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Abstract

Object detection in dark conditions has always been a great
challenge due to the complex formation process of low-light
images. Currently, the mainstream methods usually adopt do-
main adaptation with Teacher-Student architecture to solve
the dark object detection problem, and they imitate the dark
conditions by using non-learnable data augmentation strate-
gies on the annotated source daytime images. Note that
these methods neglected to model the intrinsic imaging pro-
cess, i.e. image signal processing (ISP), which is impor-
tant for camera sensors to generate low-light images. To
solve the above problems, in this paper, we propose a novel
method named ISP-Teacher for dark object detection by ex-
ploring Teacher-Student architecture from a new perspective
(i.e. self-supervised learning based ISP degradation). Specif-
ically, we first design a day-to-night transformation mod-
ule that consistent with the ISP pipeline of the camera sen-
sors (ISP-DTM) to make the augmented images look more
in line with the natural low-light images captured by cam-
eras, and the ISP-related parameters are learned in a self-
supervised manner. Moreover, to avoid the conflict between
the ISP degradation and detection tasks in a shared encoder,
we propose a disentanglement regularization (DR) that min-
imizes the absolute value of cosine similarity to disentan-
gle two tasks and push two gradients vectors as orthogonal
as possible. Extensive experiments conducted on two bench-
marks show the effectiveness of our method in dark object
detection. In particular, ISP-Teacher achieves an improve-
ment of +2.4% AP and +3.3% AP over the SOTA method
on BDD100k and SHIFT datasets, respectively. The code can
be found at https://github.com/zhangyin1996/ISP-Teacher.

Introduction
Object detection has achieved remarkable success and
widely used in various fields such as security monitoring and
autonomous driving. However, these object detection mod-
els trained on high-quality daytime images often perform
poorly on low-light images, because these images taken un-
der dark conditions suffer from various types of light and
undesirable noise (Cui et al. 2022a). Furthermore, annotat-
ing low-light images is also difficult, so it is impossible to
obtain high-quality annotation information of low-light im-
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Figure 1: Results of some Teacher-Student architecture
UDA methods on BDD100k. We found that AT and TDD get
worse results on day-to-night conditions, which even lower
than the baseline detector Faster-RCNN (41.1% AP). Our
proposed method outperforms other counterparts by a large
margin and always higher than SOTA method (Kennerley
et al. 2023) in any iteration.

ages like daytime images. At present, dark object detection
is still an urgent problem to be solved.

A simple way to solve this problem is to perform dark en-
hancement on low-light images firstly, and then send them
to an off-the-shelf detector for object classification and re-
gression. Unfortunately, the enhanced images are visually
comfortable for humans but do not benefit to the high-level
task for machine vision (Cui et al. 2022b, 2021). To this end,
unsupervised domain adaptive (UDA) has been proposed to
address this problem.

Recently, Teacher-Student architecture (Sohn et al. 2020)
has attracted lots of attention in semi-supervised object de-
tection (Wang et al. 2023; Mi et al. 2022; Liu et al. 2021)
and has also achieved excellent results in the field of do-
main adaptation object detection (Li et al. 2022; He et al.
2022; Kennerley et al. 2023). However, as shown in Fig-
ure 1, we found that the best Teacher-Student UDA methods
like AT (Li et al. 2022), TDD (He et al. 2022) achieve good
results on regular domain adaptive datasets (e.g. Cityscapes
to Foggy Cityscapes) but get poor results on day-to-night
conditions. They are even lower than the baseline detector
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(i.e. Faster-RCNN) that trained on daytime images and di-
rectly applied to nighttime images (41.1% AP).

We think there are some special difficulties for object de-
tection in dark conditions: i) Low-light images from cam-
era sensors suffer from imbalanced noise, exposure, light-
ing and blur etc. , which are not found in daytime images,
thus training the student network with these daytime im-
ages inevitably produce some domain bias. ii) Most of these
Teacher-Student based methods solve the domain bias prob-
lem by optimizing the framework (He et al. 2022), select-
ing useful ground-truth labels information (Mi et al. 2022)
or revising the score threshold of pseudo-bboxes dynami-
cally (Wang et al. 2023). They usually imitate the dark con-
ditions by using traditional non-learnable data augmentation
strategies on the available annotated source daytime images.
However, these methods neglected to model the intrinsic
imaging process, i.e. image signal processing (ISP), which is
important for camera sensors to generate low-light images.

