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Abstract

Multi-view camera-based 3D object detection has become
popular due to its low cost, but accurately inferring 3D ge-
ometry solely from camera data remains challenging and may
lead to inferior performance. Although distilling precise 3D
geometry knowledge from LiDAR data could help tackle
this challenge, the benefits of LiDAR information could be
greatly hindered by the significant modality gap between dif-
ferent sensory modalities. To address this issue, we propose
a Simulated multi-modal Distillation (SimDistill) method
by carefully crafting the model architecture and distillation
strategy. Specifically, we devise multi-modal architectures
for both teacher and student models, including a LiDAR-
camera fusion-based teacher and a simulated fusion-based
student. Owing to the “identical” architecture design, the stu-
dent can mimic the teacher to generate multi-modal features
with merely multi-view images as input, where a geome-
try compensation module is introduced to bridge the modal-
ity gap. Furthermore, we propose a comprehensive multi-
modal distillation scheme that supports intra-modal, cross-
modal, and multi-modal fusion distillation simultaneously in
the Bird’s-eye-view space. Incorporating them together, our
SimDistill can learn better feature representations for 3D ob-
ject detection while maintaining a cost-effective camera-only
deployment. Extensive experiments validate the effectiveness
and superiority of SimDistill over state-of-the-art methods,
achieving an improvement of 4.8% mAP and 4.1% NDS over
the baseline detector. The source code will be released at
https://github.com/ViTAE-Transformer/SimDistill.

Introduction
3D object detection is a pivotal technique with extensive ap-
plications in fields such as autonomous driving, robotics, and
virtual/augmented reality (Zhang and Tao 2020). In recent
years, camera-based 3D object detection methods, which in-
fer objects’ 3D locations from multi-view images (Huang
et al. 2021; Li et al. 2023b), have attracted great attention
from both academia and industry because of the high percep-
tual ability of dense color and texture information with low
deployment cost. However, due to the lack of accurate 3D
geometry reasoning ability, their detection performance falls
largely behind LiDAR-based methods, which poses a chal-
lenge to the practical deployment of camera-based methods.
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Figure 1: Comparison of our SimDistill with previous dis-
tillation frameworks. (a) Intra-modal distillation between
camera-only teacher and student models cannot learn ac-
curate 3D information due to the limited capacity of the
teacher model for inferring 3D geometry. (b) Cross-modal
distillation between the LiDAR teacher and Camera student
enables learning useful 3D information from the teacher but
suffers from the large cross-modal gap. (c) Our simulated
multi-modal distillation enables effective knowledge distil-
lation within/between modalities and fully takes advantage
of complementary information from different modalities.

To address this issue, researchers attempt to impose Li-
DAR data to provide accurate 3D geometry information.
Some multi-view camera-based methods (Li et al. 2023b,a)
generate ground truth depth from LiDAR point cloud and
use it as the supervisory signal for depth estimation to
help transform image features to the Bird’s-eye-view (BEV)
space (Zhao et al. 2022) accurately. Except for directly us-
ing LiDAR as supervision during training, some recent work
employs LiDAR information by applying the knowledge
distillation (KD) technique (Gou et al. 2021) to improve the
detection performance of camera-based methods. KD-based
3D object detection methods usually leverage the informa-
tive features or predictions of a well-trained teacher model
to facilitate the learning of the student model. One straight-
forward approach is intra-modal distillation (Li et al. 2022a;
Zhang et al. 2022) between a large teacher model and a
small student model, as shown in Figure 1 (a), which con-
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ducts distillation within the image modality. However, the
ceiling performance of the model can be limited since the
teacher model infers 3D geometry solely from image data as
well. Another approach is cross-modal distillation, as shown
in Figure 1 (b), which utilizes LiDAR data as the input
of teacher models and transfers 3D knowledge to camera-
based students (Chong et al. 2021; Chen et al. 2023; Li et al.
2022b). The student is usually forced to learn and mimic
the output of a LiDAR-based teacher in different represen-
tation spaces, including monocular view features (Chong
et al. 2021), BEV features (Chen et al. 2023), and voxel fea-
tures (Li et al. 2022b). Nevertheless, performing knowledge
distillation directly between different modalities might face
significant cross-modal gaps and struggle in aligning fea-
tures learned by distinct architectures of teacher and student
models, resulting in limited performance improvements.

