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Abstract
Human body orientation estimation (HBOE) aims to esti-
mate the orientation of a human body relative to the cam-
era’s frontal view. Despite recent advancements in this field,
there still exist limitations in achieving fine-grained results.
We identify certain defects and propose corresponding ap-
proaches as follows: 1). Existing datasets suffer from non-
uniform angle distributions, resulting in sparse image data for
certain angles. To provide comprehensive and high-quality
data, we introduce RMOS (Rendered Model Orientation Set),
a rendered dataset comprising 150K accurately labeled hu-
man instances with a wide range of orientations. 2). Directly
using one-hot vector as labels may overlook the similarity be-
tween angle labels, leading to poor supervision. And convert-
ing the predictions from radians to degrees enlarges the re-
gression error. To enhance supervision, we employ Laplace
smoothing to vectorize the label, which contains more in-
formation. For fine-grained predictions, we adopt weighted
Smooth-L1-loss to align predictions with the smoothed-label,
thus providing robust supervision. 3). Previous works ignore
body-part-specific information, resulting in coarse predic-
tions. By employing local-window self-attention, our model
could utilize different body part information for more precise
orientation estimations. We validate the effectiveness of our
method in the benchmarks with extensive experiments and
show that our method outperforms state-of-the-art. Project
is available at: https://github.com/Whalesong-zrs/Towards-
Fine-grained-HBOE.

Introduction
Human body orientation estimation (HBOE) involves esti-
mating the orientation of a person’s skeleton relative to the
camera frontal view. It has been applied in various indus-
trial applications, e.g., pedestrian trajectory prediction in au-
tonomous driving and human-robot interactions. For some
downstream tasks, body orientation is easier to obtain, pro-
vides sufficient information, and demonstrates greater ro-
bustness to illumination and occlusions compared to 3D
pose estimation, for understanding human behaviors.

Though many prior methods performed well in coarse-
grained estimation, they encountered challenges in accu-
rately predicting angles. These difficulties can be attributed
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Figure 1: Illustration of HBOE. We present the real and syn-
thetic data as examples, where the ϕ is the angle we estimat-
ing. We visualize the angles in the bottom lines.

to three key factors. The primary bottleneck is the qual-
ity of datasets. The widely used TUD dataset (Andriluka,
Roth, and Schiele 2010), which originally only provided 8-
class labels, has a small scale that limits model capability.
Additionally, the high-quality MEBOW (Wu et al. 2020)
dataset based on COCO (Lin et al. 2014) suffers from a non-
uniform angle distribution and scarce image data for cer-
tain angles, causing inaccurate predictions. Secondly, many
methods treated HBOE as a 6/8-class classification prob-
lem (Liu, Liu, and Ma 2017; Yu et al. 2019; Choi, Lee,
and Zhang 2016), further contributing to coarse results and
ignoring the similarity between classes. Directly regressing
values in radians struggles to obtain accurate predictions, as
converting radians to degrees enlarges the regression error
(Zhou et al. 2022; Burgermeister and Curio 2022). More-
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over, people usually judge the fine-grained HBOE by ob-
serving the shape of body core parts. Unfortunately, previ-
ous works tended to overlook the prior of human perception
in fine-grained HBOE and adopted shallow model architec-
tures (Raza et al. 2018; Choi, Lee, and Zhang 2016; Zhou
et al. 2022; Burgermeister and Curio 2022), resulting in un-
derfitting and reduced performance.

To address limitations of existing datasets, we present
the RMOS (Rendered Model Orientation Set), a synthetic
dataset containing 150K images with detailed annotations.
To achieve high-precision labels, we divide 360° into 72
bins, while ensuring that multiple images are rendered for
each bin to guarantee uniform angle coverage. To promote
diversity, our dataset captures 10 differently dressed models
in 48 daily poses i.e., running, standing arms out, yoga pose,
from five different viewpoints. We highlight the advantages
of incorporating synthetic data during training.

