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Abstract

Bio-inspired spike camera mimics the sampling principle of
primate fovea. It presents high temporal resolution and dy-
namic range, showing great promise in fast-moving object
recognition. However, the physical limit of CMOS technol-
ogy in spike cameras still hinders their capability of recogniz-
ing ultra-high-speed moving objects, e.g., extremely fast mo-
tions cause blur during the imaging process of spike cameras.
This paper presents the first theoretical analysis for the causes
of spiking motion blur and proposes a robust representa-
tion that addresses this issue through temporal-spatial context
learning. The proposed method leverages multi-span feature
aggregation to capture temporal cues and employs residual
deformable convolution to model spatial correlation among
neighbouring pixels. Additionally, this paper contributes an
original real-captured spiking recognition dataset consisting
of 12,000 ultra-high-speed (equivalent speed > 500 km/h)
moving objects. Experimental results show that the proposed
method achieves 73.2% accuracy in recognizing 10 classes
of ultra-high-speed moving objects, outperforming existing
spike-based recognition methods. Resources will be available
at https://github.com/Evin-X/UHSR.

Introduction
Conventional frame cameras suffer from visual cue loss and
severe motion blur in high-speed scenarios due to their lim-
ited frame rate (e.g., 30 fps) and single-exposure imaging
principle, as shown in Fig. 1 (a). In contrast, bio-inspired
spike cameras simulate the sensing principle of retinal pho-
tosensitive cells, where each pixel perceives light indepen-
dently and generates spikes asynchronously (Zheng et al.
2023c). This unique imaging principle allows spike cam-
eras to achieve a sampling frequency that is 1000× higher
than human vision (Huang et al. 2022), enhancing their ca-
pability in capturing high-speed moving objects, as shown
in Fig. 1 (b). Previous efforts (e.g., Zhao et al. (2021b), Hu
et al. (2022), Zhang et al. (2022a), Zhao et al. (2022)) have
shown promising advantages of spike cameras in recording
and recognizing high-speed objects over frame cameras.

Current spike cameras are implemented using CMOS
technology. The photo-electric conversion time of each pixel
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sets a limit on the maximum sampling frequency of spike
signals (El-Desouki et al. 2009). If the speed of a mov-
ing object exceeds a theoretical upper threshold (e.g., 500
km/h), the spike signals will become distorted, resulting in
information loss during the imaging process. Consequently,
the brightness intensity maps generated from spike streams
will present blur, as depicted in Fig. 1 (c). We designate this
phenomenon as spiking motion blur. In spiking vision com-
munity, research on spiking motion blur is still in its early
stage. This work is hence motivated to explore the capabil-
ity of spike cameras in recording ultra-high-speed motions
that exceed their physical limit.

Moreover, the lack of datasets has hindered the research
on ultra-high-speed moving object recognition. Existing
spiking datasets, as shown in Table 1, mainly consist of syn-
thetic data generated from video frames rather than real data.
The speeds of moving objects in synthetic data are con-
strained by video frame rates, which are much lower than
the sampling frequency of spike cameras. Additionally, the
majority of these datasets are designed for pixel-level vision
tasks (Zheng et al. 2023b) such as depth estimation, optical
flow estimation, and reconstruction, making them unsuitable
for instance-level tasks. Although Zhao et al. (2023a) and
Zhao et al. (2023b) introduced datasets for neuromorphic
recognition, the speeds of moving objects in these datasets
are lower than ultra-high speed. Therefore, a dataset featur-
ing ultra-high-speed motions is required.

