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Abstract
Trained with an unprecedented scale of data, large language
models (LLMs) like ChatGPT and GPT-4 exhibit the emer-
gence of significant reasoning abilities from model scaling.
Such a trend underscored the potential of training LLMs
with unlimited language data, advancing the development of
a universal embodied agent. In this work, we introduce the
NavGPT, a purely LLM-based instruction-following naviga-
tion agent, to reveal the reasoning capability of GPT mod-
els in complex embodied scenes by performing zero-shot
sequential action prediction for vision-and-language naviga-
tion (VLN). At each step, NavGPT takes the textual descrip-
tions of visual observations, navigation history, and future ex-
plorable directions as inputs to reason the agent’s current sta-
tus, and makes the decision to approach the target. Through
comprehensive experiments, we demonstrate NavGPT can
explicitly perform high-level planning for navigation, includ-
ing decomposing instruction into sub-goals, integrating com-
monsense knowledge relevant to navigation task resolution,
identifying landmarks from observed scenes, tracking nav-
igation progress, and adapting to exceptions with plan ad-
justment. Furthermore, we show that LLMs is capable of
generating high-quality navigational instructions from obser-
vations and actions along a path, as well as drawing accu-
rate top-down metric trajectory given the agent’s navigation
history. Despite the performance of using NavGPT to zero-
shot R2R tasks still falling short of trained models, we sug-
gest adapting multi-modality inputs for LLMs to use as vi-
sual navigation agents and applying the explicit reasoning of
LLMs to benefit learning-based models. Code is available at:
https://github.com/GengzeZhou/NavGPT.

Introduction
Amid the remarkable advances in large language model
(LLM) training (Touvron et al. 2023; Brown et al. 2020;
Chowdhery et al. 2022; Zhang et al. 2022; Wei et al. 2021;
Bubeck et al. 2023; OpenAI 2023), we note a shift towards
integrating LLMs into embodied robotics tasks such as Say-
Can (Ahn et al. 2022) and PaLM-E (Driess et al. 2023). This
trend stems from two primary considerations: the scale of
training data and the scale of models. First, the develop-
ment of techniques for processing textual information pro-
vides an abundant source of natural language training data
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Figure 1: The architecture of NavGPT. NavGPT synergizes
reasoning and actions in LLMs to perform zero-shot Vision-
and-Language Navigation following navigation system prin-
ciples. It interacts with different visual foundation models
to adapt multi-modality inputs, handle the length of his-
tory with a history buffer and a summarizer, and aggregate
various sources of information through a prompt manager.
NavGPT parses the generated results from LLMs (LLM
Thoughts and LLM Action) to move to the next viewpoint.

for learning interdisciplinary and generalizable knowledge.
Furthermore, by accessing unlimited language data, signifi-
cant emergent abilities (Wei et al. 2022a) are observed when
scaling up the model, resulting in a remarkable enhancement
in the reasoning capabilities when solving problems across
wide domains. Consequently, training an LLM with unlim-
ited language data is seen as a viable pathway toward realiz-
ing a universal embodied agent.

This insight has spurred the integration of LLMs into
vision-and-language navigation (VLN) (Anderson et al.
2018), an exploratory task toward achieving real-world
instruction-following embodied agents. The latest research
attempt to leverage GPT models (OpenAI 2023; Brown et al.
2020) to benefit navigation. For example, using LLMs as a
parser for diverse language input (Shah et al. 2023) — ex-
tracting landmarks from instruction to support visual match-
ing and planning, or leveraging LLMs’ commonsense rea-
soning abilities (Zhou et al. 2023; Dorbala, Mullen Jr, and
Manocha 2023) to incorporate prior knowledge of inter-
object correlations to extend agents’ perception and facili-
tate the decision making. However, we notice that the rea-
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soning ability of LLMs in navigation is still under-explored,
i.e. , can LLMs understand the interactive world, the actions,
and consequences in text form, and use all the information
to solve a navigation task?