Considering the correlation between angle labels, we em-
ploy a Laplace smoothing strategy inspired by previous
works (Müller, Kornblith, and Hinton 2019; Wu et al. 2020).
We assign the highest probability to the label’s correspond-
ing bin while ensuring certain probabilities for adjacent bins
using a Laplacian kernel. During the training process, we
also adopt the weighted Smooth-L1-loss, aligning the pre-
dictions with the smoothed-labels. Compared to Gaussian
smoothing, our method’s peak probability is higher, which
enhances class information distinction. By incorporating
this strategy, our method significantly outperforms existing
techniques, achieving more precise orientation estimations.

Based on observations of human perception for HBOE,
we adopt the local-window self-attention, which partitions
the feature map and individually applies multi-head self-
attention to each segment. Furthermore, to tackle the chal-
lenges in HBOE, we propose Orientation Estimating Former
(OEFormer) based on HRFormer (Yuan et al. 2021). Com-
pared to the vanilla HRFormer, we employ a deeper network
architecture with multiple early-stage branches for more
comprehensive feature extraction. Considering the varying
resolutions of human images in the original data, effective
feature extraction has become crucial. In the final stage, we
integrate feature maps generated from different stages to
achieve a more accurate final prediction.

Our main contributions in this work are:
1. We introduce a novel rendered dataset that provides

high-precision and comprehensive orientation annotations,
effectively addressing the gaps in existing datasets.

2. Employing a Laplace smoothing strategy and weighted
Smooth-L1-loss, we enhance the alignment between ground
truth and predictions, resulting in more effective training and
markedly improved accuracy in orientation estimation.

3. This is the first application of a transformer-based
model for HBOE. We present a powerful model, OE-
Former, which involves local-window self-attention to focus
on body-part-specific information and outperforms state-of-
the-art in existing benchmarks.

Related Works
Body orientation estimations methods. Classical studies
in HBOE primarily relied on feature engineering and clas-

sifiers like HOG/linSVM (Flohr et al. 2014), limited by
dataset quality and scale. Enzweiler et al. (Enzweiler and
Gavrila 2010) classified the pedestrian and used Gaussian
mixture model to estimate orientation. Previous deep learn-
ing methods also treated this task as a classification prob-
lem, with various approaches like 4-layer neural networks
(Choi, Lee, and Zhang 2016) and 14-layer convolutional net-
works (Raza et al. 2018). To get fine-grained predictions, the
method in (Yu et al. 2019) leveraged keypoint detection re-
sults from another 2D pose estimation model as an auxil-
iary condition. The TUD multiview pedestrians dataset (An-
driluka, Roth, and Schiele 2010) has long served as a key
benchmark in HBOE. It was further improved by Hara et al.
(Hara and Chellappa 2017) who relabeled it with continu-
ous annotations, facilitating extensive use in early research.
With the appearance of MEBOW (Wu et al. 2020), TUD
evolved into a test benchmark to evaluate model generaliz-
ability. MEBOW, the largest benchmark in this field, offers
high-precision annotations and varied backgrounds in real-
world settings, containing 130K human instances. PedRec-
Net (Burgermeister and Curio 2022) utilized this bench-
mark to address orientation estimation challenges, whereas
JOINT-Net (Zhou et al. 2022) first detected human instances
and then estimated their orientation.

Synthetic Data for Image Recognition. In computer vi-
sion tasks, utilizing synthetic data for augmentation is a
widely adopted strategy. Previous works often employed
rendered 2D instances or 3D model scene data with graphics
engines (Dosovitskiy et al. 2015; Peng et al. 2017; Richter
et al. 2016). In HBOE, PedRecNet (Burgermeister and Curio
2022) also utilized synthetic data to increase data diversity,
however, it faced certain performance limitations. Genera-
tive models have recently gained popularity (Ho, Jain, and
Abbeel 2020; Besnier et al. 2020). These methods leverage
generated data to solve various vision tasks, including clas-
sification (Azizi et al. 2023), semantic segmentation (Zhang
et al. 2021), and contrastive learning (Jahanian et al. 2021).
However, these models may struggle with accurately captur-
ing human orientation information.