We theoretically analyze the causes of motion blur in the
spike camera imaging process. First, we establish the rela-
tionship between moving objects and spike signal genera-
tion. Then, we analyze the distortion conditions of spike sig-
nal sampling based on the Shannon sampling theorem and
find that spiking motion blur is caused by temporal under-
sampling and spatial misalignment. Based on findings of
the analysis, we propose a robust representation learning
method that utilizes the temporal-spatial contexts of spike
streams to address the issues of spiking motion blur. We
employ multi-span dilated convolution in the temporal do-
main to extract temporal features and perform re-weighting
aggregation on the extracted temporal features from differ-
ent spans. In the spatial domain, we utilize cascaded resid-
ual deformable convolution to capture the correlation among
neighbouring pixels. Finally, we integrate the temporal and
spatial features through cross-attention fusion.
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Figure 1: Comparison of fast-motion recordings. (a) is captured by a frame camera, suffering from significant motion blur. (b)-
(c) are generated from spike streams recorded by a spike camera, which presents stronger capability in capturing high-speed
motions, but is still hindered by the physical limit in capturing ultra-high speeds. (Details in the Experiment Section)

Spiking Dataset Vision Task Reference Year Sim or
Real Data?

High-Level
Vision Task?

Ultra-High
Speed?

S-DENSE (Zhang et al. 2022a) Depth Estimation ECCV 2022 Sim × ×
S-KITTI (Wang et al. 2022) Depth Estimation ICME 2022 Sim × ×
RSSF (Zhao et al. 2022) Flow Estimation NeurIPS 2022 Sim × ×
SPIFT (Hu et al. 2022) Flow Estimation CVPR 2022 Sim × ×
Spk-Vimeo (Xiang et al. 2021) Reconstruction T-CSVT 2021 Sim × ×
Spk-REDS (Zhao et al. 2021a) Reconstruction CVPR 2021 Sim × ×
PKU-Recon (Zhu et al. 2020) Reconstruction CVPR 2020 Real × ×
SpiReco (Zhao et al. 2023b) Recognition T-CSVT 2023 Real ×
HSSR (Zhao et al. 2023a) Recognition ACM MM 2023 Real ×
UHSR (Ours) Recognition AAAI 2024 Real

Table 1: Differences between the UHSR and other existing datasets.

Besides above methods, this paper contributes a spik-
ing dataset for Ultra-High-Speed object Recognition, named
UHSR dataset. Specifically, we construct the UHSR dataset
using a motion platform similar to (Zhao et al. 2023b),
which allows us to capture ultra-high-speed objects in a lab-
oratory environment. The platform provides motions with
equivalent speeds exceeding 500 km/h, significantly faster
than existing datasets. Experimental results show that, our
method boosts the baseline by 8.3% accuracy on recogniz-
ing 101 classes of ultra-high-speed moving objects. Besides,
our method achieves state-of-the-art performances on the
high-speed SpiReco and ultra-high-speed UHSR datasets.

Our contributions can be summarized as follows:

• To the best of our knowledge, we present the first theo-
retical analysis for underlying causes of spiking motion
blur, which reveals the physical limit of current spike
cameras in recording high-speed motions.

• We propose an original method for recognizing ultra-
high-speed moving objects. Our method effectively
addresses the issue of spiking motion blur through
temporal-spatial context learning.

• We contribute a new spiking recognition dataset featur-
ing ultra-high-speed motions, where objects are recorded
at equivalent speeds exceeding 500 km/h at a camera-
object distance of 10 meters.

Related Work
Overview of Spike Camera Model
This section briefly introduces the working principle of the
spike camera. Each pixel consists of a photon-receptor, in-
tegrator, and comparator. The photon-receptor records pho-

tons, which are accumulated by the integrator and converted
into voltage. The comparator continuously compares the
voltage with a threshold θ. When the voltage exceeds θ, a
spike is emitted and the accumulation is reset. The spike
generation process on a pixel can be expressed as,∫ t+nTr

t
λI(t)dt ≥ θ, (1)

where I(t) is the brightness intensity of a pixel at time t, λ
denotes photoelectric conversion rate, and Tr is the temporal
resolution (e.g., 50µs). Spike stream s is a binary array with
the dimension of RT×H×W , where T is the time length, H
and W are the height and width of the sensor. More details
of spike cameras can be found in (Huang et al. 2022).

