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Abstract

Few-shot Visual Question Answering (VQA) realizes few-
shot cross-modal learning, which is an emerging and chal-
lenging task in computer vision. Currently, most of the few-
shot VQA methods are confined to simply extending few-shot
classification methods to cross-modal tasks while ignoring
the spatial distribution properties of multimodal features and
cross-modal information interaction. To address this prob-
lem, we propose a novel Cross-modal feature Distribution
Calibration Inference Network (CDCIN) in this paper, where
a new concept named visual information entropy is pro-
posed to realize multimodal features distribution calibration
by cross-modal information interaction for more effective
few-shot VQA. Visual information entropy is a statistical
variable that represents the spatial distribution of visual fea-
tures guided by the question, which is aligned before and
after the reasoning process to mitigate redundant informa-
tion and improve multi-modal features by our proposed vi-
sual information entropy calibration module. To further en-
hance the inference ability of cross-modal features, we addi-
tionally propose a novel pre-training method, where the rea-
soning sub-network of CDCIN is pretrained on the base class
in a VQA classification paradigm and fine-tuned on the few-
shot VQA datasets. Extensive experiments demonstrate that
our proposed CDCIN achieves excellent performance on few-
shot VQA and outperforms state-of-the-art methods on three
widely used benchmark datasets.

Introduction
With the booming development of deep learning in recent
years, all kinds of Visual Language Processing (VLP) tasks
have attracted widespread attention from researchers, such
as image captioning (Pan et al. 2020), visual entailment
(Tran et al. 2022), Visual Question Answering (VQA) (Jiang
et al. 2020a; Penamakuri et al. 2023; Dancette et al. 2023)
and so on. As an important topic in VLP, VQA is a typical
cross-modal problem that needs to analyze visual content
and question semantics simultaneously. Currently, it is typ-
ically viewed as a classification problem where the goal is
to predict the accurate answer given a pair of images and
questions.
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Figure 1: Visual information distribution of different infer-
ence stages. The shade of the color means that the informa-
tion in that region is likely to be caught by the model.

The early joint embedding models (Fukui et al. 2016; Kim
et al. 2016; Ben-Younes et al. 2019) for VQA focused on the
fusion of multimodal features and cross-modal interactions,
most of which were realized through attention mechanism
(Yu et al. 2018; Kim, Jun, and Zhang 2018; Guo, Yao, and
Chu 2023) and graph neural network (Huang et al. 2020;
Li et al. 2019). These classical VQA methods are generally
trained on a large amount of labeled multimodal data and ig-
nore the sparsity problem in most categories caused by the
diversity of multimodal data. As a machine learning method
that aims to recognize new concepts with few samples, few-
shot learning caters to the characteristics of the VQA task
and trains an effective model with a small amount of labeled
data. For this reason, some methods (Dong et al. 2018; Yin
et al. 2021) are proposed, which attempt to apply few-shot
learning to solve few-shot cross-modal learning. However,
these methods cannot effectively deal with cross-modal in-
formation inference and constrain multimodal feature distri-
bution, which limits the performance of few-shot VQA.

Cross-modal semantic inference is capable of facilitat-
ing joint reasoning based on correlation analysis between
modalities, which is important for few-shot VQA. For a
given image and question, the operation of few-shot VQA
can be divided into two steps: understanding and reasoning.
The performance of “inference” becomes crucial for answer
prediction when the process of “understanding” can be well
completed by existing encoders such as ViT (Dosovitskiy
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et al. 2021), SwinT (Liu et al. 2021b) and so on. Cross-
modal “inference” aims to explore the relationships among
multimodal data and use one modality to guide the filtering
and enhancement of features in another modality.

The general few-shot VQA methods barely have the abil-
ity to perform cross-modal semantic inference, hence the se-
mantics of the question cannot be effectively used to guide
the visual encoding, resulting in visual encoding that may
focus on unimportant regions. For example, the information
distribution in the Figure 1 (a) means that the general model
cannot accurately explore the relationship between the ques-
tion word “mustache” and the visual object without cross-
modal inference. It captures the blue region associated with
the concept “person”. Obviously, the blue region contains
noise, which makes the spatial distribution of features far
from the corresponding categories. To address this problem,
the model requires learning how to discriminate redundant
information and adjust the feature distribution to a more rea-
sonable state. As shown in the Figure 1 (b), if the model
catches critical visual region “mustache” covered by the red
and removes the unrelated region, it will narrow the distance
of the multimodal features among the samples of the same
category in the feature space.