In this paper, we solve the above problems by explor-
ing Teacher-Student architecture from a novel perspective of
self-supervised learning based ISP degradation for dark ob-
ject detection. More specifically, we study how to use self-
supervised learning to capture the intrinsic visual informa-
tion that is not affected by lighting changes, which can ad-
dress the domain bias of student network.

First, inspired by image signal process (ISP) pipeline,
which is a crucial component in cameras that transforms
RAW data into RGB images for person visualization (Yu
et al. 2021; Cui et al. 2021). We replace traditional non-
learnable data augmentation with self-supervised learning
based ISP degradation, where a day-to-night transformation
module that consistent with the ISP pipeline of the camera
sensors (ISP-DTM) is proposed to obtain the low-light im-
ages from daytime images. Then, an Encoder-Decoder struc-
ture is utilized to encode the pair of daytime and nighttime
images and decodes them into some parameters, such as
gamma, light intensity, etc. through a self-supervised learn-
ing manner. Thus, the intrinsic visual information can be
learned under the supervision of L1 loss.

However, joint training of the self-supervised learning
based ISP degradation and object detection task in a shared
encoder may cause over-entanglement problem (i.e. gradient
conflict problem). We found these two tasks have a negative
cosine similarity that will hurt the final performance. To this
end, we propose a disentanglement regularization by mini-
mizing the gradients of cosine similarity of self-supervised
learning based ISP degradation and object detection while
maximizing cosine similarity of the same tasks. This simply
implement can push two gradients vectors as orthogonal as
possible and make the two tasks not affect each other.

To sum up, the contributions of this paper are as follows:

• A novel dark object detection method named ISP-
Teacher is proposed from a new perspective to explore
a self-supervised learning based ISP degradation in a
Teacher-Student architecture, which could adapt to chal-
lenging low-light conditions in the real world.

• We design a day-to-night transformation (ISP-DTM)
module inspired by the image signal processing pipeline

of camera sensors to generate dark images from daytime
images, and the obtained dark images are compatible
with the natural low-light images captured by the camera
which can address the domain bias of student network.

• Moreover, a disentanglement regularization is imposed
by minimizing the gradients of cosine similarity of two
different tasks (i.e. self-supervised learning based ISP
degradation and object detection) while maximizing co-
sine similarity of the same tasks. This simply implement
could decouple these two tasks in a shared encoder.

• Extensive experiments conducted on BDD100k and
SHIFT datasets show the effectiveness of our proposed
method. In particular, ISP-Teacher achieves the new best
performance on BDD100k and SHIFT datasets by im-
proving +2.4% and +3.3% in AP over the state-of-the-art
method, respectively.

Related Work
Object Detection in Dark Conditions
To tackle the problem of object detection in low-light con-
ditions, a direct way is use low-light enhancement meth-
ods (Guo et al. 2020; Jin et al. 2023; Wu et al. 2023) to pro-
cess the dark images and then send the de-dimming images
to the mainstream object detection methods (Ren et al. 2015;
Redmon and Farhadi 2018; Carion et al. 2020) for infer-
ence. However, the detection performance of these methods
is unsatisfactory on some natural dark images. As a result,
some end-to-end methods that train the low-light enhance-
ment and object detection tasks jointly. For example, IA-
YOLO (Liu et al. 2022) designs a filter module with a learn-
able parameter trained jointly with YOLOv3 in an end-to-
end fashion to balance the tasks of image enhancement and
object detection. MAET (Cui et al. 2021) introduces a mul-
titask auto encoding transformation model to decode low-
light degrade transformation by considering noise and ISP
pipeline in cameras. The main difference between MAET
and our work is that we regard the ISP degradation as a self-
supervised learning task for Teacher-Student domain adap-
tive object detection. Furthermore, although 2PCNet (Ken-
nerley et al. 2023) is a nighttime domain adaptive object de-
tection method, it proposes a non-learnable data augmenta-
tion while our method is self-supervised and we consider the
principle of the camera sensor in ISP-DTM.