Attention Mechanism. The success of self-attention
(Vaswani et al. 2017) has opened new avenues for explor-
ing attention strategies in deep learning. Recently, attention
mechanisms have been applied to various visual tasks, e.g.,
image classification (Hu, Shen, and Sun 2018), object detec-
tion (Dai et al. 2017), semantic segmentation (Fu et al. 2019)
and pose estimation (Chu et al. 2017). As a pivotal type of
attention mechanism, local attention has played a significant
role in numerous works. SASA (Ramachandran et al. 2019)
suggests that using self-attention to gather global informa-
tion can be computationally intensive. The authors demon-
strate that local attention not only improves computational
efficiency but also elevates the quality of results. Concur-
rent with SASA, LR-Net (Hu et al. 2019) employed local at-
tention for image classification. Similarly, HRFormer (Yuan
et al. 2021) utilized local self-attention for various vision
tasks, showing its versatility. In this work, we adopt an at-
tention mechanism akin to these previous studies, employing
local-window self-attention to specifically focus on different
body part information for more accurate estimations.
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Figure 2: Distributions of datasets. The x-axis represents the
orientation labels and the y-axis represents the correspond-
ing percentage. Our RMOS has a uniform data distribution.

Methodology
In this section, we first introduce the definition of body
orientation. Next we present our innovative approach to
creating the RMOS. Additionally, we describe the OE-
Former design. Finally we present the Laplace smoothing
and weighted Smooth-L1-loss adopted to HBOE.

Definition of Body Orientation
As shown in the Fig. 1, we consider the camera’s shooting
direction as the positive y-axis direction and the image plane
as z-x plane. The orientation ϕ we aim to determine is the
angle between the projection of the chest facing direction
onto the x-y plane and the y-axis. Given a human pose, the
chest facing direction

−→
C can be denoted as

−→
C =

−→
S ×

−→
H ,

where
−→
S is the direction from left shoulder to right shoulder,

and
−→
H is the direction from hip to neck. Given the projection

−−→
Cxy of

−→
C , and y-axis direction

−→
Oy , the ϕ can be compute as:

cosϕ =

−−→
Cxy ·

−→
Oy

∥
−−→
Cxy∥∥

−→
Oy∥

. (1)

The output probability distribution p is obtained by pass-
ing image x through model f and followed by a softmax
function. The label y is a 72-dimensional one-hot vector,
where the element at index i is set to 1. The index i is:

i = round(
ϕ

5
), ϕ ∈ [0◦, 360◦). (2)

Dataset Creation
In this work, we propose augmenting training data with syn-
thetic data to enhance the model training process. To facili-
tate this, we choose Blender 1 for modeling and rendering for

1https://www.blender.org/

the following reasons: 1) Blender supports Python scripting
to control camera movements through commands, signifi-
cantly simplifying the image capturing process. 2) It allows
easy modifications to the model’s shape and appearance,
providing diverse transformations to diversify the dataset.
During rendering, we keep the model’s position fixed while
rotating the camera around it, capturing images every 5-°
rotation to obtain fine-grained labels. For modeling, we ma-
nipulate the model’s skeleton to achieve pose variations.

To maintain diversity, RMOS includes 10 differently
dressed models, each capable of 48 common daily poses. We
capture data from five shooting views i.e., downward shot,
overhead shot, which correspond to different shooting per-
spectives encountered in real-world scenarios. Fig. 2 illus-
trates the angle distribution of existing datasets. Evidently,
RMOS encompasses all angles while containing substantial
image data for each one. Furthermore, RMOS benefits from
non-overlapping human instances, reducing potential model
misinterpretations.

Model Architecture
People often judge orientation based on the different body
part appearances. Therefore, we enhance attention to differ-
ent body regions using local-window self-attention. In real-
world scenarios, human body instance clarity varies, making
precise estimation challenging. To address this, we employ
network branches with different resolutions to gather suf-
ficient information, which is then consolidated to obtain a
comprehensive result.

