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Abstract

Ideal part editing should guarantee the diversity of edited
parts, the fidelity to the remaining parts, and the quality of
the results. However, previous methods do not disentangle
each part completely, which means the edited parts will affect
the others, resulting in poor diversity and fidelity. In addition,
some methods lack constraints between parts, which need
manual selections of edited results to ensure quality. There-
fore, we propose a four-stage process for point cloud part
editing: Segmentation, Generation, Assembly, and Selection.
Based on this process, we introduce SGAS, a model for
part editing that employs two strategies: feature disentan-
glement and constraint. By independently fitting part-level
feature distributions, we realize the feature disentanglement.
By explicitly modeling the transformation from object-level
distribution to part-level distributions, we realize the feature
constraint. Considerable experiments on different datasets
demonstrate the efficiency and effectiveness of SGAS on
point cloud part editing. In addition, SGAS can be pruned to
realize unsupervised part-aware point cloud generation and
achieves state-of-the-art results.

Introduction
In the context of 3D object modeling, parts are considered
the fundamental units. Recently, part-based methods (Wang
et al. 2018; Mo et al. 2019a; Li, Niu, and Xu 2020; Jones
et al. 2020; Gal et al. 2021; Li, Liu, and Walder 2022) have
become more and more prevailing. These methods typically
involve obtaining different parts first and then assembling
them. Although many works have explored procedural con-
tent generation (Liu et al. 2021), which is often used to
make material maps and game maps, the rapid development
of game scenes still relies heavily on the generation of 3D
objects. Part-based methods enable part editing, which in-
volves replacing some parts of an object to create a new one,
thereby enhancing the diversity of 3D modeling.

Ideal part editing should make edited parts diverse while
keeping unedited parts unchanged to form a reasonable ob-
ject. These correspond to three important properties of the
edited results: diversity, fidelity, and quality. However, when
previous part-based methods are applied to part editing, they
have two problems. As shown in Figure 1(a), on the one
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hand, methods such as MRGAN (Gal et al. 2021) and SP-
GAN (Li et al. 2021) do not realize radical disentanglement
between parts. Therefore, when some parts are modified,
other parts will also change, which means they do not guar-
antee the fidelity to the remaining parts. Similarly, multi-
modal shape completion methods such as MSC-cGAN (Wu
et al. 2020a), which can be regarded as a subset of part edit-
ing, also do not disentangle parts. This not only changes
the input parts but also makes the completion results less
diverse. Someone may argue that the adjacent parts may
change to accommodate the edited parts, but this will not
affect the requirement of radical disentanglement, since all
changed parts can be regarded as edited parts. On the other
hand, some methods (Schor et al. 2019; Li, Niu, and Xu
2020; Li, Liu, and Walder 2022) do not implement con-
straints between parts effectively. This may result in poor
part assembly and mismatched parts to be used in the forma-
tion of an object. Although these methods attempt to achieve
assembly by moving parts, the changed parts still need a
manual selection to ensure high-quality edited results that
lead to a reasonable object.

To address these issues, as shown in Figure 1(b), we first
propose a four-stage process for point cloud part editing:
segmentation, generation, assembly, and selection. For the
three properties of edited results, segmentation can guaran-
tee the fidelity to the remaining parts by isolating the parts;
generation can guarantee the diversity of edited parts by ex-
ploring different variations of the parts; assembly and se-
lection can guarantee the quality of the results by choosing
the most appropriate edited parts and assembling them in
a coherent manner. Based on this process, we introduce a
model SGAS for part editing that employs two strategies:
feature disentanglement and constraint. We first use unsu-
pervised shape co-segmentation methods (Chen et al. 2019;
Zhu et al. 2020; Zhang et al. 2022) or manual segmenta-
tion to obtain Ground Truth parts. Then we pre-train several
autoencoders at the part level. Finally, by adversarially su-
pervising part-level feature transformations, we realize the
feature disentanglement during generation. Since each part
is generated separately, this not only ensures the diversity of
edited parts but also the fidelity to the remaining parts. In
addition, we make the distribution of each part transformed
from the same Gaussian distribution and adversarially super-
vise the generations of all parts simultaneously to ensure that
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(a) Two problems with existing part editing methods (b) A four-stage point cloud part editing process

Figure 1: (a) Top: w/o disentanglement between parts. When changing the chair base, the other parts such as the chair back,
arm, and seat will also change. Bottom: w/o constraints between parts. The changed chair base is not only poorly assembled but
also does not match other parts, resulting in the generation of an unreasonable object. (b) It includes four stages: segmentation,
generation, assembly, and selection, which can guarantee fidelity, diversity, and quality of the edited results respectively.

edited parts can assemble well and form a reasonable object.
This strategy is called feature constraint. It guarantees the
quality of the edited results. By adding a part selection mod-
ule to the final output part features, which allows SGAS to
autonomously choose which parts do not need to be output,
the quality of the edited results can be further improved.