Disentanglement Regularization
Multi-task networks usually contain an encoder and sev-
eral decoders for specific tasks. However, these approaches
face an optimization problem which sometimes leading
worse performance than training each task independently. At
present, scholars generally believe the main reason for this
phenomenon is gradient conflict, and some methods have
been proposed to solve this problem. For instance, (Yu et al.
2020) alters the gradients by projecting the gradient of one
task onto the normal plane of the gradient of the other task
when the values of cosine similarity are negative. (Suteu and
Guo 2019) finds nearly orthogonal gradients would not in-
terfering with each other tasks, and proposes that regulariz-
ing the angle between gradients to solve the negative trans-
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Figure 2: The architecture of our ISP-Teacher. Our pipeline
is based on the Teacher-Student architecture, the green area
(left side) is the proposed self-supervised learning based ISP
degradation and the blue area (right side) is the illustration
of disentanglement regularization.

fer problem. The above methods are focus on classification
and regression tasks, and our work is inspired by recent re-
search (Cui et al. 2021) that minimizes the absolute value of
cosine similarity to disentangle the object detection and de-
grade transformation tasks. Different from (Cui et al. 2021),
we design a simple disentanglement regularization to decou-
ple our self-supervised learning based ISP degradation and
detection tasks in the Teacher-Student architecture by min-
imizing the cosine similarity of different tasks while maxi-
mizing the cosine similarity of the same tasks.

Proposed Method
Overview of ISP-Teacher
Let Dday = {Xl, Yl} denotes the daytime dataset, which
contains Xl daytime images with Yl labels in source domain.
Dnight = {Xu} denotes the nighttime dataset, and it only
contains Xu nighttime images without labels in target do-
main. Subscript l and u indicate the labeled and unlabeled
data, respectively. As shown in Figure 2, our ISP-Teacher
consists of a student network and a teacher network. Similar
to prior works (Kennerley et al. 2023; Liu et al. 2021), both
student and teacher are the Faster-RCNN (Ren et al. 2015)
structure, and the detection loss Ldet is as following:

Ldet = Lsup + λLunsup (1)

where Lsup and Lunsup denote the supervised learning loss
and unsupervised learning loss, respectively.

The training process of our method is that the teacher net-
work generates pseudo-labels Yp to train the student while
the student updates the teacher network with exponential
moving average (EMA). First, the student network is burned
up on daytime images (source domain) under a supervised
manner, and the supervised loss is formulated as:

Lsup =
1

Nl

Nl∑
i=1

[
Lcls(X

i
l , Y

i
l ) + Lreg(X

i
l , Y

i
l )
]

(2)

where Lcls is the classification loss of RPN and ROI head in
Faster-RCNN and Lreg is the Smooth L1 loss for bounding
box regression. After the burn up stage, all the weights of
student are transferred to the teacher.

The teacher network only takes nighttime images (target
domain) as input, and it is used to produce pseudo-labels for
the student with an unsupervised loss:

Lunsup =
1

Nu

Nu∑
i=1

Lcls(X
i
u, Y

i
p ) (3)

where Yp denotes pseudo-labels. Noted that the unsuper-
vised loss is only applied in the classification while not used
in the bounding box regression.

Furthermore, there are two components in the proposed
ISP-Teacher. The first component is the self-supervised
learning based ISP degradation (green area on the left of
Figure 2), which is used to capture the intrinsic visual infor-
mation that is not affected by lighting changes. The second
component is the disentanglement regularization (DR, blue
area on the right of Figure 2), which disentangles dark ob-
ject detection and self-supervised learning based ISP degra-
dation to mitigate the impact between each other. In the next
subsection, we will illustrate our proposed self-supervised
learning based ISP degradation and DR in details.

Self-supervised Learning Based ISP Degradation
Self-supervised learning based ISP degradation contains a
day-to-night transformation module that consistent with the
ISP pipeline of the camera sensors (ISP-DTM) and a self-
supervised learning strategy.