Based on the above analysis, we propose a Cross-modal
feature Distribution Calibration Inference Network (CD-
CIN) for few-shot VQA in this paper. A novel concept of
visual information entropy is defined, which is a statistical
form similar to information entropy in information theory.
It defines the entropy (average self-information) of visual
information discrete source under the condition of a given
question and reflects the spatial information distribution of
visual features guided by the question. We also propose a Vi-
sual Information Entropy Calibration Module (VIECM) to
realize the alignment of visual information entropy, in which
the consistency of the visual information entropy from pre-
inference (before multimodal relationship interaction) and
post-inference (after multimodal relationship interaction) is
used to realize information filtering and feature distribution
calibrating. Additionally, we also propose an inference en-
hancement pre-training strategy, which strengthens the rep-
resentation ability of multimodal features by pre-training on
a classic VQA paradigm. Extensive experiments on three
benchmark datasets demonstrate that our proposed CDCIN
performs excellently and outperforms state-of-the-art ap-
proaches.

Related Work
Although visual question answering is a hot topic in com-
pute vision, few-shot cross-modal learning only recently
starts to attract more attention and still has great research
potential. In this section, we will discuss some works re-
lated to our method from the perspectives of visual question
answering, few-shot learning and few-shot visual question
answering.

Visual Question Answering
Visual question answering is a challenging cross-modal
analysis task since it requires establishing relationships be-
tween visual and textual modalities to achieve cross-modal

semantic reasoning. Most of the current methods (Zhou et al.
2015; Yu et al. 2017; Ding et al. 2022) focused on improving
the fusion strategy of visual and textual features to achieve
good performance. These methods usually ignore the sig-
nificant guidance of question semantic information for im-
age understanding and are not good at relationship reason-
ing. To address the insufficient of the above methods, some
methods (Xu and Saenko 2016; Anderson et al. 2018; Pan
et al. 2022) attempt to utilize the attention mechanism to re-
inforce cross-modal interaction. Although the above atten-
tion related models can realize certain multimodal seman-
tic inference, it is difficult for them to reach high-level rea-
soning with limited semantic interactions. Therefore, some
VQA works (Huang et al. 2020; Jing et al. 2022; Cao et al.
2019) are devoted to enhancing the reasoning ability of at-
tention networks to achieve more deeply cross-modal infor-
mation interaction and reasoning. The above methods can
obtain good performance on classical VQA, but they suffer
severe failures when encountering certain classes with small
data sizes. This suggests that it is meaningful and promis-
ing work to deal with few-shot VQA by utilizing few-shot
learning methods.

Few-shot Learning
Few-shot learning is an idea of solving problems, which
teaches the model how to learn and enables the model to
recognize new concepts with few samples. Many few-shot
learning works (Jiang et al. 2020b; Zhang et al. 2022; Li,
Wang, and Hu 2021) use metric-based approaches to gener-
ate prototype representations for fast training of classifiers.
Some researchers (Yang et al. 2021; Ma et al. 2020) attempt
to use different calibration methods to reinforce the perfor-
mance of few-shot learning. While numerous existing few-
shot learning methods are applicable to multimodal data, a
comprehensive examination of the interplay between modal-
ities is often lacking in many of these approaches. When
dealing with cross-modal tasks that require deep interaction
between visual and semantic, these methods expose their in-
sufficiencies. Therefore, there is still significant room for the
development of few-shot learning on cross-modal reasoning
tasks.

Few-shot Visual Question Answering
Few-shot visual question answering aims to train an excel-
lent VQA model with limited data, which requires outstand-
ing cross-modal reasoning and powerful feature representa-
tion ability. Dong et al. (Dong et al. 2018) introduced few-
shot learning to VQA and image captioning and proposed
a fast parameter adaptation method to train the joint image-
text learner. Yin et al. (Yin et al. 2021) propose a two-stage
network, where each stage is responsible for intra-modal or
inter-modal relation capture. They extract features at differ-
ent levels by constructing visual feature maps and semantic
relationship maps by a multi-layer attention mechanism.

