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Abstract

Imperceptibility is one of the crucial requirements for ad-
versarial examples. Previous adversarial attacks on 3D point
cloud recognition suffer from noticeable outliers, resulting in
low imperceptibility. We think that the drawbacks can be al-
leviated via taking the local curvature of the point cloud into
consideration. Existing approaches introduce the local geom-
etry distance into the attack objective function. However, their
definition of the local geometry distance neglects different
perceptibility of distortions along different directions. In this
paper, we aim to enhance the imperceptibility of adversarial
attacks on 3D point cloud recognition by better preserving the
local curvature of the original 3D point clouds. To this end,
we propose the Curvature-Invariant Method (CIM), which
directly regularizes the back-propagated gradient during the
generation of adversarial point clouds based on two assump-
tions. Specifically, we first decompose the back-propagated
gradients into the tangent plane and the normal direction.
Then we directly reduce the gradient along the large curva-
ture direction on the tangent plane and only keep the gradient
along the negative normal direction. Comprehensive experi-
mental comparisons confirm the superiority of our approach.
Notably, our strategy can achieve 7.2% and 14.5% improve-
ments in Hausdorff distance and Gaussian curvature measure-
ments of the imperceptibility.

Introduction
Deep neural networks (DNNs) dominate state-of-the-art so-
lutions for a variety of computer vision tasks, comprised
of image classification (Russakovsky et al. 2015; Wu et al.
2019), object detection (Lin et al. 2014) and 3D point cloud
recognition (Yi et al. 2016). 3D point cloud recognition
models are widely deployed in lots of safety-critical real-
world systems, such as autonomous driving and medical di-
agnosis systems (Dong, Wang, and Abbas 2021). However,
recent research shows that DNNs are vulnerable to adver-
sarial attacks (Zhang et al. 2023b,a, 2022), which inject im-
perceptible noise into the original input to mislead the DNN
models. It raises security issues on the deployment of DNN
applications (Zhang et al. 2023c,d; Wu et al. 2023). Simi-
larly, 3D point cloud recognition models are also susceptible
to adversarial attacks (Xiang, Qi, and Li 2019). Therefore, it
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Figure 1: Visualization of generated adversarial point cloud
by various attacking algorithms on randomly selected five
classes. The adversarial examples are generated on the
PointNet model.

is indispensable to design adversarial attack approaches to
detect the deficiencies inside the 3D point cloud recognition
models before their deployment in real-world applications.

3D point cloud adversarial attacks work by adding, delet-
ing, or shifting points in the point clouds (Xiang, Qi, and
Li 2019). Among the schemes of 3D point cloud adversarial
attacks, shifting points, i.e., changing the coordinates of the
points, attracts more attention from researchers (Hamdi et al.
2020). Similar to 2D adversarial images (Wu et al. 2021,
2020b), 3D adversarial point clouds are also usually crafted
with the guidance of the back-propagated gradients. For ex-
ample, attackers can adapt the Fast Gradient Sign Method
(FGSM) to generate 3D adversarial point clouds (Goodfel-
low, Shlens, and Szegedy 2014).

Similar to adversarial attacks on 2D images, one of the
core challenges of 3D point cloud adversarial attacks is im-
perceptibility, which requires that the modification of the
point cloud is unnoticeable for humans. Inspired from the Lp

constraint of 2D image adversarial attacks that the p norm
of the perturbation is constrained by a budget of ϵ (Deng
et al. 2023; Wu et al. 2020a), 3D point cloud adversarial at-
tacks also adopt the similar idea. That is, the modification
of the point’s coordinates should satisfy the Lp constraints.
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However, satisfying this hard constraint is not enough, since
the resultant adversarial point clouds can still contain noisy
outliers, which destroy the local geometry properties of the
original point clouds and deteriorate the visual quality of the
adversarial point clouds in Figure 1.

