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Abstract

Text-to-Image person re-identification (TI-ReID) aims to re-
trieve the images of target identity according to the given
textual description. The existing methods in TI-ReID focus
on aligning the visual and textual modalities through con-
trastive feature alignment or reconstructive masked language
modeling (MLM). However, these methods parameterize the
image/text instances as deterministic embeddings and do not
explicitly consider the inherent uncertainty in pedestrian im-
ages and their textual descriptions, leading to limited image-
text relationship expression and semantic alignment. To ad-
dress the above problem, in this paper, we propose a novel
method that unifies multi-modal uncertainty modeling and
semantic alignment for TI-ReID. Specifically, we model the
image and textual feature vectors of pedestrian as Gaus-
sian distributions, where the multi-granularity uncertainty of
the distribution is estimated by incorporating batch-level and
identity-level feature variances for each modality. The multi-
modal uncertainty modeling acts as a feature augmentation
and provides richer image-text semantic relationship. Then
we present a bi-directional cross-modal circle loss to more
effectively align the probabilistic features between image and
text in a self-paced manner. To further promote more compre-
hensive image-text semantic alignment, we design a task that
complements the masked language modeling, focusing on the
cross-modality semantic recovery of global masked token af-
ter cross-modal interaction. Extensive experiments conducted
on three TI-ReID datasets highlight the effectiveness and su-
periority of our method over state-of-the-arts.

Introduction
Text-to-Image person re-identification (TI-ReID) is a sub-
task of person re-identification (Ye et al. 2022), aiming to
retrieve the most matching pedestrian images from an image
gallery based on given textual descriptions. Leveraging the
ease of obtaining textual descriptions of the query compared
to actual images, this technology offers a more versatile and
user-friendly person search manner. Given its practical ap-
plicability in the domain of public safety, the TI-ReID has
gained increasing attention in recent years.

Compared to general image-text retrieval, the TI-ReID is
more challenging. It requires a fine-grained understanding
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(1)The woman has long brown hair and she 
is walking.She is wearing a dark red and 
purple coat, black pants and a pair of black 
shoes.

(2) A lady with long brown hair, a rose 
striped coat, black trousers and black boots. 
She is carrying a rose red bag and a yellow 
handbag.

(3) A woman with long hair, dark coat, white 
work card around her neck, black trousers 
and black high-heeled boots is walking.

(b) deterministic image/text modeling (c) uncertain-aware image/text modeling

point distribution

(a) Uncertainty in pedestrian images and textual descriptions

(1) (3)(2)

Figure 1: (a) The inherent uncertainty for pedestrian im-
ages and text descriptions in TI-ReID. (b) Current TI-ReID
methods do not explicitly depict the uncertainty and param-
eterize visual-textual data as deterministic embeddings. (c)
We model image/text embeddings as distributions and es-
timate the multi-granularity distribution uncertainty to ex-
press more reasonable and richer image-text relationships.

of the complex semantic concepts of pedestrians across the
image and text modalities, as well as the establishment of
cross-modal correspondences to bridge the inherent modal-
ity gap. Existing TI-ReID methods mainly revolve around
aligning the image and text description of pedestrian into
a shared space. They can be classified into cross-modal
interaction-free (Zhang and Lu 2018; Han et al. 2021; Sarafi-
anos, Xu, and Kakadiaris 2019; Wang et al. 2020) and cross-
modal interaction-based (Li et al. 2017; Niu et al. 2020; Gao
et al. 2021; Jiang and Ye 2023) methods. The former primar-
ily utilized contrastive alignment (Zhang and Lu 2018; Han
et al. 2021) to embed image-text features into shared space.
In contrast, the latter employed the cross-attention mecha-
nism (Niu et al. 2020; Farooq et al. 2022) and masked lan-
guage modeling (Jiang and Ye 2023) to build fine-grained
correlation between image regions and textual entities.

While successful to some extent, these methods have
not explicitly considered the inherent uncertainty between
pedestrian images and textual descriptions. As shown in
Fig. 1 (a), uncertainty in pedestrian images arises from fac-
tors like viewpoint variations, lighting changes, while in tex-
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tual descriptions, it stems from word synonymy and gran-
ularity of annotations. Furthermore, the intra-modal uncer-
tainty results in the same identity being associated with mul-
tiple perspectives of textual descriptions. Actually, this un-
certainty reflects a reasonable range of semantic variation
for image and text. Neglecting such uncertainty limits the
semantic understanding and alignment capabilities for com-
plex image-text relationships. This motivates us to explicitly
model and utilize the uncertainty inherent in visual-textual
data. In view of this, in this paper, we propose a novel ap-
proach that unifies multi-modal uncertainty modeling and
semantic alignment for text-to-image person Re-ID.