Our main contributions are the following:
• We propose a novel point cloud part editing process. It

inlcudes four stages: segmentation, generation, assembly,
and selection.

• Based on the proposed process, we introduce SGAS, a
model for part editing that employs two strategies of fea-
ture disentanglement and constraint. Experiments show
that SGAS achieves excellent quantitative and qualitative
part editing results.

• A new diversity metric of edited results: Total Mutual
Difference Surface (TMDS).

• SGAS can be pruned to realize unsupervised part-aware
point cloud generation and achieves state-of-the-art re-
sults on the ShapeNet-Partseg dataset.

Related Work
Part-based Shape Generation
Unsupervised Part-aware Point Cloud Generation The
fine-grained improvement of generative results can be
achieved through local generation. Therefore, many meth-
ods attempt to explore the generation of multiple parts and
combine them into a final shape. Since part-level ground
truth data is often unavailable, these methods typically in-
volve unsupervised segmentation of parts. For example,
TreeGAN (Shu, Park, and Kwon 2019) first designs the gen-
eration of the point cloud as a tree growth process and then
combines the various parts at the leaf nodes. To achieve con-
trollable point cloud generation, SP-GAN (Li et al. 2021)
is proposed. Similar to FoldingNet (Yang et al. 2018), SP-
GAN transforms a sphere in 3D space into a target point
cloud, where different parts of the 3D sphere correspond
to different parts of the target point cloud. MRGAN (Gal
et al. 2021) explicitly realizes part disentanglement by us-
ing multiple branches of tree-structured graph convolution

layers. Instead of supervising each part respectively, it con-
ducts overall supervision after assembling all the parts. Con-
sidering that the parts of MRGAN lack semantic mean-
ing, Li, Liu, and Walder (2022) propose EditVAE, which
can achieve semantics-aware point cloud generation. Each
branch of EditVAE generates not only parts but also addi-
tional part offsets and primitives for auxiliary supervision.
In addition, (Öngün and Temizel 2020; Postels et al. 2021;
Li and Baciu 2022; Cheng et al. 2022) also play important
roles in promoting part-aware point cloud generation.

Assembly-based Shape Generation Many datasets, such
as ShapeNet-Partseg (Yi et al. 2016) and PartNet (Mo
et al. 2019b), provide part-level semantics. Therefore, many
works explore shape generation by assembling parts. Specif-
ically, these works can be roughly categorized into three
groups: (1) assemble without generation (Schor et al. 2019;
Dubrovina et al. 2019; Yin et al. 2020; Hui et al. 2022;
Wu et al. 2023). These methods only reconstruct the parts
and achieve the diversity of results by assembling different
parts. For example, CompoNet (Schor et al. 2019) synthe-
sizes ”unseen” but reasonable point clouds by varying both
the parts and their compositions. Dubrovina et al. (2019)
propose a semantic-part-aware embedding space to realize
shape composition and decomposition. PartAttention (Wu
et al. 2023) uses a part-wise attention framework to achieve
affine transformation of the decoded parts. (2) assemble af-
ter generation (Li et al. 2017; Wang et al. 2018; Wu et al.
2019; Li, Niu, and Xu 2020). In contrast to the first cat-
egory, the parts used for assembling are generated from a
Gaussian distribution. These methods mainly focus on de-
signing part offset networks to efficiently assemble parts.
For example, G2LGAN (Wang et al. 2018) uses global and
local GANs to supervise the correlation between the parts
and the quality of each part respectively. It also adds a Part
Refiner to optimize the generated results, such as remov-
ing outliers and completing missing regions. PAGENet (Li,
Niu, and Xu 2020) generates parts using part-level VAEs
and designs a Part Assembler to translate parts based on
some anchor parts. (3) assemble while generating (Zou et al.
2017; Mo et al. 2019a, 2020; Wu et al. 2020b; Jones et al.
2020; Wang et al. 2022; Zhuang 2022). This type of method
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does not assemble the parts after generating all of them,
but rather assembles them progressively during generation.
For example, 3D-PRNN (Zou et al. 2017) proposes a gen-
erative recurrent neural network that synthesizes multiple
plausible shapes step-by-step based on primitives. This pro-
gressive process preserves long-range structural coherence.
PQ-Net (Wu et al. 2020b) adopts RNN structure and learns
3D shape representations as a sequential part assembly. Sha-
peAssembly (Jones et al. 2020) achieves 3D shape structure
synthesis by generating domain-specific language programs.
The transformation of the statements in these programs en-
ables ShapeAssembly to control the generated results.