To improve the imperceptibility of adversarial point
clouds, some researchers combine the misclassification ob-
jective function with the Mean Square Error (MSE) to make
small L2 perturbations on the target point clouds. Some (Liu
and Hu 2022; Wen et al. 2020) improve the MSE loss with
other advanced distance measurements, like Chamfer dis-
tance (Fan, Su, and Guibas 2017) and Hausdorff distance
(Taha and Hanbury 2015). Others adopt local shape descrip-
tors, like normal direction, to reduce noisy outliers in 3D
adversarial point cloud (Wen et al. 2020).

Nevertheless, the imperceptibility of existing 3D point
cloud adversarial attacks is still unsatisfactory. The reasons
are as follows: (1) Though previous approaches take 3D dis-
tance measurements and local shape descriptors into con-
sideration, they neglect the influence of the local curvature,
which is also a vital surface property along with the nor-
mal direction. (2) Some methods (Wen et al. 2020) try to
introduce the local curvature distance into the attack objec-
tive function. However, their definition of the local curva-
ture distance focuses on the average angle between the nor-
mal vector and the vectors starting from a point to each of
its neighboring points, which neglects different perceptibil-
ity of distortions along different directions. Besides, such a
combination of the misclassification objective function and
the distance measurements requires extra hyper-parameters
to balance the power of different terms during the genera-
tion of adversarial point clouds, which are time-consuming
to tune.

In this paper, we propose the Curvature-Invariant Method
(CIM) to overcome the above flaws of previous approaches.
To improve imperceptibility, CIM attempts to utilize the in-
formation of local curvature to preserve the local surface ge-
ometry of 3D point clouds. Instead of incorporating com-
plicated objectives into the attack objective function, we di-
rectly rectify the directions of the back-propagated gradients
during the search for adversarial point clouds.

Specifically, we first decompose the back-propagated gra-
dient of each point in the point cloud into three orthogo-
nal directions: the normal direction, the maximum principal
direction, and the minimum principal direction. The maxi-
mum and minimum principal directions reside on the tan-
gent plane of the point. Then as shown in Figure 3, to main-
tain the local geometry of point clouds, we directly modify
the directions of the update gradients as follows: (1) On the
tangent plane, we reduce the gradient along the large cur-
vature direction. To trade off imperceptibility and attack ef-
fectiveness, we achieve this goal by only keeping the gra-
dient along a linear combination of two principal directions
with more weights on the minimum principal direction. (2)
Along the normal direction, we only keep the gradient along
the negative normal direction, having a negative dot product
with the normal.

We conduct extensive experiments to validate the effec-
tiveness of our proposed CIM. Remarkably, on average, our

CIM can not only enhance the Hausdorff distance by over
7.2 % , but also boost the adversarial imperceptibility mea-
sured by the Gaussian curvature difference by above 14.5 %.
Our contributions are:

• To improve the imperceptibility of the generated 3D
adversarial point clouds, we propose the Curvature-
Invariant Method (CIM). CIM attempts to utilize the in-
formation of local curvature to preserve the local surface
geometry of 3D point clouds. To this end, we directly
regularize the update gradient by reducing the gradient
along the large curvature direction and only keeping the
gradient along the negative normal direction.

• We derive the mathematical proofs of two assumptions
and the upper bound of the gradient variation for each
point generated by our CIM.

• We conduct comprehensive experiments to validate the
advantages of CIM, which promotes both the attack suc-
cess rate and the imperceptibility of 3D adversarial point
clouds.

Related Work
3D Point Cloud Recognition
A 3D point cloud is a discrete set of data points to repre-
sent the 3D shape of an object. With the development of
deep learning, various deep learning-based approaches have
achieved surprising performance on 3D point cloud recogni-
tion. PointNet (Qi et al. 2017a) is a representative approach
applying a multi-layer perception to point features and de-
ploying a max-pool module for aggregating point features
efficiently. PointNet++ (Qi et al. 2017b) extends PointNet
with single-scale and multi-scale designs for better extract-
ing local features. DGCNN (Wang et al. 2019) utilizes point
neighbors to better extract local geometric features. Point-
Conv (Wu, Qi, and Fuxin 2019) reformulates the convolu-
tion operation to efficiently compute the weight functions
for scaling up the network.