At present, the research results on few-shot VQA are rel-
atively few, and the studies have not attracted widespread
attention. These two papers mentioned above are considered
pioneering work on few-shot VQA. Although these works
have solved the problems of few-shot VQA to some extent,
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Figure 2: The framework of the cross-modal feature distribution calibration inference network. Given the support and query sets,
the CDCIN extracts visual and textual features and feeds them into CAIM to model cross-modal interaction. The distribution
of visual information before and after inference is aligned in the VIECM.

they fail to achieve efficient cross-modal inference to adjust
the integrated multi-modal feature distribution. This leads to
the dispersion of the feature distribution for each class, with
considerable distances from the class center, affecting the
overall performance adversely. Regarding the issue above,
we propose a Cross-modal feature distribution calibration
inference network for few-shot VQA that aligns the visual
information entropy to enhance the ability of feature dis-
tribution calibration. Extensive experiments on widely used
benchmark datasets demonstrate that the performance our
method surpasses state-of-the-art few-shot VQA methods by
a large margin.

Methodology
In this section, we will describe the problem definition of
few-shot VQA and introduce our proposed CDCIN and pre-
training method in detail.

Problem Statement
For each task τ , the few-shot VQA is formulated as a N -
way K-shot classification problem with N classes sampled
from the answer set and K examples per class. The answer
set contains the labels of the corresponding samples. If the
number of query examples for each class is M , we can get a
query set {Q} with N ×M samples and a support set {S}
with N × K samples. A training sample is a triplet con-
taining an image, a question, and an answer, so there are
three query subsets {QI}, {QT }, {QA} and support sub-
sets {SI}, {ST }, {SA} actually. We combine samples from
the same modality into the image set {I} = {SI , QI}, the
question set {T} = {ST , QT } and the answer set {A} =
{SA, QA}.

In this work, the features from {I}N×K+N×M and
{T}N×K+N×M are extracted through visual embedding

ψ(·; θψ) and text embedding ϕ(·; θϕ) neural networks. Dur-
ing the classification phase, the fused multimodal features
are divided into corresponding support sets {Smulti}N×K

and query sets {Qmulti}N×M , and the support sets are taken
as input to train the CDCIN by minimizing the loss over the
corresponding query sets.

Cross-Modal Feature Distribution Calibration
Inference Network

In this paper, we focus on studying deep cross-modal in-
ference and helping the model filter out redundant informa-
tion to calibrate the spatial distribution of multimodal fea-
tures for few-shot VQA. To this end, we propose a Cross-
modal feature Distribution Calibration Inference Network
(CDCIN), as illustrated in the Figure 2. In the CDCIN,
a new concept called visual information entropy is pro-
posed to reflect the spatial distribution of visual information,
which assists in excluding irrelevant information. Specif-
ically, CDCIN mainly includes a Co-Attention Inference
Module (CAIM) and a Visual Information Entropy Calibra-
tion Module (VIECM). In order to strengthen the represen-
tations of multiple modalities, we also design an Inference
Enhancement Pre-training strategy.

In the CDCIN, the word tokens of the question are em-
bedded by the pre-trained GolVe (Pennington, Socher, and
Manning 2014), and the visual features are extracted by the
Swin-Transformer (Liu et al. 2021b). Then the visual and
question features are simultaneously input to the CAIM to
mine cross-modal fine-grained interaction. The integrated
features will be sent to the multimodal feature adaptive fu-
sion module in the VIECM to generate visual information
entropy and the multimodal feature vector in the later rea-
soning stage. Finally, the information distribution alignment
is achieved through the information consistency loss.
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Co-Attention Inference Existing few-shot learning meth-
ods (Ye et al. 2020; Zhang et al. 2022) usually do not con-
sider cross-modal inference, resulting in insufficient rea-
soning ability. To completely realize the reasoning process
of VQA under the few-shot approach, we introduce a Co-
Attention Inference Module (CAIM). It is mainly composed
of masked multi-head self-attention and cross attention and
can realize the fine-grained interactions between images and
questions.

The CAIM deeply explores the correlation between vi-
sual and textual features. Specifically, the text encoder is
responsible for generating transitional features ready for
cross-modal interactive operations, which mainly achieves
through multi-head self-attention. Given a key and value of
dimension dk and query of dimension dv , the attended fea-
tures are obtained as follows:

SA(Q,K, V ) = softmax(
QKT

√
d

)V (1)

where K ∈ Rn×d, Q ∈ Rm×d, V ∈ Rn×d are key, query
and value respectively.