Multimodal Shape Completion
Shapes with missing semantics can lead to a variety of
completion results. For example, Wu et al. (2020a) pro-
pose MSC-cGAN. Based on pcl2pcl (Chen, Chen, and Mitra
2020), it adds an additional Gaussian distribution during the
transformation from partial to complete point cloud features
and an encoder to guarantee completion fidelity to the in-
put partial. Different samples on Gaussian distribution cor-
respond to different completion results. Zhou, Du, and Wu
(2021) introduce PVD, a unified probabilistic formulation,
to achieve multimodal shape completion by progressively
removing noise from the samples. AutoSDF (Mittal et al.
2022) utilizes a transformer-based autoregressive model to
generate patch embeddings extracted independently by VQ-
VAE (van den Oord, Vinyals, and kavukcuoglu 2017) step-
by-step. The idea of ShapeFormer (Yan et al. 2022) is simi-
lar to AutoSDF. The difference is that AutoSDF embeds the
whole 3D space while ShapeFormer introduces a compact
3D representation VQDIF that embeds only the space oc-
cupied by 3D shapes, making it more efficient. There are
also many other works (Arora et al. 2022; Zhang et al. 2021;
Zhao et al. 2021; Jiang and Daniilidis 2022; Cheng et al.
2023) exploring multimodal shape completion.

Method
In this section, we first describe the architecture of SGAS
according to the proposed four-stage point cloud part editing
process, and then give the loss functions of SGAS.

Segmentation
To achieve the disentanglement between parts which can
guarantee fidelity in part editing, SGAS is designed to have
multiple branches. Each branch generates a part and requires
a Ground Truth part for supervision. In our opinion, parts
can be semantic parts, such as a chair back, seat, and base,
and can also be local areas of a shape’s surface. The for-
mer can directly use some datasets (Yi et al. 2016; Mo et al.
2019b) with part semantic labels to obtain Ground Truth
parts, while the latter need some unsupervised shape co-
segmentation methods (Chen et al. 2019; Zhu et al. 2020;
Zhang et al. 2022) to obtain Ground Truth parts. We follow
the idea of l-GAN (Achlioptas et al. 2017), which demon-
strates that generating on features is better than directly
generating on point clouds. Therefore, using the segmented
Ground Truth parts, we pre-train an autoencoder for each

semantic part to convert point clouds into features. The en-
coder is the same as PointNet (Qi et al. 2017) encoder. The
decoder uses a fully connected network. Earth Mover’s Dis-
tance(EMD) (Fan, Su, and Guibas 2017) is used to supervise
the training of these autoencoders. As shown in Figure 2, the
trained encoders Epi, i = 1...n and decoders Dpi, i = 1...n
are used to build SGAS. They do not update parameters dur-
ing SGAS training.

Generation
The input of SGAS includes not only Gaussian noise but
also unedited parts. The purpose is to realize that the style
of generated parts matches that of unedited parts, thereby en-
suring the quality of the final edited results. We use AdaIN
Layer (Huang and Belongie 2017) to integrate the unedited
parts into the Gaussian distribution. Specifically, a Point-
Net encoder E is used to encode the unedited parts to the
mean µ and standard deviation Σ of a Gaussian distribution.
The µ and Σ are then applied to the standard Gaussian dis-
tribution to obtain a new Gaussian distribution N (µ,Σ2).
Based on this new distribution, we design several part-level
GANs to generate parts. As shown in Figure 2, a Gaussian
noise z ∈ R128 ∼ N (µ,Σ2) is transformed by generators
Gpi, i = 1...n into part latent features to realize feature dis-
entanglement. The generator uses a 3-layer fully connected
network (256, 512, 128). The dimension of the part latent
feature is 128. Part features are then sent to discrimina-
tors Fpi, i = 1...n to distinguish real parts and generated
parts. The discriminator uses a 3-layer fully connected net-
work (256, 512, 1). These part-level discriminators ensure
the quality of each part.