3D Adversarial Attacks and Defenses
Current 3D adversarial attacks can be roughly divided into
three categories based on the perturbation schemes: adding
points, deleting points, and shifting points. Some researchers
utilize the saliency map for deleting important points (Zheng
et al. 2019) or add synthetic points to the original point cloud
(Xiang, Qi, and Li 2019). More research attention is focused
on perturbing the coordinates of the point in the point cloud
(Tu et al. 2020; Zhou et al. 2020). Usually, the adversar-
ial point clouds are crafted by employing the gradient of a
C&W attack objective function that combines the misclassi-
fication loss with different quality measurements, including
3D distance metrics (Liu and Hu 2022) and local shape de-
scriptors (Wen et al. 2020).

Our Curvature-Invariant Method (CIM) proposes to con-
sider the local surface property (i.e., the curvature) of the
point in the point cloud. Previous approaches try to introduce
the local curvature distance into the attack objective func-
tion. However, their definition of the local curvature distance
neglects different perceptibility of distortions along different
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directions. Besides, such a combination of the misclassifica-
tion objective function and the distance measurements re-
quires extra hyper-parameters to balance their power, which
are time-consuming to tune. Unlike previous methods, we
directly regularize the update gradient on each point based
on the curvature property to maintain the local geometry dur-
ing the search for adversarial point clouds.

Multiple defense approaches have been proposed to de-
fend against 3D adversarial attacks. Mainstream schemes
are based on pre-processing (Zhou et al. 2019), adversarial
training (Liu, Yu, and Su 2019; Sun et al. 2021), and gather-
vectors (Dong et al. 2020).

Methodology
Preliminary
A point cloud is composed of an unordered set of points
P = {pi}ni=1 ∈ Rn×3 sampled from the surface of an ob-
ject with the ground truth label c. Each point pi ∈ R3 is
a vector representing the coordinates (x, y, z) of the point
i. n is the number of points in the point cloud. A classi-
fier f(·) takes the point cloud P as the input and outputs
the label prediction c′ = f(P ). In the setting of 3D ad-
versarial point cloud attacks, we aim to craft an adversarial
point cloud P adv by shifting the original point cloud with
∆ ∈ Rn×3 (i.e., P adv = P + ∆) to mislead the classifier
(i.e., f(P adv) ̸= c). With the aim of imperceptibility, the
perturbation ∆ should satisfy the Lp constraint such that
∥∆∥p < ϵ, where ∥·∥p is the Lp norm. In this paper, we fo-
cus on the L∞ norm by following the baseline (Huang et al.
2022).

Curvature-Invariant Method
The motivation behind our Curvature-Invariant Method
(CIM) is to improve the adversarial imperceptibility by tak-
ing the local curvature into consideration. Based on our two
assumptions, we directly regularize the update gradient for
each point in the point cloud during the generation of adver-
sarial point clouds. To this end, we first transform the orig-
inal axis to a proper axis for each point in the point cloud
for efficiently regularizing the update gradient. Then we di-
rectly regularize the update gradient under the transformed
axis based on our two assumptions to generate adversarial
point clouds.

Coordinate Transformation For a given point cloud P =
{pi}ni=1 ∈ Rn×3, the local surface property of a point pi

can be approximated by its k nearest neighbors Npi on the
point cloud (Hoppe et al. 1992). Specifically, we first com-
pute the covariance matrix Cpi of the differences between pi

and each of its k nearest neighbors Npi as shown in Equa-
tion 1:

Cpi =
∑

q∈Npi

(q − pi)(q − pi)
T . (1)

The covariance matrix Cpi is positive semi-definite. We then
obtain its three eigenvalues (λ1, λ2, λ3) in descending order
and the corresponding eigenvectors (e1, e2, e3).

Figure 2: The illustration of coordinate transformation. We
project the origin of the original coordinate system to the
tangent plane and set the projection point as the origin of the
transformed coordinate system. The x’ and y’ are two direc-
tions on the tangent plane determined by two parameters a
and b, while z’ is the normal direction.