The multi-head self-attention splits the features into par-
allel “heads”. Each head independently performs the dot-
production. The calculation is given by:

T = MHSA(Q,K, V ) = [hi, h2, ..., ht]Wh (2)

hi = SA(QWQ
i ,KW

K
i , V W

V
i ) (3)

where T is attended question features, WQ
i ,W

K
i ,W

V
i are

the projection matrices, and Wh ∈ Rh×dh×d. dh is the di-
mension of each head.

The essential component of the CAIM is the image en-
coder containing cross attention, which promotes the query
of critical visual information according to the question, and
is beneficial for the cross-modal information interaction.

Visual Information Entropy Calibration In order to
maintain the consistency of visual information entropy to
calibrate the feature distribution, we propose a new Visual
Information Entropy Calibration Module (VIECM), which
contains two sub-modules: the multimodal feature adaptive
fusion module and information consistency loss module, as
illustrated in the Figure. 3. The features generated by CAIM
are fed into the multimodal feature adaptive fusion module
to learn the multimodal features and the later visual informa-
tion entropy. The original visual features extracted by Swin
Transformer are fed into the information consistency loss
module to compute the former visual information entropy.
Finally, consistency loss is calculated from the former and
later visual information entropy.

Multimodal Feature Adaptive Fusion: Few-shot learn-
ing methods (Chen et al. 2021) usually perform average
pooling on the corresponding features to compute the sim-
ilarity between the support set and the query set, which al-
ways results in omitting critical information. The informa-
tion represented by the features Fn×d in the dimension of
n is quite different from each other. Therefore, we propose
a multimodal adaptive feature fusion module ξ(·; θξ), which
assigns reliable weights to features of each dimension of n.

Figure 3: The illustration of the Visual Information Entropy
Calibration Module.

The visual features F I ∈ Rn×d inferred by the CAIM
interact deeply with the question features in the cross at-
tention. After that, adaptive fusion weight αI is obtained
through multi-layer perception and softmax function. Then
the visual features are summed up according to their relative
weights to generate a flattened visual vector f I ∈ R1×d.

F I = Norm(MHSA(F I , FQ, FQ) + F I) (4)

αI = softmax(MLP(F I)) (5)

f I =
n∑
j=1

αIj ⊙ F Ij (6)

The flattened question features fQ = ξ(FQ; θξ) and visual
features are concatenated to compute similarity.

The weights αI ∈ Rn×1 generated in the flattening stage
represent the distribution of visual features after reasoning.
The features with high weight have strong representation ca-
pabilities. By adjusting the weights, we can get an accurate
feature distribution. To this end, we convert them into visual
information entropy δl and feed them into the information
consistency loss module.

δl = ∆(αI) =
n∑
i=1

αIi log(α
I
i ) (7)

Information Consistency Loss: We have discussed that
there are discrepancies in information distribution at differ-
ent stages of the inference network. In order to ease this
gap, we utilize a loss function Le in the information consis-
tency loss module to constrain the information distribution
of these two stages.

In the multimodal feature adaptive fusion module, we cal-
culate the later visual information entropy δl for information
distribution alignment. In the information consistency loss
module, we generate adaptive weight from original visual
features FOI ∈ Rn×d according to question features and
converted it into visual information entropy by ∆(·).

δf = ∆(softmax(MLP(WIF
OI ⊙WQF

Q))) (8)
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Figure 4: The illustration of the Inference Enhancement Pre-
training. The components of the same color share parame-
ters.

where WI ,WQ are the projection matrices. Our method is
trained to minimize the difference in visual information en-
tropy between stages of inference to reinforce the conver-
gence of the feature distribution. We define an information
consistency loss function to calculate the squared difference
of later and former visual information entropy, denoted as
Le:

Le =
N∑
i=1

(δl − δf )2 (9)

Lt = −
N∑
i=1

C∑
j=1

yij log(ŷij) + λtLe (10)

where λt is the trade-off of the strength of information dis-
tribution alignment, and Lt is the joint loss function.

Inference Enhancement Pre-training
Some few-shot learning methods (Liu et al. 2021a) pre-train
the image encoder on the base class to enhance the repre-
sentation ability of features. In few-shot VQA, it is difficult
to achieve significant success just by pre-training the visual
encoder. What distinguishes few-shot VQA from other few-
shot learning tasks is that it requires the network to interact
across modalities. We design an inference enhancement pre-
training strategy as illustrated in the Figure. 4 to enhance the
fine-grained interaction for generating better features.