Following the multi-resolution parallel design (Wang
et al. 2020; Yuan et al. 2021), we present our OEFomer
architecture in Fig. 3. As (Dai et al. 2021; Xiao et al.
2021) suggested, we utilize convolutional layer in both the
stem and the first stage to extract feature. Subsequently,
transformer blocks with local-window self-attention are em-
ployed in later stages. Our architecture comprises various
branches with different resolutions in each stage, ranging
from high to low. Upsampling and downsampling operations
enable information exchange between stages for effective
feature extraction and fusion. In contrast to HRformer, we
employ more modules and additional branches in the first
stage to enable earlier and more comprehensive feature ex-
traction, aiming to improve overall performance . Following
these stages, outputs from different stages are concatenated
into residual blocks (He et al. 2016) to obtain the final result.

In local-window self-attention, we divide the feature map
X ∈ RN×D into M partitions, where each partition has a
size K × K. We perform multi-head self-attention in each
partition m. In this work K is set to 7. The representation of
local self-attention as in Fig. 4.

Loss Function
In fine-grained HBOE tasks, directly mapping labels to one-
hot vectors overlooks similarities between adjacent labels.
For example, 355° and 0° are highly similar but have low
similarity as one-hot vectors. When the predicted category
of the model is close but not equal to the ground truth, the
supervision effect of the cross-entropy is poor. While regres-
sion provides some supervision, it still falls short of high
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Figure 4: Local-window self-attention for HBOE.

precision. For instance, in cosine regression, as the differ-
ence approaches 0.1, the angle error nears 11.5°, leading to
coarse prediction.

Considering these supervision limitations and inspired
by (Müller, Kornblith, and Hinton 2019; Wu et al. 2020),
we perform Laplace smoothing to maximize the label
peak probability while maintaining certainty for adjacent
categories, aligning with human intuition. Here y is a
one-hot vector of length 72. The Laplace kernel Kl on yi:

Kl(yi) =
1

2σ
e−

|yi|
σ . (3)

The window size of the Laplace kernel w is set to 9. The
smoothed label ŷ after Laplace smoothing can be obtained
as follows:

ŷi = (y ∗Kl)(i) =
∑
j∈Si

yjKl(yj) , (4)

Si =
{
(i+ k) mod 72 | k = ⌊−w

2
⌋, . . . , ⌊w

2
+ 1⌋

}
.

(5)

Given the model output p and the smoothed label ŷ, our
loss function is:

L(p, ŷ) =
{

0.5× (p− ŷ)2/β if |p− ŷ| < β,
|p− ŷ| − 0.5× β otherwise.

(6)

We use this weighted Smooth-L1-Loss to align p with the
ŷ, and the β is the weight. This approach allows for bet-
ter capturing of angle errors present in the real world and
more accurately expressing the model’s confidence in dif-
ferent orientation bins.

Experiments
In this section, we compare performance of different back-
bones for HBOE and demonstrate OEFormer’s superiority
over other models. Next, we compare various supervised
methods including our weighted Smooth-L1-loss, Wu et
al.’s gaussian mapping loss, cross-entropy, and cosine re-
gression. Additionally, we try to upsample data of rare orien-
tations instead of adding RMOS, however, the results are not
as expected. Ablation experiments investigate the impact of
different RMOS proportions and σ in Laplace kernel on per-
formance. Furthermore, we compare with existing methods
and find that incorporating RMOS leads to better results in
fine-grained metrics and MAE. Through these experiments,
we comprehensively evaluate the performance and stability
of our proposed HBOE method.

Experimental Setup
Datasets. As the largest and most valuable real-scene
dataset, the MEBOW dataset contains around 130K training
samples and has rich background environments. It will be
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Backbone Training Train set Test set Acc.(5°)↑ Acc.(15°)↑ Acc.(22.5°)↑ Acc.(30°)↑ Acc.(45°)↑ MAE(°)↓
ResNet50

From-scratch

MEBOW
MEBOW

61.1 83.9 88.5 92.3 94.5 13.11
HRNet 63.0 85.2 89.3 92.8 95.2 12.892

HRFormer 62.4 85.5 89.2 92,7 94.9 12.473
OEFormer 63.1 85.4 89.4 93.1 95.2 12.458