In this paper, we address this challenge from the perspec-
tive of architecture design and multi-modal knowledge dis-
tillation scheme, presenting a Simulated multi-modal Dis-
tillation (SimDistill) method for 3D object detection. It en-
courages the student to simulate multi-modal representation
with solely image modality as input thereby advancing the
representation learning for 3D object detection. For the ar-
chitecture, we design a LiDAR-camera fusion-based teacher
and a simulated multi-modal student. The student model not
only involves a camera path but also introduces an additional
simulated LiDAR path parallel to the camera counterpart, as
shown in Figure 1 (c). Different from other distillation meth-
ods in Figure 1 (a) and (b), our student model possesses two
knowledge-transferring paths to learn complementary infor-
mation from the corresponding two branches of the teacher
model. Despite the simulation nature, our student shares
a nearly “identical” pipeline as the teacher to produce the
camera feature, LiDAR feature, fusion feature, and detec-
tion predictions. The resulting aligned learning workflow
greatly mitigates the cross-modal gap and benefits multi-
modal knowledge distillation.

Built upon this architecture, we propose a new simulated
multi-modal distillation scheme that supports intra-modal
(IMD), cross-modal (CMD), and multi-modal fusion dis-
tillation (MMD) simultaneously. We adopt the widely used
MSE loss on the corresponding feature representations dis-
tillation in the unified BEV space and an additional quality-
aware prediction distillation (Hong, Dai, and Ding 2022). It
is noteworthy that directly transferring knowledge from the
LiDAR feature to the simulated LiDAR feature is challeng-
ing due to the cross-modal gap. To approach this challenge,
we devise a geometry compensation module in CMD to help
it attend more to the valuable surrounding context from the
learned locations to conduct geometry remediation and dis-
till more informative features from object regions. Equip-
ping the proposed model with the distillation scheme, our
SimDistill could effectively learn better feature representa-
tions for 3D object detection while enjoying cost-effective
camera-only deployment.

The main contribution of this paper is threefold. Firstly,
we propose a unique multi-modal distillation framework
for BEV 3D object detection, including a LiDAR-camera
fusion-based teacher and a carefully crafted simulated multi-

modal student. By ensuring that the teacher and student
models share nearly the same workflows, we effectively
reduce the modality gap in knowledge distillation. Sec-
ondly, we present a novel simulated multi-modal distillation
scheme that supports intra-modal, cross-modal, and multi-
modal fusion distillation simultaneously, which is a univer-
sal strategy and can be easily adapted to different models.
Thirdly, comprehensive experiments and ablation studies
on the nuScenes benchmark validate the effectiveness of
SimDistill and its superiority over existing state-of-the-art
methods, improving the mAP and NDS of the baseline de-
tector by 4.8% and 4.1%, respectively.

Related Work
Camera-based 3D Object Detection Monocular 3D ob-
ject detection methods have been widely studied and made
great progress (Simonelli et al. 2019; Reading et al. 2021;
Wang et al. 2021b; Lu et al. 2021; Ma et al. 2021; Huang
et al. 2022a) on the KITTI (Geiger, Lenz, and Urtasun 2012)
benchmark. However, with the release of large-scale datasets
with multi-view cameras such as nuScenes (Caesar et al.
2020) and Waymo (Sun et al. 2020), there is growing at-
tention for accurate 3D object detection in these more chal-
lenging scenes. Recent works adopt the Bird’s-eye view
(BEV) representation as an ideal feature space for multi-
view perception due to its excellent ability to address scale-
ambiguity and occlusion issues (Huang et al. 2021; Huang
and Huang 2022; Li et al. 2022c). Various methods have
been proposed to transform perspective image features to the
BEV space, such as the lifting operation from LSS (Philion
and Fidler 2020) used by BEVDet (Huang et al. 2021) and
the cross-attention mechanism-based grid queries used by
BEVFormer (Li et al. 2022c). The camera-based BEVDet
approach has been further improved by imposing depth su-
pervision (Li et al. 2023b,a; Wang et al. 2022; Chu et al.
2023) and temporal aggregation (Huang and Huang 2022;
Park et al. 2022), resulting in better performance. How-
ever, there is still a significant performance gap compared
to LiDAR-based and fusion-based counterparts.