Following the basic concept of differential geometry
(Do Carmo 2016), the first two eigenvalues (λ1 and λ2) are
the principal curvatures of the local surface of pi determined
by its neighbors. Specifically, λ1 is the maximum principal
curvature, and the corresponding maximum principal direc-
tion is e1. Besides, λ2 is the minimum principal curvature,
and the corresponding minimum principal direction is e2.
The two principal directions define the tangent plane of the
point pi. Furthermore, the last eigenvector e3 is the normal
vector of the tangent plane, and we denote it to be the normal
direction.

To conveniently regularize the update gradient based on
the local geometry, we introduce a new coordinate system,
which sets the normal direction e3 to be its z′ direction.
Since the normal direction is perpendicular to the tangent
plane, any pair of orthogonal vectors residing on the tangent
plane can form the x′ and y′ directions of the new coor-
dinate system, respectively. We note that the two principal
directions (e1 and e2) form one basis of the tangent plane.
Therefore, we can represent new x′ and y′ axes with the
linear combination of the two principal directions.

Theorem 1. x′ = a · e1 + b · e2 and y′ = b · e1 − a · e2
such that a, b ∈ R and a2 + b2 = 1 form one basis of the
tangent plane.

After the determination of the three axis directions of the
new coordinate system, we compute the new origin O′ of
the transformed coordinate system. We take the projection
of the origin O from the original coordinate onto the tangent
plane as shown in Figure 2 and assign the projected origin
as the new origin.

We can now formulate the transformation from the origi-
nal coordinate system O − xyz to the new coordinate sys-
tem O′ − x′y′z′. As we can observe from Figure 2, the
coordinate transformation consists of the translation from O
to O′ and the rotation of the axes. Therefore, we utilize a
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rotation matrix and a translation matrix to define the coordi-
nate transformation.

Theorem 2. Denote Si : R3 7→ R3 is the transformation
to convert the original coordinate system O − xyz to the
new coordinate system O′ − x′y′z′. The transformation
Si consists of a rotation matrix Ri and a translation ma-
trix Ti. The coordinate p′

i under the new coordinate system
and the coordinate pi under the original coordinate system
can be transformed conversely by the following equation:

p′
i = Ri(pi + Ti),

pi = Ri
Tp′

i − Ti.
(2)

The rotation matrix Ri and the translation matrix Ti are
given as follows:

Ri =

(
a b 0
b −a 0
0 0 1

)(
e1
e2
e3

)
,

Ti = −(pi
Te3)e3.

(3)

Attacking Algorithm For a given classifier f and the in-
put point cloud P , we first apply the coordinate transforma-
tion to all the points in the point cloud:

P ′ = {Ri(pi + Ti)}Ni=1,

P = {Ri
Tp′

i − Ti}Ni=1.
(4)

We then compute the max-margin logit loss function by
following C&W (Carlini and Wagner 2017) as the attack ob-
jective function:

L(P , c) = max([f(P )]c −max
i̸=c

[f(P )]i, 0), (5)

where c is the ground truth label of the input point cloud,
and [f(P )]i is the model’s confidence score of classifying
the input point cloud P into the class i.

With the objective to obtain the gradient on the trans-
formed coordinate for efficiently regularizing the gradient,
we treat the input point cloud P as a function of the point
cloud P ′ in the tangent-normal space with the rotation and
translation matrices. The coordinate transformation is dif-
ferentiable, so we can directly take the gradient of the loss
function with respect to the transformed point cloud. We de-
note the gradient of the transformed point cloud as G, where
gi = (gi1, gi2, gi3) is the gradient of the attack objective
function with respect to the transformed point p′

i:

G = {gi}Ni=1 = ∇P ′L(P , c) =
∂L({Ri

Tp′
i − Ti}Ni=1, c)

∂{p′
i}Ni=1

.