ISP-DTM As shown in Figure 3, the ISP-DTM consists of
three steps: i) Invert Processing step, ii) Noise Modeling step
and iii) ISP Pipeline step. Specifically, the Invert Processing
step contains (1) Invert Tone Mapping, (2) Invert Gamma
Correction, (3) Color Transformation ys→c and (4) Invert
White Balance. Base on this step, the realistic RAW format
(i.e. cRGB) images are generated and we denote (1), (2), (3),
(4) together as Tinvert. Then, considering the physical noise
of camera sensors, we model two common noises in cam-
era (i.e. ‘shot’ and ‘read’ noise) in the Noise Modeling step
and we denote the output of this step as ynm. Finally, the
cRGB with shot and read noises are restored back to sRGB
by the ISP Pipeline step for dark object detection. As shown
in green area of Figure 3, the ISP Pipeline step contains (5)
Signal Quantization, (6) White Balance, (7) color transfor-
mation yc→s and (8) Gamma Correction, and we define (5),
(6), (7), (8) as TISP . Next, we will describe each process of
ISP-DTM in details:

White Balance. The human eyes have color constancy,
i.e. human perception of the color tends to be stable under
the change of illumination condition. However, the camera
sensor does not have this characteristic resulting in color
shift, and the white balance algorithm is proposed to correct
this color deviation. Specifically, this algorithm balances the
channel gain of red gr and blue gb to make images appearing
to be lit under the neutral illumination (Cui et al. 2021). The
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Figure 3: The structure of self-supervised learning based ISP
degradation.

detailed process is as follows: Îr
Îg
Îb

 =

[
gr 0 0
0 1 0
0 0 gb

]
·

[
Ir
Ig
Ib

]
(4)

where I and Î denote the image before and after white bal-
ance respectively, and the subscripts r, g, b represent the
three channels of the RGB image. The channel gain of red
gr and blue gb are random sampled from (1.9, 2.4) and (1.5,
1.9) uniformly and independently, and set 1/gr and 1/gb in
invert process based on (Brooks et al. 2019).

Color Transformation. Because the data format of stan-
dard color space (sRGB) do not match the camera internal
color space (cRGB), we use a 3× 3 color correction matrix
Tccm to achieve this color transformation:

yc→s = Tccm · IcRGB (5)

ys→c = T−1
ccm · IsRGB (6)

where yc→s denotes the color transformation from the cam-
era internal color space (IcRGB) to the final standard color
space (sRGB) and ys→c denotes the invert process.

Gamma Correction. The purpose of gamma correction is
to adjust the overall light and dark values of images, where
the dark areas of the pixels have a larger change rate and
the light areas of the pixels have a smaller change rate. If
the original image collected by the camera sensor is not pro-
cessed by the gamma correction, it will adversely affect the
results of dark object detection due to problems of illumi-
nation and shadows. Gamma correction controls the overall
brightness of the image through two parameters:

Iout = αI
1/γ
in (7)

where Iin and Iout denotes input and output images, α and
γ are used to adjust the shape of gamma correction curve.
When γ is less than 1, the overall image will be stretched
in the direction of strong illumination, and when γ value is

greater than 1, it will be stretched in the direction of weak
illumination. In this paper, γ is sampled from an uniform
distribution γ ∼ U(2, 3.5) and α is set to 1. The invert pro-
cess of gamma correction is to replace 1/γ in Eq.7 with γ:

Iout = αIγin (8)

Tone Mapping. High dynamic range images in real
scenes require tone mapping operation to suit the dynamic
range of camera sensors (Debevec and Malik 2023). Usually,
the tone mapping process includes three steps: first calculat-
ing the average brightness of current scenes, then selecting a
suitable brightness area according to the average brightness,
and finally mapping the entire scene to this brightness area
to get a correct result. Here, we simplify the tone mapping
to a simple ‘smoothstep’ curve:

Ftm(x) = 3x2 − 2x3 (9)

and it invert process is:

F−1
tm (y) =

1

2
− sin(

sin−1(1− 2y)

3
) (10)

Noise Modeling. Noises of camera sensors primarily
comes from two sources: ‘shot’ noise leads to fluctuations
in the gray value of the images and ‘read’ noise generated
by the electronics in the readout the cameras. Mathemati-
cally, shot noise is a Poisson random variable whose mean is
the light intensity (i.e. parameter k in Eq.11 and Eq.14) and
read noise is a Gaussian random variable with zero mean
and fixed variance (Brooks et al. 2019). We model both of
them as xnoise:

xnoise ∼ N(µ = 0, σ2 = k · I · λshot + λread) (11)

where I is the output image from Invert Processing step,
λshot and λread are digital and analog gains of camera sen-
sors, which could be sampled from the joint distribution
of different shot/read noise parameter pairs in RAW im-
ages (Brooks et al. 2019). The details of the sampling pro-
cess are as follows:

log λshot ∼ U(a = log(0.0001), b = log(0.012)) (12)

log λread ∼ N(µ = 2.18 log λshot, σ = 0.26) (13)