Fusion-based 3D Object Detection LiDAR differs from
cameras in its ability to capture precise geometric and struc-
tural information. However, the data it produces is sparse
and irregular, with a large volume. Some methods use Point-
Net (Qi et al. 2017a) directly on the raw point cloud (Qi et al.
2017b; Shi, Wang, and Li 2019; Chen et al. 2022) to learn
3D features, while others voxelize the point cloud into pil-
lars (Lang et al. 2019; Wang et al. 2020; Yin, Zhou, and Kra-
henbuhl 2021) or voxels (Zhou and Tuzel 2018; Yan, Mao,
and Li 2018) before extracting features using SparseCon-
vNet (Graham, Engelcke, and Van Der Maaten 2018). State-
of-the-art techniques (Yin, Zhou, and Krahenbuhl 2021; Bai
et al. 2022) typically transform 3D features into the BEV
representation to simplify operations in 3D space, and then
feed the resultant features to subsequent detection heads.

Due to their distinct strengths in perceiving, both cam-
eras and LiDAR are integrated into sensor fusion methods
to enhance the performance of perception systems. Existing
fusion-based approaches can be categorized as input-level
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methods (Vora et al. 2020; Wang et al. 2021a; Xu et al. 2021)
and feature-level methods (Bai et al. 2022; Liang et al. 2022;
Liu et al. 2023; Yan et al. 2023), depending on the stage at
which information from different sensors is combined. Re-
cently, it has been shown that BEV space is an ideal space for
multi-modal fusion, resulting in outstanding performance
(Liang et al. 2022; Liu et al. 2023). These methods follow
a simple yet effective pipeline that involves extracting fea-
tures from both modalities, transforming features into the
BEV space, fusing multi-modal features using fusion mod-
ules, and conducting subsequent detection, largely improv-
ing the performance.

Knowledge Distillation in 3D Object Detection Knowl-
edge distillation presents a promising avenue for empow-
ering compact models (i.e., students) with effective repre-
sentations via knowledge transfer from larger models (i.e.,
teachers). In the context of 3D object detection, prior re-
search (Cho et al. 2023; Zhang et al. 2023, 2022; Yang et al.
2022) has successfully extended knowledge distillation tech-
niques, requiring the student network to emulate features
or predictions learned by a teacher model within the same
modality. Recent advancements in the area of KD-based
3D object detection have ventured into employing teach-
ers from different modalities (Chong et al. 2021; Li et al.
2022a; Hong, Dai, and Ding 2022; Chen et al. 2023), i.e.,
leveraging a LiDAR-based teacher. UVTR (Li et al. 2022b)
aligns features from both LiDAR and camera in voxel space,
facilitating knowledge distillation. BEVDistill (Chen et al.
2023) transforms features into the BEV space for the feature
and instance-wise prediction distillation. In a similar vein,
TiG-BEV (Huang et al. 2022b) introduces inner-depth su-
pervision and inner-feature distillation to enhance geometry
learning in the BEV space. These cross-modal distillation
techniques underscore the potential of transferring knowl-
edge from robust LiDAR teachers to camera-based stu-
dents. Nevertheless, these approaches overlook the prospect
of distilling multi-modal knowledge for 3D object detec-
tion. Our approach diverges by exploring a multi-modal
teacher and designing a nearly identical yet simulated multi-
modal architecture alongside tailored distillation schemes
to effectively perform multi-modal distillation. While con-
current work Unidistill (Zhou et al. 2023) also embraces
a multi-modal teacher, it is designed as a universal knowl-
edge distillation framework to support both single-to-single
and fusion-to-single cross-modal distillation. It pays no at-
tention to the architecture discrepancy issue between teacher
and student and fails to perform comprehensive multi-modal
distillation and overcome the cross-modal gap.

Methodology
In this section, we present the details of how the proposed
SimDistill realizes comprehensive multi-modal knowledge
distillation for 3D object detection. We first introduce the
model architecture, which consists of a multi-modal fusion-
based teacher and a simulated multi-modal student. Next, we
describe the simulated multi-modal distillation scheme that
supports knowledge distillation within and between modali-
ties. Last, we present the training objectives for our method.

Multi-modal Architecture
SimDistill is proposed as a flexible multi-modal distillation
method, offering the flexibility to select both the teacher
model and the student model from diverse methods. In the
subsequent sections, we present a concrete implementation
of SimDistill, employing BEVFusion (Liu et al. 2023) as
the teacher model and design the student model based on
the camera branch of BEVFusion (BEVFusion-C). The ar-
chitectural layout of SimDistill is depicted in Figure 2. The
upper block depicts the configuration of the teacher model,
while the lower block represents the student model. In both
instances, the LiDAR branch and the camera branch work-
flows are denoted by red and blue arrows, respectively.