Neuromorphic Recognition Methods
In recent years, Spiking Neural Networks (SNNs) have
gained attention for processing neuromorphic data, with var-
ious proposed models such as (Zheng et al. 2021; Fang et al.
2021; Meng et al. 2022; Wang et al. 2023b). However, there
is a lack of research evaluating the performance of SNNs on
spiking data recorded by spike cameras.

Currently, several efforts have been proposed for process-
ing spike camera data. Zheng et al. (2023c) recovered bright-
ness using spike signal intervals, while Zhao et al. (2022)
introduced a spiking representation based on spike firing
time differentials. Moreover, Zhao et al. (2023b) developed
a denoised and motion-enhanced framework for recogniz-
ing high-speed moving objects. However, none of these ap-
proaches tackled the challenge of spiking motion blur result-
ing from ultra-high-speed motions.

Unlike spike cameras inspired by the foveal retina, event
cameras are inspired by the peripheral retina (Gallego et al.
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Figure 2: (a) ultra-high-speed motion results in (b) spiking
motion blur. (c) illustrates the relationship between moving
objects and their correlated spike streams.

2020). Each pixel in event cameras operates asynchronously
and generates events when brightness change exceeds a
threshold (Zheng et al. 2023a). Several event-based process-
ing methods including (Wang et al. 2023a; Peng et al. 2023;
Sun et al. 2023) rely on precise timestamps and polarity in-
formation, which are not available in spike streams. This
makes them unsuitable for processing spiking data.

Analysis of Spiking Motion Blur
This section establishes the relationship between a moving
object and its corresponding spike signals to analyze the
cause of spiking motion blur. Based on the spike genera-
tion principle in Eq. (1), the time ∆t required for emitting a
spike can be calculated as,

∆t = nTr ≥ θ

λĪ
, (2)

where Ī is the average brightness intensity in a short time
interval. The perceived Ī by each pixel can be estimated as,

Ī =
θ

λ∆ts
, (3)

where ∆ts is the time interval between two adjacent spikes.
As shown in Fig. 2, assuming an object at distance D

moves at speed v, and projects an inverted image on the sens-
ing chip through the lens. The projected pixels keep record-
ing the brightness independently and emit a spike once the
voltage exceeds a threshold. According to the law of con-
vex lens imaging, the relationship between the length of the
object L and its image H can be represented as,

F

H
=

D

L
, (4)

where F denotes the focal lens. Given that, a pixel of size
H0×H0 captures the brightness of a high-speed moving area
L0 ×L0 (denoted as L0-area) located at a distance D0 from
the lens. Following the Nyquist–Shannon sampling theorem,
a pixel needs to emit a minimum of two spikes to ensure
sufficient information sampling for the L0-area. Hence, the
Eq. (4) can be rewritten as,

F

H0
=

D

v(2∆t)
. (5)

Substituting Eq. (2) into Eq. (5) yields the formula,

v ≤ ηĪD/F , (η = λH0/2θ) , (6)

Figure 3: The overall architecture of the proposed TSC
method. The MTDC module and RDC module learn the
temporal and spatial context of spike streams, respectively.
The generated features are fused by the CAFA module.

where η is a constant determined by sensor parameters of λ,
H0 and θ. Eq. (6) states that in a given scene with parameters
such as Ī , D, and F , if a spike camera is capable of capturing
the moving objects clearly, there exists an upper bound on
the moving speed. We denote this speed upper bound as,

V ∗=ηĪD/F. (7)

When the object speed exceeds V ∗, it causes temporal un-
dersampling of brightness intensity, leading to spatial mis-
alignment between the object and its spike signals. Addition-
ally, we find that V ∗ is influenced by scene parameters, es-
pecially the brightness intensity Ī , when D and F are fixed.
A higher Ī results in a larger V ∗, suggesting a correlation
between spike camera performance and scene brightness in-
tensity. In summary, given a camera and scene, if the object
speed exceeds the upper bound or the scene brightness is too
weak, motion blur may occur in the recorded spiking data.