Moreover, parameter k in Eq.11 is the light intensity (be-
tween 0.01 and 1.0), and it follows a truncated Gaussian dis-
tribution (Cui et al. 2021):

k ∼ N(µ = 0.1, σ = 0.08) (14)

Finally, the outputs ynm of Noise Modeling step can be for-
mulated as:

ynm = k · I + xnoise (15)

which is then sent to ISP Pipeline step for subsequent trans-
formation processing.

Signal Quantization. The first process in ISP Pipeline
step is to quantize ynm by an analog-to-digital converter
(ADC). In this paper, we simulate this process as:

ŷ ∼ (− 1

2B
,
1

2B
) (16)
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yquant = ynm + ŷ (17)
where B is randomly selected from 12, 14 and 16 as in (Cui
et al. 2021).

Moreover, during the process of ISP-DTM, we calculate
four parameters, i.e. light intensity k in Eq.14, 1/gamma in
(2) Invert Gamma Correction, channel gain 1/gr and 1/gb
in (4) Invert White Balance, which are used as the ground
truth in the following self-supervised learning strategy.

In summary, for a daytime image I , we obtain low-light
image Il and four ground truth pi(i = 1, 2, 3, 4) by ISP-
DTM, and the whole process can be expressed by:

Il + pi = TISP [Tinvert(I) + ynm] (18)

Self-supervised Learning Strategy After obtaining low-
light images, we compose low-light images and daytime im-
ages into image pairs. Then, we utilize an Encoder-Decoder
to encode the pair of image into high-level features by a
weight-shared Encoder, and then to decode four parameters
p̃i(i = 1, 2, 3, 4) as the degradation predictions. The loss of
self-supervised learning strategy Lself is a L1 loss:

Lself =
1

4

4∑
i=1

L1(pi, p̃i) (19)

where p and p̃ denote the ground truth and prediction of
the parameters k, 1/gamma, 1/gr, 1/gb respectively. The
weight of k, 1/gamma, 1/gr, 1/gb are set to 5:1:1:1 in our
implementation.

Disentanglement Regularization (DR)
As shown in Figure 2, the encoder in our model has two
functions: i) encode the pair of daytime and nighttime im-
ages for learning the parameters of ISP, ii) extract the feature
for training the detector. The task-specific decoders are used
to output two different aspects, i.e. ISP-related parameters
for self-supervised learning and bounding boxes and classes
of object detection. However, this multi-task learning frame-
work may cause the problem of conflicting gradient.

To overcome this issue, we propose a regularization to
disentangle these two tasks (i.e. ISP degradation and object
detection) in the training process. The goal of our disentan-
glement regularization is that the gradients g1 and g2 of two
different tasks have the minimum cosine similarity, i.e. the
angle between two vectors tends to 90 degrees and the value
of cosine closes to 0, while the gradient of the same tasks
has the maximize cosine similarity.

Specifically, as shown in the bottom part of Figure 2, the
red arrow g1 and blue arrow g2 denote gradients vectors
of the task of object detection and self-supervised learning
based ISP degradation respectively. For different tasks, we
minimum cosine similarity by pushing the g1 or g2 close to
dotted line arrow under the supervision of DR loss LDR. For
the same tasks, we make the gradients vectors as coincident
as possible. Mathematically, DR can be expressed as:

LDR =ω1 |cos(g1, g2)|+ ω2(|1− cos(g1, g1)|)+
ω3(|1− cos(g2, g2)|)

(20)

where ω1, ω2 and ω3 are the parameters to balance these
three terms. In this paper, we set ω1 = 5 and ω2 = ω3 = 0.5.

Total Loss
The total loss function includes Lself loss that makes the
encoder to capture the intrinsic visual information, LDR

pushes two gradients vectors at different tasks as orthogonal
as possible, and Lsup and Lunsup are the original detection
losses Ldet in the Teacher-Student architecture, which can
be formulated as:

Ltotal = βLself + LDR + Ldet (21)

where β is the weight of self-supervised learning loss in
Eq.19.