In light of this, we introduce NavGPT, a fully auto-
matic LLM-based system designed for language-guided vi-
sual navigation, with the capability to handle multi-modality
inputs, unconstrained language guidance, interaction with an
open-world environment, and progress tracking with naviga-
tion history. NavGPT perceives the visual world by reading
descriptions of observations generated by visual foundation
models (VFMs), and synergizing Thoughts (reasoning) and
Actions (decision making) in an explicit text form. To an ex-
treme extent, we use NavGPT to perform zero-shot VLN1 to
clearly reveal the reasoning process of LLMs during naviga-
tion.

Through comprehensive experiments, we found that
LLMs possess the capability to execute complex naviga-
tional planning. This includes the deconstruction of instruc-
tions into distinct sub-goals, assimilation of commonsense
knowledge pertinent to navigational tasks, identification of
landmarks within the context of observed environments,
continuous monitoring of navigational progression, and re-
sponding to anomalies by modifying their initial plan. The
aforementioned phenomenon reflects an astonishing reason-
ing ability in understanding and solving navigation prob-
lems. Furthermore, we show that LLMs have the ability to
draw navigation trajectories in a metric map and regenerate
navigation instruction based on navigation history, reveal-
ing the historical and spatial awareness of LLMs for naviga-
tion tasks. However, there remains a significant gap between
the zero-shot performance of current open-sourced LLMs in
VLN compared to the fine-tuned models, where the bottle-
neck of NavGPT lies in the information loss while trans-
lating visual signals into natural language and summarizing
observations into history. As a result, we suggest the future
direction of building general VLN agents to be LLMs with
multi-modality inputs or a navigation system making use of
high-level navigation planning, historical and spatial aware-
ness from LLMs.

Our contributions can be summarized as follow: (1) We
introduce a novel instruction-following LLMs agent for vi-
sual navigation with a supportive system to interact with the
environment and track navigation history. (2) We investigate
the capabilities and limitations of current LLMs’ reasoning
for making navigation decisions. (3) We reveal the capability
of LLMs in high-level planning for navigation, by observing
the thoughts of LLMs, making the planning process of nav-
igation agents accessible and explainable.

Related Work
Vision-and-Language Navigation Language-driven vi-
sion navigation is demanded by widely applicable embod-
ied navigation agents. Previous study shows the essentials

1Our NavGPT is solely powered by off-the-shelf LLMs, with-
out any learnable module or any prior experience in solving inter-
active navigation. Hence, all navigation tasks defined in this paper
are novel to NavGPT.

of modules to achieve such a goal (Anderson et al. 2018;
Qi et al. 2020b; Krantz et al. 2020; Ku et al. 2020; He et al.
2021; Gu et al. 2022; Zhu et al. 2022; Hong et al. 2020a,
2022; Zhao, Qi, and Wu 2023; Qiao et al. 2023b), whereas
a large number of research reveal the crucial effect of train-
ing strategies (Wang et al. 2019; Tan, Yu, and Bansal 2019).
Importantly, the main problem in VLN is the generalizability
of agents in unseen environments. Data augmentation (Wang
et al. 2022; Li, Tan, and Bansal 2022; Tan, Yu, and Bansal
2019; Parvaneh et al. 2020; Li and Bansal 2023), memory
mechanism (Chen et al. 2021b; Pashevich, Schmid, and Sun
2021; Hong et al. 2023), pre-training (Hao et al. 2020; Chen
et al. 2022a; Qiao et al. 2023a; Wang et al. 2023) have been
adopted to alleviate data scarcity. However, those augmen-
tations and pre-training are limited to the sampled data from
a fixed number of scenes, which is not enough to reflect
a realistic application scene where objects could be out of
the domains and language instructions are more diverse. In
our work, we utilize the reasoning and knowledge storage of
LLMs and perform VLN in a zero-shot manner as an initial
attempt to reveal the potential usage of LLMs for VLN in
the wild. A number of studies (Chen et al. 2021a; Deng,
Narasimhan, and Russakovsky 2020; Chen et al. 2022b)
have presented compelling methodologies that underscore
the significance of topological maps in facilitating long-term
planning, specifically in the aspect of backtracking to prior
locations. In addition, Dorbala et al. (Dorbala et al. 2022)
use CLIP (Radford et al. 2021) to perform zero-shot VLN by
chunking instructions into keyphrases and completely rely
on the text-image matching capability from CLIP to navi-
gate. However, the planning and decision-making processes
of the agents above are implicit and not accessible. On the
contrary, benefiting from the intrinsic of LLMs, we are able
to access the reasoning process of agents, making it explain-
able and controllable.