Specifically, we first propose the multi-modal uncer-
tainty modeling (MUM) for TI-ReID that characterizes the
global features of pedestrian images and textual descrip-
tions as Gaussian distributions. For each modality, the MUM
estimates the multi-granularity uncertainty of distribution
by combining batch-level and identity-level feature vari-
ance. The batch-level variance generally provides a coarse-
grained reflection of modality-level uncertainty, while the
identity-level variance captures the scope of fine-grained se-
mantic variation. Random sampling from these probabilis-
tic distributions acts as a multi-modal feature augmentation,
which effectively enhances the diversity of image-text fea-
tures and enriches more reasonable and meaningful image-
text semantic relationships during training phase.

After utilizing the multi-modal uncertainty modeling to
convey more comprehensive semantic relationships, it is es-
sential to further strengthen the capability of cross-modal
semantic alignment. We first develop a bi-directional cross-
modal circle loss (cm-Circle) to more effectively align the
probabilistic image and text features sampled from the dis-
tributions. Our cm-Circle loss is built upon the circle loss
(Sun et al. 2020) in image retrieval and focuses on optimiz-
ing the similarity of cross-modal pairs from text-to-image
and image-to-text with a self-paced manner. It can adap-
tively strengthen the alignment for under-optimized image-
text pairs and well preserve the intra-modality structures.
In addition, considering the current MLM-based methods
(Jiang and Ye 2023) only focusing on utilizing visual con-
text to recover the vocabulary semantics of masked local
text tokens, we devise a task to recover the cross-modal se-
mantic of masked global text token after the cross-modal in-
teraction. This task (termed cm-GSR) employs cross-modal
contrastive reconstruction as a supervisory signal, comple-
menting the MLM and promoting comprehensive image-text
semantic alignment and interaction. The multi-modal uncer-
tainty modeling and semantic alignment objectives are inte-
grated into a unified framework for end-to-end optimization.

Our main contributions can be summarized as follows:

• We present multi-modal uncertainty modeling for text-
to-image person Re-ID, which uses Gaussian distribu-
tions to depict image/text features and estimates the
multi-granularity uncertainty. It acts as feature augmen-
tation and conveys richer image-text relationship.

• To enhance comprehensive image-text semantic align-
ment, we present a bi-directional cross-modal circle loss
to align probabilistic image and text features more effec-

tively, and propose to recover cross-modal semantic of
masked global text token after cross-modal interaction.

• We unify the multi-modal uncertainty modeling and se-
mantic alignment into a joint learning framework. Ex-
tensive experiments on three text-to-image person Re-ID
datasets show the effectiveness and superiority of our ap-
proach against the state-of-the-arts.

Related Work
Text-to-Image Person Re-identification
Current TI-ReID methods can be roughly classified into
cross-modal interaction-based and interaction-free methods.
The interaction-based methods (Li et al. 2017; Niu et al.
2020; Wang et al. 2020; Farooq et al. 2022; Yan et al. 2022;
Jiang and Ye 2023) utilize attention mechanisms to build
fine-grained cross-modal correspondences between image
regions and textual entities. Niu et al. (Niu et al. 2020) lever-
aged cross-attention to conduct relation-guided alignment
between image regions and textual phrases, sentences. Gao
et al. (Gao et al. 2021) proposed a contextual non-local at-
tention mechanism to align full-scale image and textual fea-
tures. Jiang et al. (Jiang and Ye 2023) further designed the
cross-modal interaction transformer and used the masked
language modeling (MLM) task to achieve implicit fine-
grained alignment. The cross-modal interaction-free meth-
ods (Zheng et al. 2020; Zhang and Lu 2018; Han et al.
2021; Wang et al. 2020) focus on upgrading model structures
and designing contrastive-style loss functions to extract and
align image-text representations. Benefiting from the ad-
vancements of vision-language pretraining (VLP) (Radford
et al. 2021), the encoders for image and text modalities in TI-
ReID have undergone upgrades, transitioning from ResNet
(He et al. 2016) and BERT (Devlin et al. 2018) to CLIP-
based encoders (Radford et al. 2021). The representative loss
functions in TI-ReID include cross-modal projection match-
ing (CMPM) loss (Zhang and Lu 2018), cross-modality con-
trastive loss (Han et al. 2021), similarity distribution match-
ing (SDM) loss (Jiang and Ye 2023). Nevertheless, the above
approaches fail to consider the inherent uncertainty in pedes-
trian images and their corresponding textual descriptions,
leading to limited image-text understanding and alignment
capability. Furthermore, the MLM-based method (Jiang and
Ye 2023) solely focus on semantic recovery for masked local
text tokens, disregarding the global masked token. Addition-
ally, the contrastive-style losses overlook the varying learn-
ing difficulty among different cross-modal samples. In this
work, we explicitly model the mutli-modal uncertainty and
promote more effective semantic alignment for TI-ReID.