Experiments
Datasets and Metrics
BDD100k (The Berkeley Deep Drive 100k) is a widely used
autonomous driving dataset (Yu et al. 2018), which con-
sists 70k training images, 20k test images and 10k valida-
tion images. It includes 10 common classes and covers vari-
ous weather scenarios, e.g. rainy, snowy, foggy, overcast and
etc. . Following (Kennerley et al. 2023), we split BDD100k
dataset into two parts using labels ‘day’ and ‘night’. Specif-
ically, daytime images and nighttime images are used as
source and target data for training respectively, and only
nighttime images in validation dataset are used for valida-
tion. After splitting, there are 36728 daytime images and
32998 nighttime images in the training set and 4707 night-
time images in the validation set.

SHIFT is also an autonomous driving dataset (Sun et al.
2022), and it includes discrete shifts (e.g. urban, village
and rural) and continuous shifts (e.g. daytime to night) in
cloudiness, rain and fog weather. SHIFT has the same 6
classes as BDD100k with bounding box annotations. sim-
ilar to BDD100k, we also split it into 19452 daytime images
and 8497 nighttime images for training and 1200 nighttime
images for validation.

As for the metrics, following the method of (Kennerley
et al. 2023), we adopt AP (i.e.AP50, IoU@0.5), APS (small-
sized object), APM (medium-sized object) and APL (large-
sized object) to evaluate our model.

Implementation Details
Following previous Teacher-Student architecture based do-
main adaption methods, we use Faster-RCNN (Ren et al.
2015) with ResNet50 (He et al. 2016) as our baseline detec-
tor. SGD is used as the optimizer with a base learning rate of
0.01 and the momentum is set to 0.9. Loss hyperparameter λ
= 0.3 and β = 1, and the rate smooth coefficient parameter
of EMA is set to 0.9996. The batch size is 4, which includes
2 daytime images in source domain and 2 nighttime images
in target, and all images are proportionally scaled to a mini-
mum side of 600. For the burn up stage, we train the student
network under a supervised manner on source domain for
50k and 20k iterations for BDD100k and SHIFT datasets, re-
spectively. And the total iterations on BDD100k and SHIFT
is 90k and 70k iterations. Our method is implemented based
on detectron2 (Wu et al. 2019) with 4 RTX6000 GPUs.
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Method AP Ped. Rid. Car Tru. Bus Mot. Bic. T-Light T-Sign

Source (Lower-Bound) 41.1 50.0 28.9 66.6 47.8 47.5 32.8 39.5 41.0 56.5
Oracle (Upper-Bound) 46.2 52.1 35.0 73.6 53.5 54.8 36.0 41.8 52.2 63.3

UMT (Deng et al. 2021) 36.2 46.5 26.1 46.8 44.0 46.3 28.2 40.2 31.6 52.7
TDD (He et al. 2022) 34.6 43.1 20.7 68.4 33.3 35.6 16.5 25.9 43.1 59.5
AT (Li et al. 2022) 38.5 42.3 30.4 60.8 48.9 52.1 34.5 42.7 29.1 43.9

2PCNet (Kennerley et al. 2023) 46.4 54.4 30.8 73.1 53.8 55.2 37.5 44.5 49.4 65.2

ISP-Teacher (Ours) 48.8 57.8 39.4 72.9 54.6 55.9 43.8 48.1 49.6 66.3

Table 1: Main results of our proposed method on BDD100k dataset. We show the average precision (AP) of each class. The full
classes name from left to right are Pedestrian, Rider, Car, Trunk, Bus, Motorcycle, Bicycle, Traffic Light and Traffic Sign.

Main Results
In order to verify the effectiveness of our ISP-Teacher for
dark object detection, we compare our method with some
SOTA methods, i.e. UMT (Deng et al. 2021), TDD (He
et al. 2022), AT (Li et al. 2022) and 2PCNet (Kennerley
et al. 2023). It should be emphasized that 2PCNet (Ken-
nerley et al. 2023) is an object detection method specially
designed for low-light images and it achieves SOTA per-
formance on BDD100k and SHIFT datasets. For the fair-
ness of comparison, all of methods use ResNet50 (He et al.
2016) as the backbone, and the results in our experiment
are shown in Table 1. In addition, we report the results that
training Faster-RCNN with only daytime images and test on
nighttime images denotes as ‘Source’ (Lower-Bound). On
the other hand, we also show the results of training Faster-
RCNN on nighttime images with ground-truth and test on
nighttime images denotes as ‘Oracle’ (Upper-Bound).