HRNet RMOS 63.4 85.7 89.3 92.9 95.1 12.831
OEFormer + MEBOW 64.4 85.8 89.3 93.2 95.1 12.135
ResNet50

Fine-tune

MEBOW
MEBOW

67.3 89.1 92.9 95.9 97.5 9.200
HRNet 68.4 90.8 93.6 96.5 97.9 8.479

HRFormer 69.9 90.6 93.9 96.6 97.7 9.344
OEFormer 70.6 90.5 93.6 96.5 97.8 8.400

HRNet RMOS 70.8 90.8 93.6 96.7 97.9 8.384
OEFormer +MEBOW 72.1 91.0 94.0 96.6 97.9 8.129

Table 1: Performance comparison of different backbones in the HBOE task, including different choices of models, training
schedules, training data. ↑ indicates that, as the metric improves, the performance improves. ↓ indicates that, as the metric
decreases, the performance improves.

used for both training and testing. Additionally, we will in-
corporate the RMOS dataset as supplementary training data
and evaluate its value on the MEBOW test set. We don’t
use any special training techniques and are able to achieve
good results by simply mixing and training the RMOS and
MEBOW together. The data in the TUD dataset has clear
and complete human body shapes and provides continuous
labels. Due to the relatively small scale of the TUD dataset,
following previous methods, we will train on MEBOW and
test on TUD to assess generality.

Evaluation metrics. As in previous works, we adopt
Accuracy-22.5°, Accuracy-45° and mean absolute error
(MAE) as evaluation metrics. Accuracy-X° represents the
percentage of predictions within X° of ground truth, while
MAE evaluates overall performance. Following previous
work (Wu et al. 2020) and leveraging the precise labels pro-
vided by MEBOW and RMOS, we include Accuracy-5°,
Accuracy-15° and Accuracy-30° in our evaluation analysis.

Training Protocol. Input instances are cropped and re-
sized to 256 × 192 while applying data augmentation tech-
niques including flipping and scaling. For OEFormer train-
ing, we use 80 epochs with a batch size of 256 and the
AdamW optimizer with initial learning rate 1 × 10−5. We
set β to 0.2 and σ to 2.0 for the loss function. For the exper-
iments in Tab. 1, we implenment these backbones based on
the mmpose (Contributors 2020). And all these experiments
used the same set.

Fine-Grained HBOE Performance
We conducted a performance comparison of various com-
monly used backbones for HBOE tasks, including ResNet
and the HRNet used by Wu et al., which achieved promising
results. Additionally, we also compared our OEFormer with
HRFormer to demonstrate its excellent performance in fine-
grained results. As mentioned in Wu et al., using pretrained
models based on 2D pose estimation can effectively improve
model performance. Therefore, we conducted two groups of
experiments: one trained from scratch, and one fine-tuned
using a pretrained model for 2D pose estimation.

As shown in the Tab. 1, using pretrained models yields

better results than training from scratch. Regardless of train-
ing approach, our model outperforms others in effectiveness.
Although the HRFormer architecture achieves good accu-
racy, it falls short in MAE. By utilizing attention mecha-
nisms, our model surpasses Wu et al. previous best method,
achieving improved fine-grained accuracy and lower MAE.
Compared to other transformer models, we also achieve su-
perior results by extracting more features earlier.

We implemented and compared five supervised methods:
our weighted Smooth-L1-loss, gaussian-mapping loss (Wu
et al. 2020), cross-entropy loss, and cosine regression loss.
As shown in Tab. 3, direct regression performs reasonably
for coarse-grained evaluation metric. Treating HBOE as a
72-class classification task and neglecting the similarity be-
tween labels. When the model assigns higher probabilities
to categories close to the label, it indicates that the model
has some capability in assessing angle information. How-
ever, using standard cross-entropy loss can still result in
large losses, thus introducing training bias. Our loss func-
tion takes this into consideration and achieves good overall
results. Compared to Wu’s smoothing method, our method
ensures higher peak probability values on label classes, and
achieves better results in fine-grained tasks. We set experi-
ment to assign higher weights to rare sample categories in
the loss function. However, it faces performance limitations.