Proposed Method
Given a spike stream s∈RT×H×W , our goal is to accurately
recognize objects from s, which can be formulated as,

Ω∗ = argmin
Ω

L(F(S,Ω), Y ) , (8)

where Ω represents parameters of the recognition model F ,
L denotes the loss function of F , and S = {s0, s1, ..., sN}
denotes the spiking dataset with labels Y . Based on the spik-
ing motion blur analysis, we propose a learning-based spik-
ing representation R to tackle the issue of spiking motion
blur by considering both the Temporal and Spatial Context
(TSC), as illustrated in Fig 3. Therefore, the model F can be
represented as F = B(R(·)), where B denotes the Back-
bone such as ResNet (He et al. 2016) and VGGNet (Si-
monyan and Zisserman 2014).

In the temporal domain, considering the continuity of mo-
tion process, errors in the recorded brightness intensity at
time ti can be compensated by incorporating the brightness
information from neighbouring time steps. However, deter-
mining appropriate length of the neighboring time window
is challenging due to various motion speeds of objects. To
address this, we introduce the Multi-span Temporal-Dilated
Convolution (MTDC) module that extracts temporal fea-
tures at multi-scales and performs learnable re-weighted fu-
sion of these features.
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Figure 4: Structure of the MTDC module.

In the spatial domain, the high speed of moving objects
leads to spatial misalignment of spikes, causing the bright-
ness information of moving objects to be encoded in a neigh-
bourhood of pixels rather than a single pixel. Determining
the appropriate spatial neighbourhood is difficult due to di-
verse motion patterns. To tackle this, we introduce a spatial
feature extractor based on Residual Deformable Convolu-
tion (RDC) blocks, and employ a cascaded architecture to
enhance the feature extraction capability of this module.

To model the feature-level correlation between temporal
and spatial domains, we employ Cross-Attention Feature
Aggregation (CAFA) module to integrate temporal-spatial
features, generating a robust spiking representation for im-
proving recognition accuracy.

The structures of MTDC, RDC, and CAFA modules are
detailed in the following sub-sections. We optimize the
weights of representation learning modules in an end-to-
end manner, jointly training the backbone and representation
modules using cross-entropy loss.

Multi-span Temporal-Dilated Convolution
We estimate brightness intensity from spike streams at each
time step t using Eq. (3). The intensity maps Is are fed into
multiple dilated convolution blocks, shown in Fig. 4, where
each block conducts dilated convolutions with different di-
lated rates d to capture features at multiple temporal scales.
Notably, the dilation is only applied along the temporal axis.
In contrast to 3D convolution kernels, our algorithm miti-
gates the information overlap in the temporal domain and
reduces parameter size, which facilitates network training.
The generated feature map G is calculated as,

Gd(t, h, w) =
∑
τ

∑
i,j

κd(ε̂+τ, ε̂+i, ε̂+j)⊙Is(t+dτ, h+i, w+j),

(9)
where κd ∈ Rε×ε×ε are weights of a dilated convolution
kernel with the dilated rate d, ε̂ = ⌊ ε

2⌋, −ε̂ ≤ τ, i, j ≤ ε̂,
and t=1, 2, .., T is the time length of a input spike stream.

Experimental results illustrated in Fig. 9 show that the
temporal correlation in spike streams weakens as the tem-
poral span increases. Therefore, the feature maps Gd, cor-
responding to different dilated rates d, are combined using
element-wise multiplication ⊙ with learnable masks Md.
This enables the aggregation of features across various tem-
poral spans with adaptive weightings. In this way, the tem-

Figure 5: Structure of the RDC module. (a) RDC module.
(b) RDC block. (c) Deformable convolution.

poral feature map T can be obtained by,

T = fa(
∑
d

Md ⊙ Gd), (10)

where fa(·) represents the operation pipeline consisting of
3×3 convolution, Batch Normalization (BN), and ReLU.