We divide the whole CDCIN into two parts: feature ex-
traction ζ(·; θζ) and inference network µ(·; θµ). In the pre-
training stage, we adopt the traditional classification setting
of VQA to train the inference network. For a given training
set Υtrain = {(Ii, Qi, Ai)|1 ≤ i ≤ n}, the target is training
the parameters θ of CDCIN to predict the answers A, taking
images I and questions Q as input.

θ = argmax
θ

n∑
i=1

logP (yi = Ai|f(Ii, Qi|θ)) (11)

The parameters of the inference network in the meta-
learning stage µ(·; θµ) are shared with that in the pre-
training stage, while the parameters of the feature extractor

ζ(·; θ′ζ) are not. This avoids overfitting the feature extrac-
tor during the pre-training stage and preserves the reasoning
ability of the network.

Experiments
To evaluate the effectiveness of CDCIN for few-shot VQA,
we conduct a series of experiments on datasets based on
widely used Toronto COCO-QA (Ren, Kiros, and Zemel
2015), Visual Genome-QA (Krishna et al. 2017) and VQA
v2 (Goyal et al. 2017), including the quantitative analysis,
qualitative analysis, ablation studies.

Dataset and Implementation Details
Datasets. Before training the network, we preprocess
Toronto COCO-QA, Visual Genome-QA and VQA v2 for
few-shot VQA. Different from these works (Dong et al.
2018; Yin et al. 2021), we fully considerate the imbalance
problem of the datasets and construct three balanced few-
shot datasets, named FS COCO-QA, FS VG-QA, and FS
VQA. We abide by the following rules to clean the data: (1)
the occurrence of each word is not less than 3; (2) the num-
ber of samples in each class is more than 30 and less than 60;
(3) there is no duplication of images in all examples pairs.
Finally, we randomly select 60% samples of the final set as
the training set, 20% as the valid set, and the rest as the test
set. The details of datasets and implementation can be seen
in supplementary materials.

Comparison Experiments
To demonstrate the effectiveness of the proposed CDCIN,
we compare it with several few-shot VQA methods. The re-
sults are illustrated in Table 1 and 2.

All experiments in the Table 1 were conducted on the
datasets cleaned by the paper (Yin et al. 2021). We com-
pare the performance of the proposed CDCIN with exist-
ing few-shot VQA methods, such as FPAIT (Dong et al.
2018) and HGAT (Yin et al. 2021). From the experimental
results, the CDCIN outperforms all the methods in the Table
1. Compared with HGAT, the state-of-the-art algorithm, the
accuracy of our method on Toronto COCO-QA improves by
15.95%, 13.77%, 21.17%, and 20.99% under the settings of
5-way-1-shot, 5-way-5-shot, 10-way-1-shot and 10-way-5-
shot respectively. The performance on Visual Genome-QA
improved by 6.68%, 7.44%, 11.79% and 16.66%. The ex-
cellent performance on two benchmark datasets shows that
our method effectively implements multimodal information
interaction and captures the commonality between modal-
ities. The visual information entropy alignment enables the
model to obtain an accurate spatial distribution of visual fea-
ture, which enhances the filtering ability of irrelevant infor-
mation, thus converging the multimodal feature distribution
and improving the classification performance.

We also investigate the impact of different visual back-
bones on the performance of CDCIN, which is illustrated
in the Table 1. Three visual feature extractors are utilized in
the CDCIN, i.e, ResNet12, Vit-S, and Swin-T. Among them,
Swin-T and Vit-S perform better than ResNet12. Because
the pixel of images inputted into Swin Transformer-Tiny and
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Method
Toronto COCO-QA Visual Genome-QA

5 way accuracy 10 way accuracy 5 way accuracy 10 way accuracy
1 shot 5shot 1 shot 5shot 1 shot 5shot 1 shot 5shot

FPAIT-CNN(Dong et al. 2018) 59.38 71.92 45.11 60.20 75.49 79.12 61.66 67.62
FPAIT+CLT(Dong et al. 2018) 60.61 72.17 46.37 60.92 75.05 79.28 60.82 67.48
Relation Net(Sung et al. 2018) 61.75 71.89 45.60 60.13 77.21 80.72 63.14 68.10

EGNN(Kim et al. 2019) 62.21 73.41 46.99 60.01 77.67 83.26 64.07 70.87
HGAT-Res12-Res12(Yin et al. 2021) 63.13 75.41 48.10 61.50 79.56 86.10 66.62 72.13