Multi-modal Teacher To encode multi-modal knowl-
edge effectively, we adopt the state-of-the-art fusion-based
method, i.e., BEVFusion (Liu et al. 2023) as the teacher
model. Its architecture comprises two branches, as depicted
in the top part of Figure 2. The LiDAR branch follows the
standard pipeline of a LiDAR-based detector (Yan, Mao, and
Li 2018; Yin, Zhou, and Krahenbuhl 2021). It uses Spar-
seConvNet (Graham, Engelcke, and Van Der Maaten 2018)
EnT3D to extract the 3D features, and obtains the BEV fea-
tures FT

Lbev
through vertical dimension reduction (Flatten).

On the other hand, the camera branch follows the paradigm
of BEVDet (Huang et al. 2021), using a 2D feature extractor
EnT2D and an efficient projection ProjT to transform fea-
tures from the camera view to the BEV space FT

Cbev
. Both

modalities’ features are then embedded in a unified BEV
space using a fully-convolutional fusion module fuseT ,
which produces the fused BEV features FT

Ubev
. Finally, a

detection head headT predicts the objects’ bounding boxes
and classes PT . This process is formulated as:

FT
Lbev

= Flatten(EnT3D(L)),

FT
Cbev

= ProjT (EnT2D(I)),

FT
Ubev

= fuseT (FT
Lbev

, FT
Cbev

),

PT = headT (FT
Ubev

),

(1)

where L and I denotes LiDAR and image input. T and S
in all formulations represent the teacher and student models.
The projection Proj will be explained in the following part.

Simulated multi-modal Student For the student model,
we adopt BEVFusion-C (Liu et al. 2023) as the basis model.
To mimic the multi-modal fusion pipeline of the teacher
model, we make a modification to the network, as shown
in the bottom part of Figure 2. Specifically, after feature
extraction from the 2D encoder EnS2D, we devise an addi-
tional simulated LiDAR branch (workflow denoted with red
arrows) in parallel to the camera branch (blue arrows in the
bottom) to simulate LiDAR features from images, which are
supervised by the real LiDAR features from the teacher.

In the camera branch, we adopt the same efficient view
projection ProjC with the one used in the teacher model
(ProjT ) to transform camera-view features to the corre-
sponding BEV features FS

Cbev
(Philion and Fidler 2020; Liu

et al. 2023). During the feature transformation, the extracted
2D feature FS

Cuv
is first feed to a light Depth Net ϕ and a
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Figure 2: Overall pipeline of SimDistill. It consists of a fusion-based teacher model (top) and a simulated multi-modal student
model (bottom). SimDistill supports (1) Intra-Modal Distillation (IMD) between the camera features of the teacher and student;
(2) Cross-Modal Distillation (CMD) between the teacher’s LiDAR feature and the student’s Simulated-LiDAR feature. (3)
Multi-Modal fusion Distillation (MMD) between the fusion features (MMD-F) and predictions (MMD-P) of the teacher and
student. The workflows of the (simulated) LiDAR and camera branches are denoted by red and blue arrows, respectively.

Context Net ψ to predict the depth distribution and seman-
tic context on each pixel. Then, each 2D feature pixel can
be scattered into D discrete points along the camera ray by
rescaling the context feature with their corresponding depth
probabilities. The resulting 3D feature point cloud is then
processed by the efficient BEV pooling operation ρ, to ag-
gregate features in BEV grids and obtain the BEV features:

FS
Cbev

= ProjC(F
S
Cuv

) = ρ(ψ(FS
Cuv

)× ϕ(FS
Cuv

)). (2)

In the simulated LiDAR branch, to acquire the simulated
LiDAR feature FS

Lbev
, the view projection ProjL is com-

bined with a specifically designed geometry compensation
module in both camera-view and BEV spaces, which will be
explained later in Eq. (5) of Sec. 3.2.2. It offers the ability
to mitigate the geometry misalignment caused by inaccurate
depth prediction and modality gap during distillation. After
obtaining BEV features from two branches FS

Cbev
and FS

Lbev
,

we use the fusion module fuseS to acquire the multi-modal
fusion features FS

Ubev
. And the detection head headS is ex-

ploited to yield the final detection results PS . Both the fu-
sion module and detection head have the same architecture
as the teacher. This process is formulated as:

FS
Cuv

= EnS2D(I),

FS
Lbev

= ProjL(F
S
Cuv

), FS
Cbev

= ProjC(F
S
Cuv

),

FS
Ubev

= fuseS(FS
Lbev

, FS
Cbev

),

PS = headS(FS
Ubev

).