Abalation Studies
Analysis of RMOS. In this part, we investigate the impact
of different proportions of the RMOS dataset on model per-
formance. Specifically, we utilize MEBOW-Net and conduct
experiments incorporating the MEBOW dataset for training.
We progressively introduce 20%, 50%, 70%, and 100% of
the RMOS data, while keeping the MEBOW data constant.
The experimental results are presented in Tab. 4.

The ablation studies demonstrate that incorporating the
RMOS leads to consistent improvements in model perfor-
mance across all metrics. As we increase the percentage
of RMOS data from 20% to 100%, both fine-grained and
coarse-grained accuracy steadily improve. This indicates
that our synthesized RMOS data complements the real-
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Method Train set Test set Acc.(5°) ↑ Acc.(15°) ↑ Acc.(22.5°) ↑ Acc.(30°) ↑ Acc.(45°) ↑ MAE(°) ↓
MEBOW-Net (2020)

MEBOW

MEBOW

68.6 90.7 93.9 96.9 98.2 8.393
Joint-Net (2022) 48.3 85.2 91.0 93.2 96.5 10.526

PedRecNet (2022) 52.0 86.2 92.3 95.1 97.0 9.702
ours 71.1 90.5 93.6 96.5 97.8 8.356

MEBOW-Net (2020) RMOS 70.8 91.0 93.6 96.7 97.9 8.384
ours +MEBOW 72.1 91.0 94.0 96.6 97.9 8.129

Hara (2017)
TUD

TUD

- - 70.6 - 86.1 26.6
AKRF-VW (2018) - - 68.6 - 78 34.7

Yu (2019) - - 75.7 - 96.8 15.3

MEBOW-Net (2020)
MEBOW

39.5 66.7 77.3 92.2 99.0 14.191
PedRecNet (2022) - - 79.6 - 99.0 13.702

ours 41.7 72.5 83.2 95.5 99.7 12.298

Table 2: Performance comparison of existing methods in the HBOE task. The column Train set specifies the training dataset(s)
used to train the models. Test set specifies on which test sets the results are reported on.

Supervised
meethod

MAE Acc.(5°) Acc.(30°) Acc.(45°)

Smooth-L1-loss 8.129 72.1 96.6 97.9
Wu et al. 8.333 71.0 96.4 97.8
cross-entropy 21.508 44.5 83.8 88.4
cosine-regression 16.772 31.0 87.0 92.5
Re-weight loss 9.332 65.3 96.1 97.4

Table 3: Comparison between different supervised methods.

world data distribution in MEBOW, providing valuable addi-
tional training examples that enhance the model’s estimation
capabilities. The optimal performance is achieved when uti-
lizing the full RMOS dataset, suggesting it provides compre-
hensive coverage of body orientations. Our experiments pro-
vide insights into the benefits of supplementing high-quality
synthetic data for advancing HBOE.

We validated the model’s generalization performance on
the real-world dataset TUD. As shown in Tab. 5, the domain
gap between synthetic data and real-world data has not af-
fected the model’s performance, and the supplementation of
data distribution has improved the model’s generalization.

Proportions Acc.(5°) Acc.(30°) Acc.(45°) MAE

0 68.4 96.5 97.9 8.479
20 % 69.9 96.7 97.9 8.483
50 % 70.2 96.5 97.8 8.447
70 % 70.4 96.5 97.8 8.407
100 % 70.8 96.7 97.7 8.384

Table 4: Ablation study on the addition of RMOS. Experi-
ment is done on MEBOW-Net.

Analysis of σ in Laplace kernel. The σ value in label
smoothing affects the shape of the predicted probability dis-
tributions. Smaller σ values concentrate more probability
mass on the ground-truth class, resulting in sharper peaks
in the distributions. This compels the model to make highly
confident predictions focused on the true label. In our ex-

Dataset Acc.5◦ Acc.15◦ Acc.22.5◦

w/o RMOS 39.5 66.7 77.3
w RMOS 36.6 67.7 78.0

Table 5: Evaluation on TUD Dataset

periments, we evaluate models trained with various σ values
using fine-grained accuracy metrics that reward correct clas-
sification, and coarse-grained metrics that measure general-
ization capability.