Uncertainty Modeling in Computer Vision
Uncertainty modeling, which aims to capture the intrinsic
“randomness” in the data, has been receiving increasing at-
tention in computer vision. In face recognition and person
Re-ID, the DUL (Chang et al. 2020) and DistributionNet
(Yu et al. 2019) employed Gaussian distributions to model
face/person embeddings and used a learnable sub-network
to estimate uncertainty, reflecting the quality of facial/person
features. In domain generalization, the DSU (Li et al. 2022)
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A woman with long 
hair is wearing a 
white coat, black
trousers and white 
shoes. 

A woman with long 
[MASK] is wearing
a white coat, black
trousers and white
[MASK].
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Figure 2: The overview framework of our proposed method for TI-ReID. Given the image and text inputs, we first present multi-
modal uncertainty modeling to represent them as Gaussian distributions and estimate multi-granularity distribution uncertainty
by jointly utilizing batch-level and identity-level feature variances. Subsequently, for further enhancing cross-modal semantic
alignment, we propose the cross-modal circle loss (cm-Circle) to more effectively align the probabilistic image-text features in
self-paced manner and present the cm-GSR task to promote more comprehensive image-text interaction and alignment.

modeled the uncertainty of feature statistics to generate di-
verse domain shifts. In cross-modality retrieval, the PCME
(Chun et al. 2021) presented the probabilistic cross-modal
embedding and predicted the mean and variance with learn-
able sub-networks. In vision-language pretraining, the MAP
method (Ji et al. 2023) modeled image-text features as prob-
abilistic distributions and utilizes learnable multi-head self-
attention module to estimate uncertainty. In this paper, we
present multi-modal uncertainty modeling for the first time
in the text-to-image person Re-ID. We estimate the distri-
bution uncertainty for each image/text instance with multi-
granularities by jointly using batch-level and identity-level
feature variances, which is more suitable for TI-ReID and
expresses richer image-text semantic relationships.

Method
In this section, we present the joint multi-modal uncertainty
modeling and semantic alignment method. An overview of
the framework is illustrated in Figure 2 and we delve into its
specific details in the following subsections.

Image-Text Dual Encoder
The inputs consist of image-text pairs, represented as
{vi, ti, yi}Bi=1. where vi, ti, and yi refer to the image, text,
and identity label, respectively. B is the batch-size.
Image Encoder. We use a CLIP pre-trained Vision Trans-
former (ViT) to obtain the image embedding from an input
image vi ∈ RH×W×C . The image is split into a sequence
of N = H × W/P 2 patches, with P denoting the patch

size. A trainable linear projection is applied to map these
patches to 1D tokens {fv

n}Nn=1. The positional embeddings
and [CLS] token are added to the token sequence. The re-
sulting sequence of tokens is then processed through mul-
tiple layer transformer blocks to model relations between
each patch and obtain the sequence of contextual image em-
beddings {fv

cls, f
v
1 , · · · , fv

N}. where the fv
cls is served as the

global image representation gv
i ∈ R512.

Text Encoder. For input text ti, the CLIP text encoder is
used to extract text representation. The text description is
tokenized and enclosed with [SOS] and [EOS] tokens to in-
dicate the sequence’s beginning and end. Following recent
methods (Shu et al. 2023; Wei et al. 2023), we randomly
mask the word tokens of the input text ti with a probabil-
ity (usually 15% or 30%) and replace them with the special
token [MASK] during training. The masked text sequence
then fed into the transformer to obtain sequence of contex-
tual text embedding {f t

sos, f
t
1, · · · , f t

eos}, where the trans-
former uses masked self-attention to capture correlations
among tokens. Finally, the embedding at the [EOS] token,
f t
eos is treated as the global text feature gt

i ∈ R512.

Multi-Modal Uncertainty Modeling
The inherent uncertainty of pedestrian images and textual
descriptions reflects a reasonable range of semantic varia-
tion. This motivates us to explicitly model and utilize the
uncertainty in visual-textual data. By employing this uncer-
tainty for feature augmentation of visual-textual instance,
it can effectively express more reasonable image-text se-
mantic relationships and contribute diverse semantic align-
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ment. We suggest that by incorporating potential uncertain-
ties, the global features of each pedestrian image and tex-
tual description, conform to specific Gaussian distributions.
Therefore, the key lies in efficiently and comprehensively
estimating the uncertainty of distributions for pedestrian im-
ages and texts. We propose multi-modal uncertainty model-
ing (MUM), which estimates the uncertainty of distribution
for image and text modalities by considering both the batch-
level and identity-level feature variance. We believe that for
each modality, the variance of feature embeddings within
mini-batch primarily provides a coarse-grained perspective
of image/text uncertainty and can be calculated by Eq. (1),

Σ2
batch(V) =

1

B

B∑
i=1

(gv
i − Eb[g

v])2,

Σ2
batch(T ) =

1

B

B∑
i=1

(gt
i − Eb[g

t])2,

(1)

where Σbatch(V),Σbatch(T ) ∈ R512 represent the coarse-
grained uncertainty for image/text modalities, respectively.