(3)

Owing to the simulated multi-modal fusion architecture, the
student model can learn features from multiple modalities
without equipping a real LiDAR. In the next part, we will
explain how this architecture facilitates effective knowledge
distillation within and between modalities, including intra-
modal, cross-modal, and multi-modal fusion distillation.

Multi-modal Distillation
To better utilize the knowledge of different modalities en-
coded by different branches of the teacher model, we pro-
pose a novel simulated multi-modal distillation scheme in-
cluding Intra-modal Distillation (IMD), Cross-modal Distil-
lation (CMD), and Multi-modal fusion Distillation (MMD).

Intra-modal Distillation Since both the teacher and stu-
dent models take images as input, a straightforward strategy
is to align the image features from the camera branch of both
models, which we name intra-modal distillation. Specifi-
cally, we leverage the BEV feature of the teacher FT

Cbev
as

the supervisory signal for the learning of the student coun-
terpart FS

Cbev
via an MSE loss, i.e.,

LIMD = MSE(FT
Cbev

, FS
Cbev

). (4)

Due to the same modality in IMD, the student model can
be trained directly through the above distillation objective
to gain useful visual domain knowledge to facilitate 3D
object detection performance. However, relying on images
alone may not provide enough geometry-related informa-
tion to help detect target objects. To address this limitation,
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we implement cross-modal distillation on the proposed sim-
ulated LiDAR branch in the student model, enabling it to
gain knowledge from the LiDAR modality.

Cross-modal Distillation CMD aims to align the LiDAR
BEV features of the teacher and the simulated LiDAR BEV
features of the student. However, due to geometry misalign-
ment and modal difference, directly applying the distillation
loss between features generated from different modalities
may lead to an incorrect mimic of the noisy features and
inaccurate 3D geometry representation. Therefore, we pro-
pose a geometry compensation module to address the geom-
etry misalignment and handle the modal difference.
Geometry Compensation Module (GCM) A crucial pro-
cess in the multi-view camera-based detection method is the
view projection operation, which transforms camera-view
(UV) features into the BEV space. Inaccurate geometry in-
ference in this process leads to geometry misalignment be-
tween features learned from images and LiDAR, exacerbat-
ing the modality gap. Therefore, we propose to conduct ge-
ometry compensation before and after the view projection in
the simulated LiDAR branch to learn more accurate geome-
try features in both UV and BEV space.

Deformable Convolutions and Deformable Attentions are
known to be effective in enabling neural networks to model
spatial transformations and account for geometric deforma-
tions or misalignments (Dai et al. 2017; Zhu et al. 2020).
Therefore, we adopt deformable self-attention layers to con-
struct GCM, as shown in Figure 3. For geometry compen-
sation in the UV space, we first generate a uniform grid of
pointsQuv as query points for each 2D camera feature FS

Cuv
.

Then, we learn offsets based on each point q(u,v) ∈ Quv to
generate a set of most related points Puv around it. These
learned points Puv are taken as reference points and keys
used to sample the value features from the 2D camera fea-
tures FS

Cuv
. With the optimization signals gradually improv-

ing attentive locations, the module facilitates the model to
compensate for geometric transformations in the x-y plane.
We apply standard multi-head attention, learning individual
offsets for each head, which captures abundant information
and improves feature representations for subsequent context
learning, depth estimation, and 3D geometry inference. Sim-
ilarly, we employ a BEV geometry compensation module af-
ter transforming the camera-view features to BEV features
FS
Cuv−bev

, which is responsible for correcting the key fea-
ture locations in the x-z plane. By doing so, the geometry

compensation in the two complementary 2D views can com-
prehensively improve the feature representation. Overall, the
view projection with GCM used in the simulated LiDAR
branch is formulated here, with reference to Eq. (2):

FS
Lbev

= ProjL(F
S
Cuv

)

= GCbev(ρ(ψ(GCuv(F
S
Cuv

))× ϕ(GCuv(F
S
Cuv

)))),
(5)

where GCuv(F
S
Cuv

) = DeformAttn(Quv,Puv, F
S
Cuv

) and
GCbev(F

S
Cuv−bev

) = DeformAttn(Qbev,Pbev, F
S
Cuv−bev

),
denoting the UV Geometry Compensation and BEV Geom-
etry Compensation, respectively. Qbev and Pbev are query
and reference points generated for BEV features FS

Cuv−bev
.