(6)

After the coordinate transformation, the original coordi-
nate system is transformed into the normal vector and tan-
gent plane coordinate system for each point in the point
cloud, which is convenient for regularizing the update gra-
dient. In order to keep the local geometry, we consider two
assumptions to regularize the update gradient. The first as-
sumption is to constrain the update gradient along the large

(1) (2)

Figure 3: Observations for assumptions: (1) Perturbations
along the small curvature direction (e2) on the tangent plane
keep the local shape. (2) Perturbations along the negative
normal direction (−e3) keep the local shape.

curvature direction, while the second assumption is to re-
move the update gradient along the positive normal direc-
tion.

From Figure 3 (1), we can derive our first assumption.
Specifically, if we alter the point on the boundary of the
cylinder along the direction e2, the shape of the cylinder
will never change. If we perturb the point along the direc-
tion e1, the shape will greatly change. Therefore, with the
aim of keeping the local geometry, we propose to regular-
ize the update gradient on the tangent plane by reducing the
update gradient along the large curvature direction.

Assumption 1. The perturbation along smaller curvature
directions changes less on the local shape.

From Figure 3 (2), we can derive our second assumption.
Specifically, if the updating direction on the tangent plane
is x′, shifting the point along the negative normal direction
(−e3) is consistent with the local shape. If we perturb the
point along the positive normal direction, the local shape
will greatly change. As a result, to keep the local shape, we
propose to regularize the update gradient along the normal
direction by only allowing the update gradient along the neg-
ative normal direction.

Assumption 2. The perturbation along the negative nor-
mal direction changes less on the local shape.

Based on these two assumptions, we regularize the update
gradient to keep the local shape of the original point cloud.
We detail our regularization scheme on the tangent plane and
along the normal direction as follows.

Gradient Regularization on the Tangent Plane. We
propose an adaptive gradient regularization scheme on the
tangent plane based on the first assumption. To preserve the
local shape, we should reduce the perturbation along the
large curvature direction on the tangent plane. According to
the property of differential geometry, the curvature of any
direction on the tangent plane is bounded by the two princi-
pal curvatures. Therefore, we should reduce the update gra-
dient along the maximum principal direction. Besides, we
note that if the difference between the two principal curva-
tures is large, removing the update gradient along the maxi-
mum principal direction can largely preserve the local shape.
However, if the maximum principal curvature is similar to
the minimum principal curvature, perturbations along the
maximum principal direction achieve similar changes to the
local shape with those along the minimum principal direc-
tion. Therefore, to trade off imperceptibility and attack ef-
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fectiveness, we keep the update gradient along a linear com-
bination of two principal directions with more weights on
the minimum principal direction.

We first detail how to conveniently reduce the update gra-
dient along the large curvature direction. From Section , we
can see that the parameters a and b determine the trans-
formed directions. Therefore, we can rectify the update gra-
dient on the tangent plane by tuning the parameters a and b
and only keeping the update gradient along the x′ direction.
For example, we can set a = 0 and b = 1 to align the new
x′-axis with the minimum principal direction (i.e., x′ = e2)
and the new y′-axis with the maximum principal direction
(i.e., y′ = e3). Afterwards, we can remove the update gra-
dient along the y′-axis to only allow the perturbation along
the x′-axis, which is the minimum principal direction.

We then detail how to trade off imperceptibility and attack
effectiveness. We define the curvature ratio by the following
equation:

cr =
λ2√

λ2
1 + λ2

2

. (7)

The curvature ratio satisfies the inequality 0 < cr ≤ 1√
2

,
since 0 < λ2 ≤ λ1.

To identify the small difference between the two principal
curvatures, we utilize a hyper-parameter γ. If the curvature
ratio is smaller than γ, the curvature difference is defined
to be large. In this case, we completely remove the gradi-
ent along the maximum principal direction to keep the lo-
cal shape. In contrast, if the curvature ratio is larger than γ,
the curvature difference is defined to be small. In this case,
we do not need to completely remove the gradient along the
maximum principal direction. Instead, we deploy the adap-
tive gradient direction by taking the curvature ratio into con-
sideration. Specifically, we set the parameters a = λ2√

λ2
1+λ2

2

and b = λ1√
λ2
1+λ2

2

. As such, we combine the two principal

directions with more weights on the minimum principal di-
rection. We denote the update direction as the balanced prin-
cipal direction.