Residual Deformable Convolution
The RDC module takes brightness intensity maps Is as in-
put and extracts spatial context from neighbouring pixels.
The input Is is passed through a 3×3 convolutional layer
and then processed by several cascaded RDC blocks as il-
lustrated in Fig. 5 (a). The cascaded structure is adopted to
enhance the capability of local feature extraction. Each RDC
block, as shown in Fig. 5 (b), introduces deformable con-
volution (Zhu et al. 2019) to achieve a flexible perception
range for modelling various motion cues. For a deformable
convolution kernel with K sampling locations, as depicted
in Fig. 5 (c), the weight and offset for the k-th location are
denoted as ωk and zk, respectively. The output feature map
U at each position z=(h,w) can be computed as,

U(t, z)=
∑
k

ωk ·Is(t, z + zk +∆zk) ·∆mk, (11)

where ∆zk and ∆mk are the learnable offsets and modula-
tion scalar for the k-th location, respectively. Accordingly,
the feature map V produced by the i-th RDC block can be
obtained by,

Vi = ReLU(Vi−1 ⊕ fb(Ui)), (12)

where fb(·) represents the operation pipeline consisting of
BN, ReLU, 3× 3 convolution, and another BN. The feature
map Vi−1 generated by the previous RDC block is added ⊕
via a residual connection.

Cross-Attention Feature Aggregation
We employ cross-attention to model the relation between
temporal and spatial domains. As shown in Fig. 3, the ro-
bust spiking representation R is generated by aggregating
the temporal features T and spatial features V . The compu-
tation process can be formulated as,

R=Softmax(fc(T )⊗ fc(V)T )⊗ fc(T ) ⊕ fd(V), (13)

where fc(·) represents the operation pipeline consisting of
3×3 convolution, BN, 1×1 convolution, and fd(·) represents
the operation pipeline consisting of 3×3 convolution, BN.
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Figure 6: (a) High-speed motion platform for constructing
the UHSR. (b)-(c) Visualization of spikes in 3D and 2D.

Figure 7: Visualization to the brightness intensity maps un-
der each experimental setting recorded in Table 2.

Experiment

Dataset

(i) the SpiReco (Zhao et al. 2023b) is a collection of high-
speed moving object recognition datasets captured using a
spike camera. It consists of various motion patterns with
different speeds. The sub-datasets of SpiReco include S-
CIFAR (S-CIF) with 10 classes of 10,000 samples and S-
CALTECH (S-CAL) with 101 classes of 8,710 samples. The
test sets for each sub-dataset contain 1,500 samples.
(ii) the UHSR proposed in this study is a pioneering dataset
for ultra-high-speed spiking recognition, as there is cur-
rently no dedicated dataset in this field. The related dataset,
i.e., SpiReco, only covers motion speeds lower than 500
km/h, making it challenging to evaluate methods for ultra-
high-speed motions. To collect UHSR, we employ a simi-
lar data collection platform to as shown in Fig. 6 (a), which
simulates objects moving at speeds equivalent to 500∼700
km/h. The speed calculation follows the approach described
in (Zhao et al. 2023b). We randomly select 6,000 images
from CIFAR-10 and 6,000 images from CALTECH-101 for
annotation, creating the Ultra-high-speed CIFAR (U-CIF)
and Ultra-high-speed CALTECH (U-CAL) datasets, respec-
tively. U-CIF contains 10 classes, and U-CAL consists of
101 classes. Training and testing sets are spilt as a ratio of
5:1. UHSR facilitates the evaluation of methods designed for
ultra-high-speed spiking recognition.