GCN-Res12⋆(Satorras and Estrach 2018) 64.20 76.85 51.36 66.12 69.14 79.49 56.91 70.12
FEAT-Res12⋆(Ye et al. 2020) 62.67 75.18 49.53 64.56 66.95 78.12 55.65 69.36

ProtoNet-Res12⋆(Chen et al. 2021) 63.08 78.40 50.74 67.63 70.16 82.82 59.00 75.61

CDCIN-Res12 72.26 84.18 59.70 75.65 83.69 91.89 74.84 85.72
CDCIN-Vit 76.52 87.44 65.49 79.46 85.83 93.10 78.18 88.25

CDCIN-Swin 79.08 89.48 69.27 82.49 86.24 93.54 78.41 88.79

Table 1: Comparison of accuracy on Toronto COCO-QA, Visual Genome-QA. The ⋆ represents that we extend these few-shot
learning methods for few-shot VQA and the bolded data indicate the best results under this experimental setup.

Method
FS COCO-QA FS VG-QA FS VQA

5 way 10 way 5 way 10 way 5 way 10 way
1 shot 5shot 1 shot 5shot 1 shot 5shot 1 shot 5shot 1 shot 5shot 1 shot 5shot

FEAT-Res12⋆(Ye et al. 2020) 59.90 72.62 46.81 61.58 69.65 80.39 57.33 70.70 60.88 74.03 50.13 64.97
GCN-Res12⋆(Satorras and Estrach 2018) 61.84 74.72 47.69 62.26 70.71 81.63 58.47 71.24 63.20 76.25 51.81 67.05
MatchingNet-Res12⋆(Vinyals et al. 2016) 61.50 75.36 47.32 64.05 70.45 83.87 57.96 75.14 63.07 80.74 51.01 72.68

ProtoNet-Res12⋆(Chen et al. 2021) 61.64 75.76 47.52 64.83 71.19 83.97 60.06 74.73 65.80 80.51 54.59 73.41
CDCIN-Res12 66.11 79.43 52.36 68.83 80.52 89.35 70.22 82.16 78.75 88.85 69.50 82.43

CDCIN-Vit 71.42 83.77 59.48 74.21 82.84 90.67 72.88 83.47 80.01 89.41 70.58 83.04
CDCIN-Swin 74.30 86.02 63.12 77.94 83.43 91.59 73.79 85.38 80.23 90.14 71.88 84.67

Table 2: The accuracy of comparison on FS COCO-QA, FS VG-QA and FS VQA. The ⋆ represents that we extend these few-
shot learning methods for few-shot VQA and the bolded data indicate the best results under this experimental setup.

Vision Transformer-Small is 224×224 much larger than that
of ResNet which is resized into 84 × 84. Swin Transformer
uses shifted window self-attention to reduce computational
cost and reinforce the local receptive field, making the ac-
curacy of CDCIN-Swin 2.88%, 2.25%, 3.64%, and 3.73%
higher than that of CDCIN-Vit.

In order to eliminate the effect of data imbalance, we
carefully cleaned up the data in three benchmark datasets
and constructed three balanced datasets, which were intro-
duced in the section “dataset and implementation”. We re-
produced some excellent few-shot learning methods and ex-
tended them to few-shot VQA. The experimental results are
shown in the Table 2. We achieve two conclusions from
these experimental results. (1) The performance of all the
models on the cleaned datasets degrades. The accuracy of
CDCIN-Swin dropped by 4.78%, 3.46%, 6.15%, and 4.55%
under all of the experimental settings on COCO-QA. The
reason is that we balanced the data classes and constrained
the sample number of each class to not exceed 60. In this
way, the phenomenon that examples of a certain category
are frequently sampled will be removed, which enhances
the inference capability of this kind of questions. (2) Our
proposed CDCIN still outperforms all the other methods on

the balanced datasets and reaches the state-of-the-art. Com-
pared to ProtoNet, which performs the best among all re-
produced methods equipped with ResNet12, the accuracy
of CDCIN-Res12 increases by 4.47%, 3.67%, 4.84%, and
4.00% under all of the experimental settings on FS COCO-
QA. These boosts demonstrate that the CDCIM can build
deep interactions between modalities to improve the perfor-
mance of inference. What’s more, our best model, CDCIN-
Swin, improves the accuracy by 12.66%, 10.26%, 15.6%,
and 13.11% under all of the experimental settings.