Experiments on BDD100k. On BDD100k dataset, com-
pared to other Teacher-Student architecture based domain
adaptive methods for dark object detection, ISP-Teacher
achieves a better performance owning to the proposed self-
supervised learning based ISP degradation and disentan-
glement regularization strategy. As shown in Table 1, the
previous Teacher-Student architecture methods achieve ter-
rible results on night scenes and even much lower than
the Lower-Bound. By elaborately designing self-supervised
learning based ISP degradation and disentanglement reg-
ularization strategy, our ISP-Teacher outperforms all the
Teacher-Student architecture methods by a large margin.
Specifically, compared to the method of only training on
daytime source images and testing on nighttime (‘Source’
in the first row), our method brings a +7.7% AP improve-
ment (i.e. 48.8% vs. 41.1%). Furthermore, our unsupervised
approach even outperforms the supervised method ‘Oracle’
(the second row) that trains on nighttime images with an-
notations by +2.6% in terms of AP. Compared with 2PC-
Net (Kennerley et al. 2023), which is a SOTA night-specific
algorithm for dark object detection, our method also obtains
an impressive improvement in AP (from 46.4% to 48.8%,
+2.4%) and brings the best results in eight out of nine cate-
gories , where ‘Car’ is also only 0.2% lower.

Experiments on SHIFT. To further verify the effective-
ness of our proposed method, we conduct experiments on
SHIFT dataset and the results are shown in Table 2. We

Method AP Ped. Car Tru. Bus Mot. Bic.

Lower-B 41.6 40.4 44.5 49.9 53.7 14.3 46.7
Upper-B 47.0 49.7 51.5 56.0 53.6 19.2 52.4

UMT 31.1 7.7 47.5 18.4 46.8 16.6 49.2
AT 38.9 25.8 33.0 54.7 49.5 20.7 52.3

2PCNet 49.1 51.4 54.6 54.8 56.6 23.9 54.2

Ours 52.4 51.6 59.1 58.7 62.3 24.1 58.3

Table 2: Main results of our proposed method on SHIFT
dataset. Lower-B and Upper-B denote Lower-Bound and
Upper-Bound, respectively.

can see that other Teacher-Student architecture based meth-
ods also perform worse than Lower-Bound. ISP-Teacher
achieves an improvement of +3.3% AP compared to SOTA
method 2PCNet, and +5.4% AP for ‘Oracle’. Furthermore,
our method outperforms 2PCNet on all categories.

Ablation Study
To validate the effectiveness of each component in our pro-
posed method, we conduct some ablation experiments on
BDD100k dataset. Moreover, some analyses of the hyper-
parameters are also shown in this section.

Effectiveness of Self-supervised Learning Based ISP
Degradation. We compare our self-supervised learning
based ISP degradation (the third row of Table 3) with other
methods: i) traditional non-learnable data augmentations
like randomly color jittering, gray scaling, Gaussian blur-
ring (the first row of Table 3), and ii) nighttime specific
augmentations NightAug in 2PCNet (Kennerley et al. 2023)
(the second row in Table 3). As shown in Table 3, we can
see that the method of traditional non-learnable data aug-
mentation conducted on daytime images obtains poor per-
formance (42.2% AP) in low-light conditions. NightAug
method (in the second row) is a nighttime specific data aug-
mentation that aims to reduce the bias between daytime
and nighttime images, and it brings +3.6% AP improvement
compared to the non-learnable data augmentation method
(42.2% vs. 45.8%). Our proposed self-supervised learning
based ISP degradation not only addresses the domain bias of
student network but also explore how to learn intrinsic visual
information of dark images, which achieves a huge improve-
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NightAug Self. DR AP APS APM APL

- - - 42.2 7.9 23.0 38.8
✓ - - 45.8 8.6 25.7 42.2
- ✓ - 48.5 9.2 27.1 45.2
- ✓ ✓ 48.8 9.2 27.2 45.7

Table 3: Ablation study of each component in our ISP-
Teacher on BDD100k dataset. ‘NightAug’ denotes a non-
learnable nighttime specific augmentation in 2PCNet. ‘Self.’
and ‘DR’ denote the self-supervised learning based ISP
degradation and disentanglement regularization.