Experimental Settings Evaluation Results
No. Scene Ī (lx) v (km/h) TDE ↑ BIQI ↓
1-1

Plane

∼5000

7.9 (0.6V ∗) 11.26 52.01

1-2 13.0 (1.0V ∗) 11.19 53.94

1-3 18.0 (1.4V ∗) 10.53 67.40

1-4
∼2000

3.3 (0.6V ∗) 10.34 59.96

1-5 5.4 (1.0V ∗) 10.31 61.70

1-6 7.6 (1.4V ∗) 9.84 76.35

2-1

Car

∼5000

7.9 (0.6V ∗) 11.14 56.33

2-2 13.0 (1.0V ∗) 11.09 58.82

2-3 18.0 (1.4V ∗) 10.23 74.36

2-4
∼2000

3.3 (0.6V ∗) 10.17 61.47

2-5 5.4 (1.0V ∗) 10.03 63.95

2-6 7.6 (1.4V ∗) 9.35 79.84

Table 2: Experimental settings and evaluation results.

Figure 8: Evaluation results of spiking motion blur.

Implementation
We adopt the ImageNet pre-trained ResNet-18 as the back-
bone. Model parameters are trained using the SGD optimizer
without data augmentation. The initial learning rate is set
to 2e-4 with the LambdaLR scheduler. The training process
runs for 30 epochs for each dataset with a batch size of 16.
Input samples are downsampled to 124× 124 using average
pooling. θ/λ is set to 1, constraining the value of brightness
intensity maps within [0, 1]. The framework is implemented
in PyTorch and trained on NVIDIA RTX 4090 GPUs.

Validation of Spiking Motion Blur Analysis
We experimentally validate the analysis of spiking motion
blur. High-speed motions are provided by the motion plat-
form shown in Fig. 6 (a), driving the monitor at speeds
ranging from 0 to 18 km/h. The camera-monitor distance is
D=0.35m, and the focal length is F =8mm. The constant
η≈1.67e-5 in Eq. (7) is calculated based on the spiking sen-
sor parameters from (Huang et al. 2022). Experiments are
conducted under two luminance conditions with two moving
objects, i.e., an airplane and a racing car. The upper bound of
moving speed V ∗ is calculated for each setup according to
Eq. (7). We set the monitor motion speeds from 0.6 V ∗ to 1.4
V ∗ and record the spike streams. Brightness intensity maps
are generated using Eq. (3), as depicted in Fig. 7. This ap-
proach estimates brightness intensity without optimization
or reference information, and the quality of the reconstructed
maps reflects the quality of spike streams, assuming the im-
pact of spike noise remains stable.
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Figure 9: Spatial and temporal correlation analysis of spik-
ing data in the UHSR and SpiReco datasets.

We quantitatively evaluate the reconstructed maps using
Two-Dimensional Entropy (TDE) (Xi, Guosui, and Ni 1999)
and Blind Image Quality Index (BIQI) (Moorthy and Bovik
2009) as metrics. TDE indicates better image quality with
higher values, while BIQI indicates better image quality
with lower values. The evaluation results shown in Fig. 8
and summarized in Table 2 indicate that, brightness inten-
sity maps generated from scenes with v≤V ∗ exhibit higher
quality compared to those from scenes with v>V ∗, and the
quality decreases with increasing of v. Because spike sig-
nals become distorted when the motion speed exceeds V ∗.
Additionally, scenes with lower luminance, such as 2000 lx,
manifest more prominent motion blur as the spike camera
is sensitive to scene brightness. Fig. 7 visualizes those re-
constructed maps, illustrating that scenes with motion speed
v>V ∗ present motion blur. These experimental results val-
idate the effectiveness of the spiking motion blur analysis.