Large Language Models With the massive success in
large-scale language model training (Touvron et al. 2023;
Brown et al. 2020; Chowdhery et al. 2022; Zhang et al. 2022;
Wei et al. 2021), a new cohort of Large Language Mod-
els (LLMs) has shown evolutionary progress toward achiev-
ing Artificial General Intelligence (AGI) (Bubeck et al.
2023; OpenAI 2023). This burgeoning class of LLMs, un-
derpinned by increasingly sophisticated architectures and
training methodologies (Scao et al. 2022), has the potential
to revolutionize various domains by offering unprecedented
capabilities in natural language understanding and genera-
tion. The main concern for LLMs is that their knowledge
is limited and confined after training is finished. The lat-
est works study how to utilize LLMs interacting with tools
to expand their knowledge as a plugin, including extend-
ing LLM to process multimodality content (Wu et al. 2023;
Yongliang et al. 2023), teaching LLMs to access the inter-
net with correct API calls (Schick et al. 2023), and expand-
ing their knowledge with local databases to accomplish QA
tasks (Peng et al. 2023). Another stream of works studies
how to prompt LLMs in a hierarchical system to facilitate
the alignment of reasoning and corresponding actions (Yao
et al. 2022; Karpas et al. 2022) beyond the Chain of Thought
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(CoT) (Wei et al. 2022b). These works set up the preliminar-
ies for building an embodied agent directly using LLMs.

LLMs in Robotics Navigation The employment of Large
Language Models (LLMs) in the field of robotics remains
in the primary stage (Vemprala et al. 2023; Bubeck et al.
2023). A handful of contemporary studies, however, have
begun to explore the utilization of generative models for
navigation. Shah et al. (Shah et al. 2023) employs GPT-
3 (Brown et al. 2020) in an attempt to identify "landmarks"
or subgoals, while Huang et al. (Huang et al. 2022) con-
centrates its efforts on the application of an LLM for the
generation of code. Zhou et al. (Zhou et al. 2023) use
LLM to extract the commonsense knowledge of the rela-
tions between targets and objects in observations to per-
form zero-shot object navigation (ZSON) (Gadre et al. 2022;
Majumdar et al. 2022). Despite these recent advancements,
our study diverges in its concentration on converting visual
scene semantics into input prompts for the LLM, directly
performing VLN based on the commonsense knowledge and
reasoning ability of LLMs. The work closest to ours is LGX
(Dorbala, Mullen Jr, and Manocha 2023), but they are doing
object navigation where agents are not required to follow
the instruction and in their method, they use the GLIP (Li
et al. 2022a) model to decide the stop probability and did
not consider memorization of navigation history, action, and
reasoning between LLM.

Method
VLN Problem Formulation
We formulate the VLN problem as follows: Given a natu-
ral language instruction W , composed of a series of words
tw1, w2, w3, . . . , wnu, at every step st, the agent interprets
the current location via the simulator to obtain an obser-
vation O. This observation comprises N alternative view-
points, representing the egocentric perspectives of agents in
varying orientations.