However, solely estimating modality-level coarse-grained
uncertainty is insufficient for fine-grained TI-ReID task, we
proceed to depict the important fine-grained uncertainty by
considering the identity label. For visual and textual modal-
ities, the identity-level feature variances are calculated to
capture the local scope of semantic variations specific to
the individuals. Given the difficulty of estimating identity-
level variances through randomly sampled mini-batch, we
employ two memory banks MV and MT , composed of
the first-in-first-out dynamic queues, to respectively record
a significant amount of global visual and text features from
image-text pairs in past and current iterations. Specifically,
the MV = {hv

i }
|M|
i=1 and the MT = {ht

i}
|M|
i=1 . The hv

i and
ht
i are the global visual and textual features recorded in the

memorys. The |M| denotes the size of memory bank, and
is set to 65536. Then the identity-level feature variances for
each identity in image and text modalities can be derived by

Σ2
ID(Vy)=

1

|MV
y |

|M|∑
i=1

1(yi = y) ∗ (hv
i − Em[hv

y])
2,

Σ2
ID(Ty)=

1

|MT
y |

|M|∑
i=1

1(yi = y) ∗ (ht
i − Em[ht

y])
2,

(2)

where ΣID(Vy),ΣID(Ty) ∈ R512 indicate the fine-grained
uncertainty of the y-th identity in vision and text modal-
ity, respectively. 1(yi = y) is the indicator function, |MV

y |
is the sample number of y-th identity in memory. We
then unify the coarse-grained and fine-grained uncertainty
through weighted coupling to estimate multi-granularity un-
certainty Σunify(Vy) and Σunify(Ty) for each image/text in-
stance by the Eq. (3), where the ω ∈ (0, 1) is the coupling
factor and the s is the scale factor.
Σunify(Vy)=s ∗ (ω ∗ Σbatch(V)+(1− ω) ∗ ΣID(Vy)),

Σunify(Ty)=s ∗ (ω ∗ Σbatch(T )+(1− ω) ∗ ΣID(Ty)).
(3)

The multi-granularity uncertainty Σunify(Vy)/Σunify(Ty) not
only captures modality-related coarse-grained global uncer-

tainty patterns, but also encompasses fine-grained identity-
related variations. With such multi-modal uncertainty mod-
eling, it expands the reasonable and meaningful semantic
distribution range for each visual/textual feature. Each visu-
al/textual feature is established as Gaussian distribution with
the uncertainty, and denoted as pv

i ∼ N (gv
i ,Σ

2
unify(Vyi

))

and pt
i ∼ N (gt

i ,Σ
2
unify(Tyi

)), respectively. Then the proba-
bilistic features can be randomly drawn from the above dis-
tributions with the re-parameterization trick by as follows:

pv
i = gv

i + ϵvi ∗ Σunify(Vyi
), ϵvi ∼ N (0, I),

pt
i = gt

i + ϵti ∗ Σunify(Tyi
), ϵti ∼ N (0, I),

(4)

where the ϵvi and ϵti are individually sampled from standard
normal distributions. By randomly sampling from the above
distributions for each image/text instance, it can generate
more reasonable features with different directions and inten-
sities and express richer image-text semantic relationship.

Cross-Modal Semantic Alignment
After conveying richer visual-textual semantic relationships
through the proposed multi-modal uncertainty modeling, we
need to enhance the visual-textual semantic alignment to
adapt more diverse features. We first employ the commonly
used similarity distribution matching (SDM) loss (Jiang
and Ye 2023) in TI-ReID to initially align the probabilis-
tic image-text features. It minimizes the KL divergence be-
tween the distributions of image-text similarity πi,j and the
normalized distributions of matching labels qi,j as follows:

Lt2v
SDM =

1

B

B∑
i=1

B∑
j=1

(
πi,j · log

πi,j

qi,j + δ

)
, (5)

πi,j =
exp

(
pt
i · pv

j /τ
)

∑B
k=1 exp (p

t
i · pv

k/τ)
, qi,j =

li,j∑B
k=1 li,k

, (6)

where τ is temperature coefficient, the pt
i · pj

v is the cosine
similarity. li,j = 1 means that (ti, vj) is positive pair with
same identity, while li,j = 0 indicates negative pair, the δ
is a small number to avoid the numerical issues. The total
SDM loss LSDM = Lt2v

SDM + Lv2t
SDM.

To further enhance the semantic alignment between prob-
abilistic global images and text features more efficiently, we
present a bi-directional cross-modal circle loss (termed cm-
Circle) for the TI-ReID, inspired by the circle loss (Sun
et al. 2020) in image retrieval task. The designed cm-circle
loss aims to further align the global semantic of probabilistic
features for positive and negative image-text pairs in a self-
paced manner. Specifically, the text-to-image cm-circle loss
Lt2v

cmcir is formulated as Eq. (7), where the pt
ip

v
k and pt

ip
v
j

denote the cosine similarity of positive and negative image-
text pair in probabilistic feature space, respectively. The αk

p

and αj
n respectively represent the non-negative re-weighting

for each positive and negative image-text pair.