Assembly
Since the branches used for part generation are independent,
the generated parts may not be assembled into a reason-
able object. To solve this problem, as shown in Figure 2,
we add a global discriminator F in SGAS to supervise all
generated parts simultaneously, which realizes feature con-
straint. The discriminator uses a 3-layer fully connected
network (256, 512, 1). Compared to methods (Schor et al.
2019; Dubrovina et al. 2019; Yin et al. 2020; Li, Niu, and
Xu 2020) that use affine transformation to realize part as-
sembly, our global discriminator can further ensure match-
ing between the generated parts. Since some parts of the tar-
get point cloud already exist, we use Part Mask to replace
some generated parts. Specifically, we first use pre-trained
encoders Epi, i = 1...n to obtain the part latent features of
unedited parts. These part latent features are then used to re-
place the corresponding generated part features. Finally, the
replaced features are sent to discriminator F .

Selection
In a real scene, an object does not necessarily contain all
semantic parts. For example, a chair without arms and a
lamp without a holder. In order to realize this, we perform
Part Select on the part features processed after Part Mask.
Part Select uses a threshold τ to filter the parts that SGAS
thinks do not need to be output. It does not need training.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

7189



Edited ResultsPart
Mask

Part
Select

Unedited Parts

𝐷
!"…

$

⊛ ⨁

𝑧 ∈ ℝ"%&~𝒩(0, 𝐼)

AdaIN

Σ 𝜇

𝐺!"…$ 𝐹!"…$

𝐸

𝐹

Segmentation

𝐸!"…$

𝐷!"…$

𝐸
!"…

$

Generated Results

Figure 2: The architecture of SGAS. The inputs are Gaussian noise and unedited parts. The outputs are diverse generated or
edited results. SGAS obtains Ground Truth parts through segmentation and uses them to pre-train part-level autoencoders,
which convert point clouds into features. By incorporating the style of unedited parts into the Gaussian distribution using an
AdaIN layer and performing part-level GAN supervision, SGAS can generate new parts. To constrain each part to form a
reasonable object, SGAS applies part masking and uses a global discriminator. Finally, SGAS performs part selection on each
part feature, allowing the model to autonomously choose which parts do not need to be output.

Specifically, since some parts might not exist in the Ground
Truth point clouds, we set the latent features corresponding
to these parts to zero. Therefore, the trained SGAS can au-
tomatically determine whether a part needs to be output. It
forces the features of parts that do not need to be output as
close to zero as possible. In this way, By not decoding the
parts whose features are within the threshold τ , we realize
part selection in the output point clouds. The filter conditions
for Part Select are given as:∣∣∣∣∣ 1n

n∑
i=1

Gpi(z)

∣∣∣∣∣ ≤ τ (1)

where | · | represents absolute value, n is the number of parts.

Loss Functions
We adopt the loss function introduced in Wasserstein
GAN (Arjovsky, Chintala, and Bottou 2017) with gradient
penalty (Gulrajani et al. 2017). Network E, Gpi, i = 1...n,
Fpi, i = 1...n, and F need training. The losses are given as:

LG = −α ∗ 1

n

n∑
i=1

Ez∼Z [Fpi(Gpi(z))]

−β ∗ Ez∼Z [F (

n⋃
i=1

Gpi(z))]

(2)

LFp
=

1

n

n∑
i=1

(Ez∼Z [Fpi(Gpi(z))]− Exi∼Rxi
[Fpi(xi)]

+λgpEx̂i [(∥∇x̂iFpi(x̂i)∥2 − 1)2])
(3)

LF = Ez∼Z,xi∼Pxi
[F (

n⋃
i=1

MiGpi(z)) + (1−Mi)Epi(xi)]

−Exi∼Rxi
[F (

n⋃
i=1

xi)] + λgpEx̂i
[(∥∇x̂i

F (

n⋃
i=1

x̂i)∥2 − 1)2]

(4)
where LG, LFp , and LF represent the loss functions of
the part-level generator, the part-level discriminator, and the
global discriminator respectively. α and β are hyperparame-
ters that control the proportion of the part-level to the global
GAN. N is the number of parts. xi, i = 1...n are parts. The
formulas after λgp are the gradient penalty terms proposed
by Gulrajani et al. (2017). Z = N (µ,Σ2), where µ and Σ
are from encoder E. M is determined by the unedited parts.