To get the final simulated LiDAR feature for distillation,
we also implement a simple yet effective object-aware mask
M to select the most informative features at the end of
GCM. We generate masks in the BEV space from the ground
truth center points and bounding boxes using a heatmap-like
approach like BEVDisitll (Chen et al. 2023). Therefore, the
CMD loss is formulated as:

LCMD = MSE(M⊙ FT
Lbev

,M⊙ FS
Lbev

) (6)

where ⊙ is Hadamard product. The object-aware mask is
a technique we utilize together with GCM to improve the
ability to overcome the cross-modal gap in CMD and we
refrain from attributing it as our original contribution.

Multi-modal fusion Distillation In light of the aligned ar-
chitecture and workflow with the teacher model, the student
model also produces multi-modal fusion features as well as
detection predictions. To make the fused feature and predic-
tions consistent with those in the teacher model, we devise
multi-modal distillation in both feature level (MMD-F) and
prediction level (MMD-P). Owing to the proximity of the
fusion module and the detection head, MMD-F is expected
to distill highly useful multi-modal knowledge that directly
contributes to the detection. It is implemented by aligning
the fusion feature of the teacher model and the simulated
fusion feature of the student model:

LMMD−F = MSE(FT
Ubev

, FS
Ubev

). (7)

After the fusion module, the fused feature in the student
model is fed into the detector to output the detection results
in the same way as the teacher model. Thus, we also employ
MMD-P by taking the predictions from the teacher model
as soft labels. We adopt the quality-aware prediction distil-
lation loss LMMD−P (Hong, Dai, and Ding 2022), which
consists of the classification loss Lcls for object categories
and the regression loss Lreg for 3D bounding boxes:

LMMD−P = Lreg + Lcls,

= SmoothL1(PT
B , P

S
B) · s+QFL(PT

C , P
S
C ) · s,

(8)

where PT
B and PT

C (resp. PS
B and PS

C ) denote the predicted
bounding boxes and categories by the teacher model (resp.
the student model). QFL(·) denotes the quality focal loss (Li
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Methods Modality Backbone Image Size mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
BEVFusion (Liang et al. 2022) LC VoxelNet SwinT 448× 800 67.9 71.0 - - - - -
BEVFusion (Liu et al. 2023) LC VoxelNet SwinT 256× 704 68.5 71.4 28.6 25.3 30.0 25.4 18.6
FCOS3D (Wang et al. 2021b) C R101 900× 1600 29.5 37.2 80.6 26.8 51.1 113.1 17.0
BEVDet (Huang et al. 2021) C R50 256× 704 29.8 37.9 72.5 27.9 58.9 86.0 24.5

PETR (Liu et al. 2022) C R50 384× 1056 31.3 38.1 76.8 27.8 56.4 92.3 22.5
DETR3D (Huang and Huang 2022) C R101 900× 1600 34.9 43.4 71.6 26.8 37.9 84.2 20.0

Set2Set (Li et al. 2022b) C* R50 900× 1600 33.1 41.0 - - - - -
MonoDistill (Chong et al. 2021) C* R50 900× 1600 36.4 42.9 - - - - -

UVTR (Li et al. 2022b) C* R50 900× 1600 36.2 43.1 - - - - -
TiG-BEV (Huang et al. 2022b) C* R50 256× 704 33.1 41.1 67.8 27.1 58.9 78.4 21.8
UniDistill (Zhou et al. 2023) C* R50 256× 704 26.5 37.8 - - - - -

BEVDistill (Chen et al. 2023) C* SwinT 256× 704 36.3 43.6 64.2 27.4 57.6 87.8 28.2
BEVFusion-C (Liu et al. 2023) C SwinT 256× 704 35.6 41.2 66.8 27.3 56.1 89.6 25.9

SimDistill C* SwinT 256× 704 40.4 45.3 52.6 27.5 60.7 80.5 27.3

Table 1: Quantitative comparisons on the nuScenes validation Set. L and C in the second column denote the input modality, i.e.,
LiDAR and camera, while C* means using LiDAR for knowledge distillation during training.

et al. 2020). s is a quality score used as the loss weight,
obtained by measuring the IoU between the predictions and
the ground truth to determine the confidence of the soft label.
Discussion It is noteworthy that previous methods have not
explored multi-modal fusion distillation due to the absence
of a dedicated multi-modal architecture in the student model
for aligning fusion features or predictions. Instead, these
methods distill information solely by aligning the teacher
model’s fusion features or predictions to a single-modal stu-
dent counterpart, which leads to subpar performance due
to the modality gap. Furthermore, no studies have investi-
gated the impact of comprehensive multi-modal distillation,
including intra-modal, cross-modal, and multi-modal fusion
distillation, simultaneously. Our SimDistill makes progress
by effectively performing multi-modal fusion distillation
through its simulated multi-modal architecture. This com-
plements intra-modal and cross-modal distillation (Sec. 4.3),
resulting in improved performance.