Lt2v
cmcir=log

1+yi̸=yj∑
j

eγα
j
n(p

t
ip

v
j−∆n)

yi=yk∑
k

e−γαk
p(p

t
ip

v
k−∆p)


(7)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

7537



Similarly, the image-to-text cm-circle loss Lv2t
cmcir can be ex-

pressed as Eq. (8) with a symmetric manner.

Lv2t
cmcir=log

1+yi̸=yj∑
j

eγβ
j
n(p

v
i p

t
j−∆n)

yi=yk∑
k

e−γβk
p(p

v
i p

t
k−∆p)


(8)

The re-weighting factors αk
p , α

j
n and βk

p , β
j
n are calculated

as Eq. (9), where Op and On are optimums of the similar-
ity score for the positive and negative image-text pair, re-
spectively. The hyper-parameter Op = 1 + m, On = −m,
∆p = 1−m, ∆n = m, m is the margin, [·]+=max{·, 0}.{

αk
p =

[
Op − pt

ip
v
k

]
+
, βk

p =
[
Op − pv

i p
t
k

]
+
,

αj
n =

[
pt
ip

v
j −On

]
+
, βj

n =
[
pv
i p

t
j −On

]
+
.

(9)

Finally, the bi-directional cm-circle loss is calculated as
Eq. (10), and it brings two benefits to TI-ReID. First, it fo-
cuses solely on optimizing similarity of cross-modal posi-
tive and negative text-image pairs, preserving intra-modality
structures. Secondly, it dynamically adjusts the weights of
cross-modal pairs based on alignment difficulty, enhancing
optimization for under-optimized image-text pairs.

Lcm-Circle = Lt2v
cmcir + Lv2t

cmcir. (10)

The above proposed cross-modal circle loss only offers
coarse-grained semantic alignment between vision and text.
Following recent MLM-based method IRRA (Jiang and Ye
2023), as shown in Fig. 2, we use a multi-modal inter-
action encoder (MIE) consisting of several cross-attention
and self-attention layers to model the interactions between
the sequence of contextual image embeddings f(vi) =
{fv

cls, f
v
1 , · · · , fv

N} and the sequence of contextual text em-
beddings f(ti) = {f t

sos, f
t
1, · · · , f t

eos} of masked text. The
{rti,k}Lk=1 denote the recovered textual token embeddings
after cross-modal interaction, L is the length of text tokens.{

rti,k
}L

k=1
= MIE(f(ti), f(vi)). (11)

Then, the masked language modeling predicts the correct
vocabulary ID for masked word tokens with contextual im-
age embeddings and textual embeddings, by minimizing the
negative log-likelihood as Eq. (12). Mindexes is the indexes of
masked positions, wi,k is the true vocabulary ID of word.

LMLM = −Ei,k∈Mindexes log p(wi,k | rti,k). (12)

However, we observe that above-mentioned masked lan-
guage modeling task solely focus on recovering the vocab-
ulary semantic for masked local text tokens, while ignoring
the key global masked text embedding. Actually, the rti,eos
represents the recovered global embedding of masked text
after the cross-modality interaction (via Eq. (11)). We en-
courage the rti,eos should encompass complete cross-modal
semantic, as achieving this objective necessitates a more
comprehensive cross-modal interaction between f(vi) and
f(ti). In view of this, we design a task (termed cm-GSR) to
recover the cross-modal semantic of masked global text to-
ken after the cross-modal interaction, which leveraging the

cross-modal contrastive reconstruction as supervisory sig-
nal. We apply the cross-modal Info-NCE loss between the
rti,eos and the complete image embedding gv

i to achieve the
cm-GSR task, and can be expressed as Eq. (15),

Lt2v
NCE=−Ei[log

exp(< rti,eos, g
v
i > /τ)∑B

j=1 exp < rti,eos, g
v
j > /τ)

], (13)

Lv2t
NCE=−Ei[log

exp(< (gv
i , r

t
i,eos >)/τ)∑B

j=1 exp(< gv
i , r

t
j,eos >)/τ)

], (14)

Lcm-GSR(r
t
i,eos, g

v
i ) = 0.5(Lt2v

NCE + Lv2t
NCE), (15)

where <rti,eos, g
v
i >denotes the cosine similarity between

rti,eos and gv
i . The cm-GSR task effectively complements

the masked language modeling and promotes more compre-
hensive image-text interaction and semantic alignment.

Joint Optimization
We unify multi-modal uncertainty modeling and cross-
modal semantic alignment into an end-to-end framework,
and minimize overall optimization loss Loverall for training.