Experiments
Datasets and Implementation Details
We evaluate SGAS on PartNet (Mo et al. 2019b) dataset.
By merging fine-grained semantic labels and removing
some special objects, we create a new dataset called Part-
Net.v0.Merged for point cloud part editing. Following pre-
vious works (Gal et al. 2021; Li, Liu, and Walder 2022), we
perform unsupervised part-aware point cloud generation on
ShapeNet-Partseg (Yi et al. 2016) dataset. We do not use se-
mantic labels in the ShapeNet-Partseg dataset.

Adam optimizers are used for SGAS with a learning rate
of α = 0.0005, coefficients β1 = 0.5 and β2 = 0.99. All the
experiments are performed on a single NVIDIA TITAN Xp
for 2000 epochs with a batch size of 200. In loss functions,
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Model Chair Lamp Table Average

MMD ↓ MSC-cGAN 1.62 3.41 1.39 2.14
SGAS 1.33 2.26 1.06 1.55

TMD ↑ MSC-cGAN 5.45 3.94 5.14 4.84
SGAS 4.36 4.48 8.04 5.63

Table 1: Diversity part editing performance. MMD and
TMD measure the quality and diversity respectively.

(b) Lamp (c) Table(a) Chair

Figure 3: Performance on the new metric Total Mutual Dif-
ference Surface (TMDS). Red represents SGAS; blue repre-
sents MSC-cGAN. The smaller the thresholds of MMD and
UHD are, the more referential the calculated TMD is.

α and β are set to 1 and 1. λgp is set to 10. The threshold
in Part Select is set to 0.5. We update the discriminator 5
times for each update of the generator. Each shape has 2048
points while each part has

⌊
2048
n

⌋
points. n is the number of

parts. During training, the input unedited parts for SGAS are
obtained by randomly removing 1 to n − 1 parts of objects
in PartNet.v0.Merged dataset.

Point Cloud Part Editing
Diversity part editing is a commonly used operation in point
cloud part editing that involves generating some parts mul-
tiple times to obtain various results. Previous part edit-
ing methods (Li, Niu, and Xu 2020; Gal et al. 2021; Li
et al. 2021; Li, Liu, and Walder 2022) lack related evalua-
tion metrics. Since diversity part editing has some intersects
with multimodal shape completion, here we use the metrics
MMD, TMD, and UHD adopted by Wu et al. (2020a) to
measure the quality, diversity, and fidelity of the edited re-
sults respectively. Our SGAS disentangles each part, so the
input unedited parts can remain unchanged. Therefore, we
only compare MMD and TMD. Considering previous part
editing methods can only perform part editing on generated
objects, which makes it impossible to obtain Gaussian noise
corresponding to existing objects for editing. Hence, we
use the representative multimodal shape completion method
MSC-cGAN (Wu et al. 2020a) as the baseline for the this
study. As shown in Table 1, SGAS achieves excellent results
in three representative categories.

During experiments, we find that the diversity metric
TMD only measures the difference between edited results
without considering fidelity and quality, which means two
incorrect situations that can also result in high TMD: (a) the
change of input unedited parts (corresponds to large UHD);
(b) the edited parts with large differences but poor quality
(corresponds to large MMD). Therefore, we further propose

α : β 1:10 1:2 1:1 2:1 5:1 10:1

MMD ↓ 1.47 1.39 1.33 1.35 1.36 1.40

TMD ↑ 1.89 2.65 4.36 4.75 5.34 7.68

Table 2: Ablation results for the hyperparameters α and β.
The set of α : β can be determined by requirement.

a new metric TMDS (TMD Surface) to solve the problems.
Each point value on the surface is calculated as:

TMDS(τuhd, τmmd) = mean
p∈P



TMD(s1, .., sk),

if ∃si, i = 1...k,

UHD(p, si) ≤ τuhd
MMD(si,D) ≤ τmmd

0, otherwise

TMD(s1, .., sk) =
k∑

i=1

1

k − 1

k∑
j ̸=i,j=1

CD(si, sj)

(5)
where p is input unedited parts, si, i = 1...k are K (e.g. 10)
edited results. P is the unedited parts test dataset and D is
orignal test dataset. CD is Chamfer Distance (Fan, Su, and
Guibas 2017). τuhd and τmmd are thresholds of UHD and
MMD respectively. TMDS requires that each point value on
the surface is calculated when K edited results are guaran-
teed to satisfy the corresponding UHD and MMD thresh-
olds. The smaller the thresholds of MMD and UHD are, the
more referential the calculated TMD is. Therefore, as shown
in Figure 3, we can find that the editing diversity of SGAS
is better than that of MSC-cGAN in the Chair category.