Training Objective
Apart from the above distillation losses, the student model
is also optimized by the common loss of 3D object detection
task Ldet. The overall training objective L is defined as:

L = LIMD+LCMD+LMMD−F+LMMD−P+Ldet. (9)

Experiment
Experiment Setting
Datasets and Evaluation Metrics We follow the common
practice (Huang et al. 2021; Liu et al. 2023; Liang et al.
2022; Li et al. 2023b; Chen et al. 2023) to evaluate our
method on the most challenging benchmark, i.e., nuScenes
(Caesar et al. 2020). It comprises 700 scenes for train-
ing, 150 scenes for validation, and 150 scenes for testing.
Each scene includes panoramic LiDAR data and surround-
ing camera images, which are synchronized to provide con-
venience for multi-modal-based research. The dataset com-
prises a total of 23 object categories, and 10 popular classes
are considered for computing the final metrics. To align with

the official evaluation, we adopt mean Average Precision
(mAP) and nuScenes detection score (NDS) as the main
metrics with other 5 metrics for reference.
Implementation Details Our method is implemented with
PyTorch using 8 NVIDIA A100 (40G Memory), based
on the MMDetection3D codebase (Contributors 2020). We
adopt BEVFusion (Liu et al. 2023) as the default teacher
model, which takes images with a size of 256 × 704 and
LiDAR point cloud with a voxel size of (0.075m, 0.075m,
0.2m) as input and uses VoxelNet (Zhou and Tuzel 2018)
and Swin-T (Liu et al. 2021) as backbones for the two
modalities, respectively. During distillation, we utilize the
official BEVFusion checkpoint, freeze the teacher model,
and train the student model for 20 epochs with batch size
24. The backbone and input resolution are kept the same
as BEVFusion-C in both our SimDisitll and our competitor
BEVDistill. More implementation details, ablation analysis,
and visualizations can be found in Appendices.

Main Results
We compare our SimDistill with state-of-the-art methods on
the nuScenes validation set and present the results in Ta-
ble 1. We group the methods according to the input modal-
ity and present the knowledge distillation-based methods
in the bottom part (except for baseline BEVFusion-C) for
straightforward comparisons. From the table, we can see
that fusion-based methods usually possess a stronger per-
ception ability and achieve better performance. However, the
high cost of LiDAR may restrict their practical usage. Com-
pared with the baseline BEVFusion-C, SimDistill boosts the
performance significantly by 4.8% mAP and 4.1% NDS,
clearly validating the effectiveness of the proposed distil-
lation method. Compared with the concurrent distillation
methods BEVDistill and UniDistill, our SimDistill achieves
much better performance under the same setting.

Ablation Studies
Why Choose Multi-modal Architectures?
To demonstrate the superiority of the proposed simulated
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Teacher Student Distillation mAP↑ NDS↑
a BEVFusion BEVFusion-C MMD-F 35.94 41.75
b BEVFusion SimDistill MMD-F 38.34 44.15
c BEVFusion-L BEVFusion-C CMD-v 35.88 42.87
d BEVFusion-L SimDistill CMD-v 36.80 42.79

Table 2: Ablation study of the model architecture. CMD-v is
the vanilla version of CMD without using GCM here.

multi-modal structure, we replace the multi-modal teacher
BEVFusion and the simulated multi-modal student SimDis-
till with their single-modal counterpart BEVFusion-L (i.e.,
the LiDAR branch of BEVFusion) and BEVFusion-C, re-
spectively. The results are presented in Table 2. We first
investigate the influence of using a simulated multi-modal
student. In models (a) and (b), we adopt the multi-modal
teacher (BEVFusion) but distill the fusion feature to dif-
ferent student architectures. The experiment results show
that the simulated multi-modal student (b) outperforms the
single-modal one (a) with a clear gain of 2.4 in both mAP
and NDS. We then change the teacher to a single-modal
one (BEVFusion-L) to verify the performance of the stu-
dent. Although directly learning from a cross-modal teacher
adversely affects performance due to the modality gap, the
multi-modal student (d) still achieves better performance in
mAP and comparable results in NDS compared with the
single-modal student (c). The two groups of comparisons
validate the superiority of using a multi-modal student. Be-
sides, the experiments of (b) and (d) both directly distill the
learned feature from the teacher model to the student, which
validates the importance of using a multi-modal teacher, i.e.,
with a gain of 1.54% mAP and 1.36% NDS. In summary,
it is crucial to employ multi-modal architectures for both
teacher and student models to enhance knowledge transfer
and achieve better performance. In addition, employing the
proposed simulated multi-modal student model maintains
the advantage of cost-effective camera-only deployment.