Ablation Study of Proposed Method
We experimentally investigate the temporal-spatial correla-
tion of spike streams by randomly selecting 300 samples
from UHSR and SpiReco, respectively. For each sample, we
compute the similarity of inter-spike intervals within local
pixel regions in the spatial domain, and within a certain time

Model Module SpiReco UHSR
M1 M2 S-CIF S-CAL U-CIF U-CAL

Baseline - - 55.1% 69.3% 65.7% 59.2%
Ours (a) ✓ - 57.6% 71.7% 68.3% 63.4%
Ours (b) - ✓ 58.9% 73.6% 70.5% 65.1%
Ours (c) ✓ ✓ 60.8% 74.6% 73.2% 67.5%

Table 3: Recognition accuracy of ablation experiments on
MTDC (M1) and RDC (M2) modules.

Figure 10: Visualization to ablation experimental results on
the UHSR dataset.

window for the same pixel in the temporal domain. Results
are shown in Fig. 9, where each sub-figure displays the orig-
inal data, the original data curve, and the curve fitted using
the Laplace distribution. The Probability Density Function
(PDF) of Laplace distribution can be expressed as,

f(x|µ, σ) = 1
2σ exp

(
− |x−µ|

σ

)
, (14)

where x denotes the difference in inter-spike intervals, µ is
the mean, and σ is the scale parameter. When σ is small, the
PDF presents a steeper peak, leading to a more concentrated
distribution and smaller deviation of variables around the µ.

Experimental results in Fig. 9 exhibit significant corre-
lations in spike interval distributions within certain spatial
(e.g., r ≤ 3) and temporal (e.g., t ≤ 3) ranges, with r in-
dicating spatial region radius and t denoting temporal span.
Specifically, the correlation decreases with the increasing of
r and t. For instance, as shown in Fig. 9 (a), when r = 1,
σ = 4.9, and when r = 3, σ = 5.4. Similarly, in Fig. 9 (c),
when t=1, σ=2.0, and when t=3, σ=2.3. In our model
design, the RDC module employs a 3-level cascaded struc-
ture, and the MTDC module adopts a dilated rate of d= 3.
Moreover, the results also demonstrate that the spatial and
temporal correlation on U-CAL is weaker than S-CAL, due
to objects in U-CAL moving at higher speeds.

We then validate the effectiveness of MTDC and RDC
modules, and summarize results in Table 3. Experimental se-
tups are described in the Implementation Section. The base-
line model is ResNet-18 and input streams are uniformly 3
ms. Fig. 10 visualizes the ablation experimental results on
the UHSR dataset averaged by 3 runs. The results demon-
strate that both MTDC and RDC modules effectively im-
prove recognition accuracy. Notably, our method achieves a
more substantial performance improvement on the UHSR,
with an 8.3% increase on U-CAL and a 5.3% increase on
S-CAL compared to the baseline. These results demonstrate
that temporal-spatial context learning effectively improves
the accuracy of recognizing ultra-high-speed objects.
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Type Method Reference
Backbone SpiReco UHSR
Structure S-CIF S-CAL U-CIF U-CAL

SNN
TDBN (Zheng et al. 2021) AAAI’21 LIF Res-19 52.8% 62.2% 60.3% 53.1%
SEWR (Fang et al. 2021) NeurIPS’21 SEW Res-18 53.6% 63.7% 61.5% 53.9%
DSR (Meng et al. 2022) CVPR’22 LIF Res-18 53.2% 64.1% 61.2% 54.5%

Event
EtoF (Ahmad et al. 2022) WACV’22 ResNet-18 53.9% 66.3% 61.8% 55.7%
BEI (Cohen et al. 2018) T-NNLS’18 ResNet-18 50.7% 61.8% 56.6% 50.3%

SBNE (Zhang et al. 2022b) CVPR’22 ResNet-18 54.2% 67.4% 62.3% 56.5%

Spike

TSR (Zhao et al. 2022) NeurIPS’22 ResNet-18 56.3% 70.4% 65.9% 60.4%
TFP (Zheng et al. 2023c) T-PAMI’23 ResNet-18 55.6% 69.8% 63.1% 56.7%
ISI (Zheng et al. 2023c) T-PAMI’23 ResNet-18 55.1% 69.3% 65.7% 59.2%

DMER (Zhao et al. 2023b) T-CSVT’23 ResNet-18 57.9% 71.2% 67.8% 62.4%
TSC (Ours) AAAI’24 ResNet-18 60.8% 74.6% 73.2% 67.5%

Table 4: Comparison with SoTA methods on SpiReco (high-speed) and UHSR (ultra-high-speed) datasets.