Loverall = LSDM +LMLM + λ1Lcm-Circle + λ2Lcm-GSR. (16)

Experiments
Experimental Setup
CUHK-PEDES (Li et al. 2017) has 40,206 images and
80,412 textual descriptions associated with 13,003 identi-
ties. The training set has 11,003 identities with 34,054 im-
ages and 68,108 textual descriptions. The validation and
test set comprise 3,078 and 3,074 images, along with 6,158
and 6,156 textual descriptions, respectively. Both the val/test
subsets have 1,000 identities.
RSTPReid (Zhu et al. 2021) comprises 20,505 images,
showcasing 4,101 unique identities. Each identity is repre-
sented by five images from different cameras, with every im-
age being paired with two textual descriptions. The dataset
utilizes 3,701, 200 and 200 identities for training, validation,
and testing, respectively.
ICFG-PEDES (Ding et al. 2021) is a identity-centric TI-
ReID dataset, featuring 54,522 images across 4,102 unique
identities. Each image corresponds to a single textual de-
scription. The dataset is divided into a training set with
34,674 images from 3,102 identities and a test set containing
19,848 images representing 1,000 identities.
Evaluation Protocol. Similar to most works in TI-ReID, we
report the Rank-k accuracy (k=1,5,10) and the mean Aver-
age Precision (mAP) metric.
Implementation Details. Our approach is implemented us-
ing the PyTorch framework on a single NVIDIA RTX-
3090 GPU(24G). Similar to the IRRA method (Jiang and
Ye 2023), our model comprises a pre-trained image en-
coder (CLIP-ViT-B/16), a pre-trained text encoder (CLIP
text Transformer), and a randomly initialized multimodal
interaction encoder. During training, all input images are re-
sized to 384 × 128, the patch and stride size are set to 16. We
apply the random horizontal flipping, RandAugment (Cubuk
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Method Venue Image Encoder Text Encoder R1 R5 R10 mAP
GNA-RNN (Li et al. 2017) CVPR17 VGG LSTM 19.05 - 53.64 -

Dual-path (Zheng et al. 2020) TOMM20 RN50 RN50 44.40 66.26 75.07 -
CMPM/C (Zhang and Lu 2018) ECCV18 RN50 LSTM 49.37 - 79.27 -

MIA (Niu et al. 2020) TIP20 RN50 GRU 53.10 75.00 82.90 -
PMA (Jing et al. 2020) AAAI2020 RN50 LSTM 53.81 73.54 81.23 -

ViTAA (Wang et al. 2020) ECCV20 RN50 LSTM 54.92 75.18 82.90 51.60
NAFS (Gao et al. 2021) arXiv21 RN50 BERT 59.36 79.13 86.00 54.07
DSSL (Zhu et al. 2021) MM21 RN50 BERT 59.98 80.41 87.56 -

SSAN (Ding et al. 2021) arXiv21 RN50 LSTM 61.37 80.15 86.73 -
LapsCore (Wu et al. 2021) ICCV21 RN50 BERT 63.40 - 87.80 -
TextReID (Han et al. 2021) BMVC21 CLIP-RN101 CLIP-Xformer 64.08 81.73 88.19 60.08
TIPCB (Chen et al. 2022) Neuro22 RN50 BERT 64.26 83.19 89.10

CAIBC (Wang et al. 2022a) MM22 RN50 BERT 64.43 82.87 88.37 -
AXM-Net (Farooq et al. 2022) AAAI22 RN50 BERT 64.44 80.52 86.77 58.73

LGUR (Shao et al. 2022) MM22 DeiT-Small BERT 65.25 83.12 89.00 -
IVT (Shu et al. 2023) ECCVW22 ViT-Base BERT 65.59 83.11 89.21 -

CFine (Yan et al. 2022) arXiv22 CLIP-ViT BERT 69.57 85.93 91.15 -
MCM (Wei et al. 2023) arXiv23 CLIP-ViT CLIP-Xformer 69.61 86.01 90.90 -

IRRA (Jiang and Ye 2023) CVPR2023 CLIP-ViT CLIP-Xformer 73.38 89.93 93.71 66.13
baseline (CLIP-ViT-B/16) - CLIP-ViT CLIP-Xformer 72.98 89.39 93.22 65.64

Ours - CLIP-ViT CLIP-Xformer 74.25 89.83 93.58 66.15

Table 1: Performance comparisons with state-of-the-art methods on CUHK-PEDES dataset. R1, R5, R10 denote the Rank-1,
Rank-5, Rank-10 accuracies (%), mAP is the mean average precision (%).