σ Acc.(5°) Acc.(22.5°) Acc.(45°) MAE

1.0 71.0 93.6 97.2 8.308
2.0 72.1 94.0 97.9 8.129
3.0 71.2 93.8 97.8 8.446
4.0 69.7 94.0 98.0 8.408

Table 6: Ablation study on σ.

We find that small σ values like 1.0 yield superior fine-
grained performance. Larger σ values of 3.0 and 4.0 en-
hance coarse-grained performance by diffusing probability,
although at the cost of lower fine-grained accuracy. By bal-
ancing these factors, we select σ=2.0, which provides confi-
dent prediction while retaining generalizability.

Comparison of Different Methods
In order to comprehensively evaluate the performance of
our proposed method, we conducted extensive comparisons
against the previous state-of-the-art techniques for HBOE.
As shown in Tab. 2, we compare our method with MEBOW-
Net (Wu et al. 2020), Joint-Net (Zhou et al. 2022) and
PedrecNet (Burgermeister and Curio 2022). Without any
additional synthetic data, our method was able to surpass
all existing state-of-the-art methods on MEBOW in terms
of fine-grained accuracy metrics and mean absolute error.
This demonstrates the strengths of our approach even when
trained solely on real-world data.
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: Wu et.al prediction. It can be observed that our method is able to accurately determine the orientation of the human body

even in cases where body are occluded or the image resolution is low.

Dataset Angle Train data Test data Acc.5◦

w/o RMOS
30◦ 942 45 60.0

w RMOS 75.6
w/o RMOS

205◦ 2951 117 76.1
w RMOS 83.8

Table 7: Evaluations for some categories in MEBOW

We then incorporated our novel RMOS synthetic data into
the training process of both our method and a strong base-
line model MEBOW-Net. The results clearly validated the
benefits of RMOS. With this additional synthetic data, both
methods exhibited significant improvements on fine-grained
evaluation metrics and achieved lower MAE, highlighting
the usefulness of our proposed data augmentation technique.
And we test our method’s generalizability on TUD.

As shown in Tab. 7, the integration of RMOS contributes
to an increase in the model’s fine-grained discrimination
ability, both for categories with limited training data and
those with abundant training data.

In Fig. 5, we demonstrate the performance comparison
between our method and MEBOW-Net. In these examples,
only partial human bodies appear in the images. With our
local-window self-attention, our method can make more ac-
curate estimations for such cases. Due to factors like poor il-
lumination and low resolution, previous method fails to cor-
rectly judge the front/back side of the human bodies, making
predictions opposite to the labels. In contrast, our method
can generate correct predictions. When human bodies make
large-scale motions, our method exhibits good robustness.

In Figure 6, we enhance our analysis by overlaying
heatmaps onto the original images, thereby visualizing the
final feature maps of our model. This technique effectively
demonstrates the specific areas within the images that our
model focuses on. Notably, the heatmaps reveal a significant

Input Mebow-Net Ours

Figure 6: Heatmap of different methods

concentration of the model’s attention on the core regions of
the human body. This pattern of focus is in harmony with the
general principles of human perception, where central body
parts are often crucial for interpreting posture and actions.
The alignment of our model’s focus with these perceptual
norms underscores its potential applicability in fields that re-
quire an in-depth understanding of human body dynamics.

Conclusion
In this paper, we comprehensivily analyzed the underlying
factors behind the poor performance of existing methods
in fine-grained HBOE tasks. These reasons include non-
uniform distribution of existing datasets, inadequate super-
visory approaches, and the relatively simplistic model archi-
tectures used in previous methods. Consequently, our pri-
mary proposition involves augmenting real data deficits by
introducing synthetic data for data augmentation. Further-
more, we employ a label smoothing strategy to transform
original angle labels into smoothed vectors, incorporating a
weighted Smooth-L1-loss for effective supervision. Lastly,
we adopted local-window self-attention mechanism, pre-
senting a transformer-based model architecture that yields
remarkable performance enhancements.
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