Spike U-CIF U-CAL
Methods 1 ms 3 ms 5 ms 1 ms 3 ms 5 ms

TSR 51.9% 65.9% 69.3% 43.2% 60.4% 64.5%
TFP 40.5% 63.1% 64.2% 30.4% 56.7% 61.9%
ISI 29.2% 65.7% 68.7% 17.6% 59.2% 63.3%

DMER 53.7% 67.8% 70.5% 46.3% 62.4% 64.7%
Ours 62.4% 73.2% 73.9% 51.6% 67.5% 68.4%

Table 5: Evaluation to the robustness of different methods.

Comparison with State-of-The-Art Methods
As summarized in Table 4, we compare with SoTA spike-
based methods including TSR, TFP, ISI and DMER. We
also compare with SNNs and event-based methods. SNNs
include TDBN, SEWR and DSR. For SNNs, spike streams
are processed as sequential inputs with T time steps. Many
event-based methods require precise timestamps for pro-
cessing (Kim et al. 2021), which are not available in spik-
ing data. Hence, we compare with those methods not re-
quiring precise timestamps, including EtoF, BEI, and SBNE.
To ensure a fair comparison, the input spike streams have a
uniform time length of 3 ms and a spatial size of 124×124.
Training is done for 30 epochs using ResNet-18 as the back-
bone for each method. Learning rates and optimizers follow
recommendations from the official code of each method.

Training SNNs on spiking data poses optimization chal-
lenges, limiting their performances. Additionally, spike and
event streams have different data representations, which may
degrade the performance of event-based methods on spik-
ing datasets even under an identical experimental setup.
Compared to SoTA spike-based processing methods like
TSR, TFP, ISI, and DMER, our method achieves substan-
tial improvements in recognition accuracy, with a 5.4% and
5.1% increase on UHSR, and a 3.4% and 2.9% increase on
SpiReco, respectively. These results demonstrate the effec-
tiveness of our proposed method in addressing spiking mo-
tion blur, leading to enhanced recognition accuracy for ultra-
high-speed moving objects.

We conduct robustness testing on spike-based methods to
evaluate their performances under different input lengths of

Figure 11: Visual inspection of TSR, DMER, and Ours using
Grad-CAM (Selvaraju et al. 2017). Best viewed in color.

spike streams, as the length of captured data is different due
to diverse motion speeds and limited camera view angles in
real scenarios. We compare with others using 1 ms, 3 ms,
and 5 ms spike streams as input, while keeping the other
experimental settings consistent with those in Table 4. The
results in Table 5 demonstrate that our method consistently
outperforms other methods, showcasing its robustness.

We further apply Grad-CAM on spiking feature maps to
show the interest area of models. We compare with learning-
based spike processing methods, i.e., TSR and DMEM. The
visualization in Fig. 11 shows that our method pays more
attention to distinctive regions of moving objects compared
with other methods. Additionally, results also show that the
models trained on UHSR focus on the features of moving
objects rather than the moving screen.

Conclusion
In this paper, we present the first theoretical analysis of spik-
ing motion blur caused by ultra-high-speed motions, and
validate the analysis through extensive experiments. Based
on the analysis, we propose a robust spiking representation
that learns the temporal-spatial context of spike streams,
effectively improving recognition accuracy for ultra-high-
speed objects. Experimental results demonstrate the superior
accuracy and enhanced robustness of our method. Addition-
ally, we construct an original spiking dataset for ultra-high-
speed object recognition to facilitate further research.
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