We use SGAS to perform various part editing operations
on PartNet.v0.Merged dataset. Figure 4(a) is the visualized
comparison of the diversity edited results. We also perform
our SGAS on three new categories: Display, Knife, and
Mug. It can be found that SGAS can not only keep the input
unchanged but also have higher editing diversity and qual-
ity. Figure 4(b) is a multi-round editing workflow achieved
by SGAS. It demonstrates SGAS’s ability to re-edit unsatis-
factory edited results. Through three rounds of re-editing, a
chair with right-angle arms and wheels is edited into a chair
with circular arms and a circular base. Figure 4(c) shows
some interpolation part editings. If the chairs in the left and
right box are generated by Gaussian noise zs and zt respec-
tively, the chairs between boxes are generated by Gaussian
noise z = (1−α)zs+αzt. α increases from 0 to 1. From top
to bottom, each row represents an interpolation of one, two,
and three parts. We can clearly observe the gradual change
process of the parts. Figure 4(d) demonstrates a style mix-
ing part editing realized by SGAS. We first select four chairs
with different styles. Then we edit different parts (colored)
in different chairs. Finally, these edited parts are assembled
to obtain chairs with styles from different chairs. This edit-
ing operation helps to create more diverse results.

As the hyperparameters α and β represent diversity and
quality respectively, and have a significant impact on the
edited results. Hence, we conduct an ablation study on them.
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(a) Diversity Editing

(b) Multi-round Editing

(c) Interpolation Editing

(d) Style Mixing Editing

increasing interpolation weight 𝛼

Figure 4: Various part editing operations. (a) Diversity editing comparison. The unedited parts are boxed, followed by five dif-
ferent edited results. The results of MSC-cGAN are uncolored while ours are colored by parts. (b) Re-editing of unsatisfactory
edited results. The parts above the arrow are edited in each round. (c) Continuous transformation of selected parts (colored)
through interpolation of two input Gaussian noises. Each row represents an interpolation of different number of parts. (d) Style
Mixing of different parts in different objects. The mixed results are boxed.

va
lu
e

dim

Figure 5: Edited parts with their corresponding latent fea-
tures (128 dim). The chair without outputting arms has its
corresponding latent feature of the chair arm near zero.

The results are presented in Table 2. It is observed that as
α : β increase, the TMD also increase. However, the MMD,
which measures the quality of the edited results, initially
improves but then worsens. Therefore, we finally choose
α : β = 1 : 1 to realize part editing. However, if diver-
sity is more important for the edited results, a higher α : β
can also be used. To demonstrate SGAS’s ability to auto-
matically select parts, we visualize the latent features of the
edited parts. As shown in Figure 5, it can be found that the
latent feature of the chair arm is near zero, which means

Figure 6: Performance on ScanNet. The leftmost column is
incomplete input, followed by five diversity editing results.

SGAS believes that the newly generated chair arm is inap-
propriate. Therefore, the Part Select module in SGAS will
filter this latent feature to prevent the chair arm from being
output. To further prove the generalization ability of SGAS,
we train SGAS on PartNet.v0.Merged dataset and test it on
ScanNet (Dai et al. 2017) dataset. The results can be found
in Figure 6. For parts with high missing rates, we will re-
generate them, such as the chair back in the 1st row, and
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Category Model JSD ↓ MMD ↓ COV %, ↑
CD EMD CD EMD

Chair

TreeGAN 0.119 0.0016 0.101 58 30
MRGAN 0.246 0.0021 0.166 67 23

EditVAE (M=7) 0.063 0.0014 0.082 46 32
EditVAE (M=3) 0.031 0.0017 0.101 45 39

SGAS (N=7) 0.047 0.0020 0.076 60 58

Airplane

TreeGAN 0.097 0.0004 0.068 61 20
MRGAN 0.243 0.0006 0.114 75 21

EditVAE (M=6) 0.043 0.0004 0.024 39 30
EditVAE (M=3) 0.044 0.0005 0.067 23 17

SGAS (N=6) 0.036 0.0004 0.039 61 58

Table

TreeGAN 0.077 0.0018 0.082 71 48
MRGAN 0.287 0.0020 0.155 78 31

EditVAE (M=5) 0.081 0.0016 0.071 42 27
EditVAE (M=3) 0.042 0.0017 0.130 39 30

SGAS (N=5) 0.057 0.0020 0.069 65 65

Table 3: Generative performance. The optimal and subopti-
mal results are highlighted in bold and italics respectively.
M and N represent the number of parts.