Each unique view observation is denoted as oipi ď

Nq, with its associated angle direction represented as
aipi ď Nq. The observation can thus be defined as
Ot fi rxo1, a1y, xo2, a2y, . . . , xoN , aN ys. Throughout the
navigation process, the agents’ action space is confined to
the navigation graph G. The agent must select from the
M “ |Ct`1| navigable viewpoints, where Ct`1 indicates
the set of candidate viewpoints, by aligning the observa-
tion OC

t fi rxoC1 , a
C
1 y, xoC2 , a

C
2 y, . . . , xoCM , aCM ys with the

oracle W . The agent prognosticates the subsequent action
by selecting the relative angle aCi from OC

t , then enacts
this action through interaction with the simulator to tran-
sition from the current state st “ xvt, θt, ϕty to st`1 “

xvt`1, θt`1, ϕt`1y, where v denotes the current viewpoint
location, θ denotes the current heading angle, and ϕ de-
notes the current elevation angle of the agent. The agent
also maintains a record of the state history ht and ad-
justs the conditional transition probability between states
St “ T pst`1|aCi , st, htq, where function T denotes the con-
ditional transition probability distribution.

In summary, the policy π parametrized by Θ that the agent
is required to learn is based on the oracle W and the current

observation OC
t , which is πpat|W,Ot,OC

t ,St; Θq. In this
study, NavGPT conducts the VLN task in a zero-shot man-
ner, where the Θ is not learned from the VLN datasets, but
from the language corpus that the LLMs are trained on.

NavGPT
NavGPT is a system that interacts with environ-
ments, language guidance, and navigation his-
tory to perform action prediction. Let Hăt`1 fi

rxO1,R1,A1y, xO2,R2,A2y, . . . , xOt,Rt,Atys be the
navigation history of observation O, LLM reasoning R
and action A triplets for the previous t steps. To obtain the
navigation decision At`1, NavGPT needs to synergize the
visual perception from VFMs F , language instruction W ,
history H and navigation system principle P with the help
of prompt manager M, define as follow:

xRt`1,At`1y

“LLMpMpPq,MpWq,MpFpOtqq,MpHăt`1qq
(1)

Navigation System Principle P . The Navigation System
Principle formulates the behavior of LLM as a VLN agent. It
clearly defines the VLN task and the basic reasoning format
and rules for NavGPT at each navigation step. For example,
NavGPT should move among the static viewpoints (posi-
tions) of a pre-defined graph of the environment by identify-
ing the unique viewpoint ID. NavGPT should not fabricate
nonexistent IDs.
Visual Foundation Models F . NavGPT as an LLM agent
requires visual perception and expression ability from VFMs
to translate the current environment’s visual observation into
natural language description. The VFMs here play the role
of translator, to translate visual observations using their own
language, e.g. natural language, objects’ bounding boxes,
and objects’ depth. Through the process of prompt manage-
ment, the visual perception results will be reformated and
translated into pure natural language for LLMs to under-
stand.
Navigation History Hăt`1. The navigation history is es-
sential for NavGPT to evaluate the progress of the comple-
tion of the instruction, to update the current state, and make
the following decisions. The history is composed of sum-
marized descriptions of previous observations Oăt`1 and
actions Aăt`1, along with the reasoning thoughts Răt`1

from LLM.
Prompt Manager M. The key to using LLM as a VLN
agent is to convert all the above content into a natural lan-
guage that LLM can understand. This process is done by the
prompt manager, which collects the results from different
components and parses them into a single prompt for LLM
to make navigation decisions.

Visual Perceptron for NavGPT
In this section, we introduce the visual perception process
of NavGPT. We take visual signals as a foreign language
and handle the visual input using different visual foundation
models to translate them into natural language, shown in fig-
ure 2.