β AP APS APM APL

1 48.8 9.2 27.2 45.7
2 48.4 8.9 26.7 45.7
5 44.9 7.9 22.9 39.1

Table 4: The influence of different weight β in the self-
supervised learning based ISP degradation loss.

ment in AP (from 42.2% to 48.5%, +6.3%). The above ex-
periments can prove the effectiveness of our proposed self-
supervised learning based ISP degradation on low-light im-
ages object detection.

Effectiveness of DR. As shown in the last row of Ta-
ble 3, when adding disentanglement regularization (DR) in
our framework, the detection performance can further im-
prove to 48.8% from 48.5%. This is thanks to the disen-
tangle of the object detection and self-supervised learning
based ISP degradation.

Analysis of the weights β of self-supervised learn-
ing based ISP degradation loss. From Eq.21, we add the
self-supervised learning based ISP degradation loss Lself

into the original detection loss Ldet. To explore the influ-
ence of the weights β of Lself , we set different values of
β = 1, 2, 5 to conduct experiments on BDD100k dataset.
As shown in Table 4, we get the best performance of 48.8%
in AP when β = 1. However, when β = 2, the perfor-
mance declines slightly, and there is a significant decrease
in AP performance when β = 5, i.e. 44.9% which is even
lower than the non-learnable method NightAug (45.8% in
AP). The above experiments indicate that the weight of self-
supervised learning based ISP degradation loss is sensitive
to the performance of object detection, and we set β = 1 by
default in this paper.

Visualization Results
Visualization of ISP-DTM Pipeline. As shown in the green
area of Figure 3, we show an example of ISP-DTM pipeline
on BDD100k dataset. First, sRGB daytime images are con-
verted to cRGB images by the reversing process. Then, shot
and read noises are added to cRGB images, and cRGB is
transformed into sRGB through the ISP Pipeline step for
dark object detection. The augmented images look more in
line with the natural low-light images captured by cameras.

Detection Results on BDD100k Dataset. Furthermore,
to further show the effectiveness of our ISP-Teacher, we also

Figure 4: Examples of detection results on BDD100k
dataset. From left to right: general Teacher-Student architec-
ture UDA method AT (Li et al. 2022), SOTA method 2PC-
Net (Kennerley et al. 2023), our ISP-Teacher and Ground
Truth. Different colored boxes denote different classes,
i.e. red box denotes ‘Car’, blue box denotes ‘Pedestrian’,
yellow box denotes ‘Traffic Sign’ and green box denotes
‘Traffic Light’. Best seen on computer, in color and zoomed
in.

present some visualization results on BDD100k val datasets.
As shown in Figure 4, we can see that our ISP-Teacher could
detect all objects accurately. However, AT (Li et al. 2022)
mistakenly detects something as a traffic sign, i.e. an extra
yellow box, and 2PCNet (Kennerley et al. 2023) misses a car
(i.e. red box) in the first row. Moreover, as shown the second
and third rows of Figure 4, our method also gets satisfactory
results on complex scenes while other methods always have
detection errors. For example, AT and 2PCNet miss some
traffic light and cars in the second row.

Conclusion
In this paper, we propose a novel dark object detection
method named ISP-Teacher for the challenging low-light
scenes without annotations. To overcome the problem that
mainstream Teacher-Student architecture based UDA meth-
ods have poor results on the day-to-night condition, we de-
sign a day-to-night transformation module that consistent
with the ISP pipeline of the camera sensors (ISP-DTM) to
make the augmented images look more in line with the nat-
ural low-light images captured by the cameras . Moreover, a
self-supervised learning strategy is used to capture the in-
trinsic visual information of images under different light
changes. In order to avoid self-supervised learning based
ISP degradation affecting the training process of object de-
tection, a disentanglement regularization is introduced in our
method by minimizing the cosine similarity of the gradi-
ents of different tasks while maximizing the gradients of the
same tasks. Experimental results on two benchmarks show
that our method outperforms previous Teacher-Student ar-
chitecture methods in dark scenes by a large margin. How-
ever, object detection on low-light images is still a challeng-
ing task, e.g. the results on small object like traffic light need
to be improved, and we plan to use Fourier-based mix strat-
egy to learn more robust features for the student network in
the future.
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