In summary, the gradient update direction x′ is:

x′ =

{
e2 cr < γ

λ2√
λ2
1+λ2

2

· e1 + λ1√
λ2
1+λ2

2

· e2 cr ≥ γ (8)

With the aim of rectifying the update gradient along the
balanced principal direction, we can directly modify the gra-
dient of the point i by the following equations:

gi1 = gi1,

gi2 = 0.
(9)

Gradient Regularization along the Normal Direction.
We describe the gradient rectification along the normal di-
rection based on the second assumption. With the objective
to only allow the gradient along the negative normal direc-
tion, we can directly rectify the update gradient by the for-
mula:

gi3 = min (gi3, 0) (10)

Algorithm 1: Curvature-Invariant Method

1: Input: input point cloud P and its ground-truth label c
2: Input: the classifier f , attack budget ϵ, and iteration T
3: Input: hyper-parameter γ and loss function L
4: Output: adversarial point cloud PT

5: α = ϵ
T , P0 = P

6: for t = 0← T − 1 do
7: Compute (λ1, λ2) and (e1, e2, e3) ▷ Eq. (1)
8: cr = λ2√

λ2
1+λ2

2

9: if cr < γ then
10: a = 0, b = 1
11: else
12: a = λ2√

λ2
1+λ2

2

, b = λ1√
λ2
1+λ2

2

13: end if
14: Transform Pt to P ′

t ▷ Eq. (2)

15: G =
∂L({Rt

TP ′
t−Tt}

∂{P ′
t}

16: G2 = 0 ▷ Eq. (9)
17: G3 = min (G3,0) ▷ Eq. (10)
18: P ′

t+1 = P ′
t − α · G

∥G∥1

19: Transform P ′
t+1 to Pt+1 ▷ Eq. (2)

20: Pt+1 = Clipϵ{Pt+1}
21: end for

In a nutshell, we rectify the update gradient of each point
in the point cloud by the constraints on the tangent plane
and the normal direction. Our overall attacking algorithm is
shown in Algorithm 1.

In our Curvature-Invariant Method, we can compute the
upper bound of the variation of the loss function for each
point in one iteration.

Theorem 3. Given the loss function L and the vari-
able point i in the point cloud (x′

i, y
′
i, z

′
i) initialized as

(p′i1, p
′
i2, p

′
i3). The variation of L is upper bounded by√

g2i1 + g2i2.

Experiments
In this section, we conduct extensive experiments to vali-
date the effectiveness of our proposed Curvature-Invariant
Method. We first clarify the setup of the experiments. After
that, we demonstrate the white-box attacking performance
and the imperceptibility measures of our method against
competitive baseline methods. We also compare the attack
effectiveness on defense models. The experiment results
demonstrate the effectiveness of our methods that both im-
prove the attack success rate and the imperceptibility of ad-
versarial examples compared with baseline methods. Fur-
thermore, we present the ablation study on the attack bud-
get to further demonstrate the superiority of our approach in
terms of attacking performance and imperceptibility.

Experiment Setup
We follow the protocol of the baseline method (Huang et al.
2022) to set up the experiments for a fair comparison to at-
tack 3D point cloud classification models trained on Model-
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Methods PointNet PointNet++ PointConv DGCNN
ASR MSE DH DG ASR MSE DH DG ASR MSE DH DG ASR MSE DH DG

3d-ADV 90.6 3.19 4.05 6.88 92.8 4.44 4.13 12.22 88.3 4.36 4.01 12.80 95.8 5.39 4.11 15.00
GeoA 92.5 2.16 3.47 5.35 94.0 2.61 3.20 7.38 92.5 3.07 3.59 9.90 95.7 3.34 3.12 8.51
SI-PC 94.2 1.83 3.45 4.54 91.9 2.83 3.49 8.57 93.2 3.15 3.68 9.47 96.3 3.44 3.12 7.97
CIM 96.3 1.82 3.29 4.18 94.9 2.55 3.13 6.68 94.8 2.93 3.36 8.00 96.5 3.25 2.96 6.96

Table 1: The attacking performance on ModelNet40. ASR is the attatck success rate (%) and MSE is the mean square errors.
DH measures the Hausdorff distance (10−2) and DG shows the Gaussian curvature distance (10−4).The best result is in bold.

