
state-of-the-art approaches.
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