How Simulated Multi-modal Distillation Works?
To investigate the impact of distillation options, we per-
form ablation studies and summarize the results in Table 3.
Model (a) denotes the baseline model with the proposed sim-
ulated multi-modal architecture without any knowledge dis-
tillation. We present the gains over Model (a) in the column
mAP and NDS. As shown in (b), (c), (e), and (f), employing
IMD, vanilla CMD, MMD-F, and MMD-P on the baseline
model leads to 1.09%, 1.43%, 2.63%, and 1.02% absolute
gains in mAP, respectively, where MMD-F brings the largest
gain owing to the rich multi-modality knowledge contained
in the fusion features. Interestingly, while the simulated Li-
DAR branch should possess more accurate 3D geometry
than the camera branch, IMD (b) produces a slightly larger
gain than vanilla CMD (c). We attribute it to the modality
gap between the real LiDAR features of the teacher and the
simulated ones of the student.

After using the proposed GCM (i.e., Model (d)), we can
see that it helps CMD achieve a gain of 4.12% mAP and
2.82% NDS over the baseline in (a), validating the effective-

IMD CMD MMD mAP↑ NDS↑vanilla GCM -F -P
a 35.71 (-) 41.97 (-)

b ✓ 37.14 (+1.43) 42.67 (+0.70)

c ✓ 36.80 (+1.09) 42.79 (+0.82)
d ✓ ✓ 39.83 (+4.12) 44.79 (+2.82)

e ✓ 38.34 (+2.63) 44.15 (+2.18)
f ✓ 36.73 (+1.02) 42.52 (+0.55)

g ✓ ✓ ✓ ✓ ✓ 40.40 (+4.69) 45.31 (+3.34)

Table 3: Ablation study of different distillation options.

Methods FPS GFlops mAP NDS

BEVDet (Huang et al. 2021) 15.6 215.3 31.2 39.2
BEVFormer (Li et al. 2022c) 2.4 1303.5 37.5 44.8
BEVDistill(Chen et al. 2023) 3.7 608.8 36.3 43.6

BEVFusion-C (Liu et al. 2023) 13.4 165.1 35.6 41.2
SimDistill 11.1 219.1 40.4 45.3

Table 4: Comparison of model efficiency.

ness of GCM in overcoming the side effect of the modality
gap during distillation. After incorporating all the compo-
nents including simulated multi-modal architecture and all
the distillation techniques, we get our SimDistill model in
(g), which delivers the best performance of 40.40 mAP and
45.31 NDS, meanwhile achieving an improvement of 4.8%
mAP and 4.1% NDS over the baseline model BEVFusion-C.

Model Efficiency
We compare the model efficiency with other representa-
tive methods in Table 4. Our method achieves an infer-
ence speed of 11.1 FPS on a single GPU, running much
faster than BEVDistill and BEVFormer. It is comparable
to BEVFusion-C but a bit slower than BEVDet, mainly
due to the additional simulated LiDAR branch in the archi-
tecture. Nevertheless, SimDistill significantly outperforms
other methods in terms of mAP and NDS.

Conclusion
In this paper, we propose a novel simulated multi-modal
distillation method named SimDistill for multi-view BEV
3D object detection by carefully investigating the architec-
ture design and effective distillation techniques. We identify
the importance of the multi-modal architecture for multi-
modal knowledge distillation and devise a simulated multi-
modal student model accordingly. Built upon it, we de-
velop a novel simulated multi-modal distillation scheme
that supports intra-modal, cross-modal, and multi-modal fu-
sion knowledge distillation simultaneously. Experiments on
the challenging nuScenes benchmark have validated the
above findings and the superiority of the proposed distil-
lation methods over state-of-the-art approaches. We believe
SimDistill is compatible with other multi-modal teacher and
diverse student models, which could lead to enhanced per-
formance and remains a subject for future investigation.
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