Method R1 R5 R10 mAP
DSSL(Zhu et al. 2021) 39.05 62.60 73.95 -
SSAN(Ding et al. 2021) 43.50 67.80 77.15 -

LBUL(Wang et al. 2022b) 45.55 68.20 77.85 -
TIPCB (Chen et al. 2022) 46.60 71.70 81.00 36.18

IVT(Shu et al. 2023) 46.70 70.00 78.80 -
ACSA (Ji et al. 2022) 48.40 71.85 81.45 -
CFine(Yan et al. 2022) 50.55 72.50 81.60 -
MCM(Wei et al. 2023) 55.35 77.30 84.25 -

IRRA (Jiang and Ye 2023) 60.25 81.30 88.20 47.52
baseline (CLIP-ViT-B/16) 59.80 81.50 88.30 47.42

Ours 63.40 83.30 90.30 49.28

Table 2: Performance comparisons with state-of-the-art
methods on RSTPReid dataset.

et al. 2020), and random erasing (Zhong et al. 2020) for
image augmentation. The batchsize is set to 64. The max-
imum length of the textual token sequence is 77. Our model
is trained using Adam optimizer (Kingma and Ba 2014) for
60 epochs, with a learning rate initialized at 1 × 10−5 and
cosine learning rate decay. The learning rate is gradually in-
creased from 1 × 10−6 to 1 × 10−5 over the 5 warm-up
epochs. For the MUM module, both the coupling factor ω
and the scale factor s are set to 0.25. The MUM module is
only applied during training phase for feature augmentation.
During testing phase, we do not use this module. The mask
rate of input text token during training phase is set to 30% for
CUHK-PEDES and ICFG-PEDES, and 15% for RSTPReid.
During the testing phase, the input texts is not masked. The
hyper-parameters γ and m in the cm-Circle loss are empir-
ically set to 64 and 0.35. The weight λ1 of cm-Circle loss
is set to 2.0 for ICFG-PEDES and RSTPReid, and 0.25 for
CUHK-PEDES. The weight λ2 of cm-GSR loss is set to 0.5.

Method R1 R5 R10 mAP
MIA (Niu et al. 2020) 46.49 67.14 75.18 -

ViTAA (Wang et al. 2020) 50.98 68.79 75.78 -
SSAN (Ding et al. 2021) 54.23 72.63 79.53 -
TIPCB (Chen et al. 2022) 54.23 72.63 79.53 -

IVT (Shu et al. 2023) 56.04 73.60 80.22 -
CFine (Yan et al. 2022) 60.83 76.55 82.42 -
MCM (Wei et al. 2023) 62.29 77.15 82.52 -

IRRA (Jiang and Ye 2023) 63.46 80.25 85.82 38.06
baseline (CLIP-ViT-B/16) 63.34 80.21 85.73 37.88

Ours 65.62 80.54 85.83 38.78

Table 3: Performance comparisons with state-of-the-art
methods on ICFG-PEDES dataset.

Comparison with State-of-the-Art Methods
Results on CUHK-PEDES dataset. As shown in the Ta-
ble 1, our method surpasses all current state-of-the-art meth-
ods, achieving a Rank-1 accuracy of 74.25% and an mAP of
66.15%. Compared to the methods CFine (Yan et al. 2022)
and IRRA (Jiang and Ye 2023), which also employ CLIP
pre-trained model as image-text encoders, our method sur-
passes them by +4.68% and +0.87% in terms of Rank-1, re-
spectively. It is noteworthy that our approach primarily relies
on global matching and does not use complex local image-
text matching such as (Niu et al. 2020; Yan et al. 2022). Ad-
ditionally, we also do not leverage external knowledge such
as semantic mask (Wang et al. 2020), human pose (Jing et al.
2020), and hierarchical textual parsing (Niu et al. 2020).
Results on RSTPReid dataset. Note that RSTPReid dataset
presents complex indoor and outdoor scene variations, mak-
ing it more challenging. The comparative results on the RST-
PReid dataset are shown in Table 2. It is evident that our
approach demonstrates a more notable advantage compared
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No. Component RSTPReid
MUM cm-Circle cm-GSR R1 R5 R10

0 59.80 81.50 88.30
1 ✓ 62.35 82.80 89.05
2 ✓ 61.50 82.30 88.50
3 ✓ 61.25 82.20 88.85
4 ✓ ✓ 62.45 82.50 88.95
5 ✓ ✓ 62.80 82.95 89.50
6 ✓ ✓ ✓ 63.40 83.30 90.30

Table 4: Ablation study for each proposed component of our
method on RSTPReid dataset, No.0 corresponds to baseline.