Net40 (Wu et al. 2015). ModelNet40 is also the most widely
utilized benchmark task for 3D point cloud adversarial at-
tacks (Wen et al. 2020; Xiang, Qi, and Li 2019; Huang et al.
2022). Here are the details of the experiment setup.

Dataset. We follow the dataset selection of the baseline
method (Huang et al. 2022) by utilizing the dataset Model-
Net40. ModelNet40 consists of 12,311 CAD models from
40 object categories, in which 9,843 models are intended for
training and the other 2,468 for testing. Following the pre-
processing of the PointNet (Qi et al. 2017a), we uniformly
sample 1,024 points from the surface of each object and
rescale them into a unit cube.

Models. We choose four representative 3D point cloud
recognition models containing PointNet (Qi et al. 2017a),
PointNet++ with MSG (Qi et al. 2017b), PointConv (Wu,
Qi, and Fuxin 2019) and DGCNN (Wang et al. 2019) as the
target model to craft adversarial point clouds and directly
test the models under the white-box setting. Furthermore,
we also consider the defended models as the target ones. We
select three defense methods covering input preprocessing-
based defense SRS, point cloud statistical outlier removal
SOR and DUP-Net (Yang et al. 2019).

Baseline Methods. We compare our approach with three
state-of-the-art attacking algorithms: 3d-ADV (Xiang, Qi,
and Li 2019), GeoA (Wen et al. 2020), and SI-PC (Huang
et al. 2022). 3d-ADV and GeoA are optimization ap-
proaches, which incorporate different quality measures like
MSE (Xiang, Qi, and Li 2019), Hausdorff Distance (Taha
and Hanbury 2015), and local curvature (Wen et al. 2020))
into the loss function to guarantee the quality of adversarial
point cloud. While, SI-PC is a gradient regularization ap-
proach, which drops out the gradient along the normal di-
rection to keep the shape of the adversarial point cloud. We
compare our approach with them under various settings to
validate the effectiveness of our method.

Evaluation. We first evaluate the imperceptibility of the
crafted adversarial point cloud from two perspectives. We
compare the l2 distance (MSE) and Hausdorff Distance DH

(Taha and Hanbury 2015) between the original point cloud
and the adversarial point cloud to measure the perturbation
generated by the attacking methods. We also evaluate the
imperceptibility from the point of view of the local surface
that we compute the difference of the Gaussian curvature
DG (Do Carmo 2016) between the original point cloud and
the adversarial one by following (Miao et al. 2022), which is
the difference of the two principle curvatures multiplication.
In addition to the measurement of imperceptibility, we also
evaluate the attacking performance by deploying the attack

Attack SOR SRS DUP-Net Average
3d-ADV 56.5 56.5 58.3 57.1

GeoA 60.6 63.3 60.8 61.6
SI-PC 77.7 70.0 79.3 75.7
CIM 78.4 73.7 80.4 77.5

Table 2: The attack success rates (%) of the adversarial point
clouds on three defense mechanisms. The examples are gen-
erated on the PointNet model and the best result is in bold.

success rate (ASR). The attack success rate is the ratio of
the adversarial examples that successfully mislead the target
model among all the generated adversarial examples. All the
experiments are conducted on a server equipped with one
TITAN X GPU.

Parameter. For a fair comparison, we set the maximum
L∞ budget of all the attacking methods to be ϵ = 0.16. In
addition, the number of iterations is set to be T = 5, and
the step length is 0.07. In the experiment, we adopt the un-
targeted attack under the same setting to evaluate the imper-
ceptibility and attacking performance. For our approach, we
set the hyper-parameter γ to regularize the gradient on the
tangent plane to be 0.3.