Figure 7: Point clouds generated by SGAS, colored by parts.

the newly generated parts are compatible with the existing
incomplete parts. For parts with low missing rates, we will
keep them directly. It can be found that even on unseen ob-
jects, SGAS’s diversity editing results are still good.

Unsupervised Part-aware Point Cloud Generation
By pruning SGAS, including removing unedited parts in-
put, AdaIN Layer, Part Mask, and Part Select, SGAS can
be applied to realize unsupervised part-aware point cloud
generation. It includes two steps: (a) modifying an unsu-
pervised shape co-segmentation method AXform (Zhang
et al. 2022) to get Ground Truth part datasets; (b) training
SGAS on these part datasets. Specifically, we first modify
the multi-branch AXform to output one structure point per
branch. Second, we use these structure points to co-segment
the Ground Truth point clouds into n part datasets. Third,
the segmented parts are pre-encoded into latent features. Fi-
nally, these latent features are used to supervise the train-
ing of SGAS. However, we found that there might be some
large gaps between parts during generation. Therefore, to
achieve seamless generation, during unsupervised part seg-
mentation, we further expand the number of points per part
from

⌊
2048
n

⌋
to (1 + γ)

⌊
2048
n

⌋
. Here γ = 0.1. In the final

#Parts (n) JSD ↓ MMD ↓ COV %,↑
CD EMD CD EMD

2 0.042 0.0004 0.045 61 47
3 0.039 0.0004 0.043 60 52
5 0.040 0.0005 0.042 60 50
6 0.036 0.0004 0.039 61 58
8 0.040 0.0005 0.044 60 46

13 0.035 0.0005 0.040 60 53

Table 4: Ablation results for the number of parts. The opti-
mal and suboptimal results are highlighted in bold and italics
respectively. n = 6 is a suitable number of parts.

output, we downsample the point cloud to 2048 points.
The quantitative results are shown in Table 3. The met-

rics are proposed by Achlioptas et al. (2017), and the results
of previous methods are obtained from EditVAE (Li, Liu,
and Walder 2022). MMD and COV represent the quality
and diversity of the generated results respectively. It can be
found that SGAS achieves excellent results overall, with the
most number of top two metrics. Especially on COV-EMD,
which represents diversity, SGAS has a significant improve-
ment. Figure 7 gives visualized results of the generated point
clouds. Different colors correspond to different parts. It in-
tuitively illustrates the diversity and quality of the results
generated by SGAS. We also conduct an ablation study on
the number of parts in the Airplane category. As shown in
Table 4, more or fewer parts are not necessarily beneficial to
the results. Therefore, we chose the number of parts N = 6.

Conclusion
Previous methods do not disentangle each part completely
or lack constraints between parts, which leads to poor diver-
sity, fidelity, and quality when performing part editing. In
this work, to solve these problems, we first propose a novel
four-stage point cloud part editing process. Then based on
this process and two new strategies: feature disentanglement
and constraint, we propose a part editing model SGAS. It
can realize various part editing operations. By introducing
metrics from multimodal completion and proposing a new
metric TMDS, we establish quantitative evaluations for di-
versity part editing. In addition, SGAS can be pruned to real-
ize unsupervised part-aware point cloud generation. Experi-
ments show that it performs better than previous methods.
Limitation Since we do not design part offset networks for
the generated parts but instead utilize the relatively fixed
spatial positions of each generated part to ensure good as-
sembly, SGAS can only achieve part editing for objects with
relatively consistent prototypes. For example, SGAS cannot
handle part editing for both ceiling lamps and table lamps
simultaneously as the spatial order of the parts is opposite.
In addition, we also find that the performance of SGAS is
limited by the pre-trained autoencoders. The embedded fea-
tures are better when the parts are normalized. Therefore, it
will be beneficial to first generate normalized parts and then
design part offset networks to align them in the future.
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