Method RSTPReid
R1 R5 R10

baseline 59.80 81.50 88.30
baseline+ batch-level UM 61.20 81.85 88.55

baseline+ identity-level UM 61.65 82.40 88.75
baseline+ MUM (multi-granularity) 62.35 82.80 89.05

baseline+ circle loss 60.85 81.85 88.50
baseline+ cm-Circle loss 61.50 82.30 88.50

Table 5: The detailed analysis of the multi-modal uncertainty
modeling (MUM) and cross-modal circle loss (cm-Circle).

to other methods. We achieve a Rank-1 accuracy of 63.40%
and an mAP of 49.28%, significantly surpassing the current
SOTA IRRA method by approximately +3.15% Rank-1.
Results on ICFG-PEDES dataset. The comparative re-
sults on the ICFG-PEDES dataset are presented in Table 3.
It is noteworthy that the textual descriptions in the ICFG-
PEDES dataset are more focused on individual identities
and offer finer granularity. On the ICFG-PEDES dataset, our
method still surpasses all existing state-of-the-art methods.
We achieve a Rank-1 accuracy of 65.62%, outperforming
the IRRA method by +2.16% in Rank-1 accuracy.

Ablation Study
In this paper, we adopt the CLIP-ViT-B/16 model fine-tuned
with the combination of SDM loss LSDM and MLM loss
LMLM as our baseline. The extensive ablation experiments
are conducted on top of this baseline to demonstrate the
effectiveness of each of our proposed components. Firstly,
from the Table 1, 2 and 3, we can observe that our holis-
tic approach consistently yields significant performance im-
provements over the baseline on three datasets. Compared
to the baseline, our method achieves relative improvements
of +3.6%, +2.16%, and +1.27% in Rank-1 on RSTPReid,
ICFG-PEDES, and CUHK-PEDES, respectively. This vali-
dates the effectiveness of our method for TI-ReID.

Effectiveness of the multi-modal uncertainty modeling
(MUM). Our MUM module serve as feature augmenta-
tion to express richer image-text semantic relationships. The
effectiveness of MUM is demonstrated through experimen-
tal results involving comparisons between No.0 and No.1,
No.2 and No.5, and No.4 and No.6 in the Table 4. For in-
stance, by comparing No.0 and No.1, we observe that solely
applying the MUM module leads to a 2.55% Rank-1 im-
provement for the baseline on RSTPReid. Furthermore, in

the first four rows of Table 5, we experimentally validate the
advantage of MUM’s coupling of batch-level and identity-
level feature variances for multi-granularity uncertainty es-
timation. We can first see that utilizing either the coarse-
grained batch-level uncertainty or fine-grained identity-level
uncertainty can enhance the baseline performance. More im-
portantly, when coupling Σbatch and ΣID to derive multi-
granularity uncertainty Σunify and thus capture more com-
prehensive and reasonable potential variations, the perfor-
mance is further improved. This clearly shows the benefits
of multi-granularity uncertainty estimation for TI-ReID.

Effectiveness of the cross-modal circle loss (cm-Circle).
Our introduced cross-modal circle loss aims to align the
global semantic features for positive and negative cross-
modal image-text pairs in a self-paced manner. The effec-
tiveness of the cm-Circle loss is demonstrated by comparing
results from Table 4 between pair of lines such as No.0 and
No.2, No.3 and No.4, and No.1 and No.5. By comparing
No.0 and No.2, we can see that optimizing the additional
cm-Circle loss results in an 1.7% Rank-1 improvement to
the baseline. We attribute this enhancement primarily to the
dynamic adjustment of cross-modal pair weights in the cm-
Circle loss and it can enhance the alignment intensity for
hard image-text pairs. Furthermore, in the last two rows of
Table 5, we compared the cm-Circle loss with conventional
circle loss for TI-ReID. We can observe that the cm-Circle
loss achieves better performance. This is because cm-Circle
loss focuses exclusively on cross-modal pairs and does not
optimize negative pairs within text modality. It preserves the
intra-modality structure and offers benefits for TI-ReID.

Effectiveness of cross-modal global semantic recovery
(cm-GSR). The cm-GSR task is designed to recover the
cross-modal semantic of masked global text token after
the cross-modal interaction, based on the masked language
modeling. We verify its effectiveness by conducting com-
parisons in Table 4 across pairs of rows, including No.0 and
No.3, No.2 and No.4, and No.5 and No.6. As we can see,
incorporating the cm-GSR task alone results in a Rank-1 im-
provement of 1.45% over baseline. In addition, applying it
on top of the MUM module and cm-Circle loss further am-
plifies semantic alignment capability, resulting in better per-
formance. These results confirm the necessity of cm-GSR
task and its potential on promoting a more comprehensive
image-text semantic alignment for TI-ReID.

Conclusion
This paper presents a novel method that unifies multi-modal
uncertainty modeling and semantic alignment for text-to-
image person Re-ID. We explicitly model the uncertainty
in pedestrian images and textual descriptions, using Gaus-
sian distributions to depict image/text features and esti-
mates multi-granularity uncertainty by jointly using batch-
level and identity-level variances. We further propose bi-
directional cross-modal circle loss to more effectively align
probabilistic image and text features. Moreover, we develop
cm-GSR task to promote more comprehensive image-text
alignment. Extensive experiments on TI-ReID benchmarks
show the effectiveness and superiority of our method.
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