Performance Comparison
In this section, we analyze the performance of our approach
against the state-of-the-art baselines from the perspective of
imperceptibility and attack success rate, respectively.

As shown in Table 1, our approach achieves the highest
95.6% white-box attacking success rate on average com-
pared with all the baselines. In addition, our method out-
performs all the other baselines on all three measures of
imperceptibility, demonstrating the high quality of adver-
sarial samples generated by our approach. Especially, we
outperform the other baselines on the measure of Haus-
dorff distance and the Gaussian curvature with a large mar-
gin of 7.2% and 14.5% improvement respectively. Though
GeoA considers taking the curvature into the loss function,
the complex compound loss terms hinder the attacking al-
gorithm from achieving high quality, and GeoA disregards
the different perceptibility of distortion along different di-
rections. Furthermore, SI-PC regularizes the gradient by al-
lowing the perturbation along the tangent plane to keep the
local shape. However, our approach takes the curvature into
consideration, and we propose to constrain the gradient on
the tangent plane with large curvature to preserve the local
shape. Furthermore, we allow the negative gradient along
the normal direction to further enhance the performance.
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Figure 4: Ablation study on budget.

In addition, we assess the performance against the model
with defense mechanisms. We take PointNet as the source
model and generate adversarial examples for all the baseline
methods. Then we test the prediction accuracy of adversarial
examples on the PointNet with defense methods as shown
in Table 2. Our proposed method achieves a 77.5 % attack
success rate on average and surpasses all of the baselines
with a margin of 1.8%.

From the above experiments, our proposed method has
more imperceptibility compared with baselines. We con-
clude the reasons why CIM has good imperceptibility are
two-folded. Firstly, CIM attempts to utilize the information
of local curvature to preserve the local geometry of 3D point
clouds. We further regularize the update gradient by reduc-
ing the gradient along the large curvature direction and only
keeping the gradient along the negative normal direction.

Qualitative Results
We further visualize the adversarial point clouds to show the
qualitative results. We observe from Figure 1, our attacking
algorithm preserves the local curvature well. We can hardly
find any outliers on the generated adversarial point clouds
of our approach. Notably, our approach can preserve the lo-
cal shape compared with 3d-ADV and SI-PC. Furthermore,
our method has fewer outliers compared with GeoA. The
qualitative further validates the good imperceptibility of our
proposed approach against all the baselines.

Ablation Study
We do ablation studies on the influence of two branch factors
1) Inner factor: the regularization on the tangent plane and
normal direction. We want to see the contribution of each
regularization to the imperceptibility and attacking perfor-
mance. 2) Outer factor: the query budget and iteration time.

Figure 5: Ablation study on iteration.

Attack MSE DH DG

None 1.83 3.65 5.29
Normal Regularization 1.83 3.63 5.33
Tangent Regularization 1.83 3.36 4.24

Tangenmt+Normal (our) 1.82 3.29 4.18

Table 3: The results of the ablation study.

Regularization. We do an ablation study on the gradi-
ent regularization of CIM and observe the imperceptibility
to show the effectiveness of the gradient regularization on
both the tangent plane and the normal direction. We choose
PointNet as the source model with different regularization
strategies. As shown in Table 3, regularizing the gradient on
the tangent can largely enhance the imperceptibility, while
constraining the gradient on the normal direction lonely does
not boost the imperceptibility. However, combining the reg-
ularization together benefits the improvement of impercep-
tibility, which is consistent with our two assumptions.

Query Budget & Iteration Time. We measure the per-
formance of adversarial examples generated from the Point-
Net model by altering the factors. We observe from Figure
4 and Figure 5 that our attacking algorithm outperforms all
the baselines under all the outer factor settings.

Conclusion
In this paper, we find that current attacking methods fail to
keep the local shape of the adversarial point cloud. There-
fore, we propose the curvature-invariant method by con-
straining the gradient on the tangent plane along a small cur-
vature direction and eliminating the negative gradient along
the normal direction. Our approach boosts both the attack
imperceptibility and the attack success rate.
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