Ablation Study
We conduct a series of ablation experiments to verify the ef-
fectiveness of each proposed module of the CDCIN. Table 3
presents the results of the ablation experiments on Toronto
COCO-QA, which use ResNet-12 to extract visual features.
The baseline is a simple network that only consists of a vi-
sual encoder and a question encoder, i.e. Case 1.

According to Table 3, all the proposed components and
methods are helpful in improving the accuracy of few-shot
VQA. Case 2 is equipped with CAIM, which provides mul-
timodal fine-grained information interaction for the base-
line and enables the model to learn to reason. Therefore,
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Case CAIM VIECM Pre 5 way 10 way
1 shot 5 shot 1 shot 5 shot

1 63.08 78.40 50.74 67.63
2 ✔ 65.94 79.69 53.32 69.04
3 ✔ ✔ 69.92 82.45 57.70 73.42
4 ✔ ✔ 70.32 82.35 57.72 73.05
5 ✔ ✔ ✔ 72.26 84.18 59.70 75.65

Table 3: Ablation Study of accuracy on Toronto COCO-QA.
The bolded data indicate the best results under this experi-
mental setup.

compared with Case 1, the accuracy of Case 2 in each ex-
perimental setting increased by 2.86%, 1.29%, 2.58%, and
1.41%. On the basis of Case 2, VIECM is introduced to
constitute Case 3 and achieves the improvements of 3.98%,
2.76%, 4.38%, and 4.38%. This shows that VIECM main-
tains the consistency between the pre- and post-inference
information distribution, calibrating the feature distribution
and strengthening inference. We also apply the traditional
VQA paradigm to train CAIM and VIECM on the base class
of Toronto COCO-QA and fine-tune the pre-trained param-
eters, namely Case 5. This model obtains the improvements
of accuracy by 7.24%, 4.13%, 6.98%, and 5.42%, which
confirms that our proposed pre-training strategy can effec-
tively preserve the reasoning ability learned during the pre-
training stage.

Qualitative Analysis
In order to clearly demonstrate the whole procedure that the
proposed CDCIN calibrates the feature distribution, we vi-
sualize the multimodal feature distribution before and after
inference. Figure 5 shows an example of the feature distri-
bution of pre- and post-inference, which comes from a 5-
way 5-shot VQA task on the FS VQA test set. The figure (a)
represent the multimodal feature distribution without pass-
ing through the inference network. When the CDCIN has
not undergone deep interaction, which only learns the com-
mon representations of similar samples and fails to capture
the critical information accurately, making the boundaries
between feature distribution blurred. The figure (b) repre-
sent that the model has completed the multimodal informa-
tion interaction and calibrated the distribution of features.
The constrained features have their distributions converged
toward the prototype since they are localized to important
information by the model, enhancing the classification per-
formance.

The main target of CDCIN is to achieve feature distribu-
tion calibration by aligning the information entropy between
pre- and post-inference. The Figure 5 shows the visual infor-
mation entropy visualization of two test set samples from the
FS VQA dataset. The figure “Base” refers to the model that
has not equipped with the VIECM. While “Base” has the
ability to capture essential information in the image (e.g., the
body of the motorcycle), it still suffers from other redundant
information (e.g., trails and children). Our proposed method
that calibrates the information distribution can not only re-
tain the original key information but also search for auxiliary

Figure 5: Figure I is the feature distribution of a few samples
under the setting of 5-way 5-shot. Note that “⋆” means the
prototype of each class and “o” means the feature distribu-
tion of each query sample. Figure II is the visualization of
visual information entropy generated by CDCIN-Swint.

information (e.g., the wheels of the motorcycle). This allows
the CDCIN to dynamically adjust the feature distribution ac-
cording to the information calibration, thus improving the
classification performance.

Conclusion
In this paper, we propose a cross-modal feature distribution
calibration inference network for few-shot VQA, in which
a novel visual information entropy is proposed to represent
the spatial distribution of visual information and used to cal-
ibrate the distribution of multimodal features. Initially, vi-
sual information entropy is obtained by joint computation of
original visual features and question queries, which means
the visual distribution that has not yet interacted with tex-
tual features. Later, visual information entropy is generated
in the multimodal feature adaptive fusion module represent-
ing the result of inference. Two kinds of visual information
entropy are all sent to the information consistency loss mod-
ule for distribution alignment and feature distribution cali-
bration, thus realizing more accurate answer prediction. We
conduct extensive experiments on three benchmark datasets
and achieve excellent performance, surpassing the state-of-
the-art methods by a large margin.
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