For an agent standing at any viewpoint in the environ-
ment, the observation is composed of egocentric views from
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Figure 2: The process of forming natural language description from visual input. We used 8 directions to represent a viewpoint
and show the process of forming the descriptions for one of the directions.

different orientations. The number of total views is defined
by the field of view of each view image and the relative an-
gle of each view. In our work, we set the field of view of
each view as 45˝, and turn the heading angle θ 45˝ per view
from 0˝ to 360˝, 8 directions in total. Besides, we turn the
elevation angle ϕ 30˝ per view from 30˝ above the horizon-
tal level to 30˝ below, 3 levels in total. As a result, we obtain
3 ˆ 8 “ 24 egocentric views for each viewpoint.

To translate visual observation into natural language, we
first utilize the BLIP-2 (Li et al. 2023a) model as the trans-
lator. With the strong text generation capability of LLMs,
BLIP-2 can achieve stunning zero-shot image-to-text gen-
eration quality. By carefully setting the granularity of visual
observation (field of views and the total view number in each
observation), we prompt BILP-2 to generate a decent lan-
guage description of each view with a detailed depiction of
the shapes and color of objects and the scenes they are in
while avoiding useless caption of views from a smaller FoV,
from which partial observation is available and it is hard to
recognize even for humans. See appendix for details.

Notice that for the heading direction, the rotation interval
is equal to the field of view, therefore there is no overlap-
ping between each orientation. For the elevations, there is a
15˝’s overlapping between the top, middle, and down views.
In NavGPT we mainly focus on the heading angle of agents
during navigation, therefore, we prompt GPT-3.5 to summa-
rize the scenes from the top, middle, and down views for
each orientation into a sentence of description.

Besides natural language descriptions of the scene from
BLIP-2, we also excavate the lower-level feature extracted
by other vision models. These vision models serve as auxil-
iary translators, translating visual input into their own "lan-
guage" like the class of objects and corresponding bound-
ing boxes. The detection results will be aggregated by the
prompt manager into prompts for LLMs. In this work, we
utilize Fast-RCNN (Girshick 2015) to extract the bound-
ing boxes of objects in each egocentric view. After locat-
ing the objects, we calculate the relative heading angle for

each object and the agent. We also extract the depth infor-
mation of the center pixel of the object provided by the Mat-
terport3D simulator (Anderson et al. 2018). With the depth,
objects’ relative orientation, and class, we filter the detection
results by leaving the object within 3 meters from the current
viewpoint. The results from VFMs will be processed by the
prompt manager into observation for the current viewpoint
in natural language.

Synergizing Reasoning and Actions in LLMs
In the VLN task, the agent needs to learn the policy
πpat|W,Ot,OC

t ,St; Θq, which is difficult because the im-
plicit connection between actions and observations and de-
main intensive computation. In order to explicitly access
and enhance the agent’s comprehension of the current state
during navigation, we follow the ReAct paper (Yao et al.
2022) to expand the agent’s action space to Ã “ A Y R,
where R P L is in the entire language space L, denoting the
thought or reasoning trace of the agent.

The reasoning traces R of the agent will not trigger any
interaction with the external environment, therefore no ob-
servation will be returned when the agent is outputting the
reasoning during each navigation step. We synergize the
NavGPT’s actions and thoughts by prompting it to make
navigation decisions after outputting the reasoning trace at
each step. Introducing the reasoning traces aims to bootstrap
the LLMs in two aspects:

Firstly, prompting the LLMs to think before choosing an
action, enables LLMs to perform complex reasoning in plan-
ning and creating strategies to follow the instructions under
the new observations. For example, as shown in figure 3,
NavGPT can generate a long-term navigation plan by ana-
lyzing the current observation and the instruction, perform-
ing higher-level planning such as decomposing instruction
and planning to reach the sub-goal, which is never seen ex-
plicitly in previous works.

Secondly, including reasoning traces R in the naviga-
tion history Hăt enhances the problem-solving ability of
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NavGPT. By injecting reasoning traces into navigation his-
tory, NavGPT inherits from the previous reasoning traces,
to reach a sub-goal with high-level planning consistently
through steps, and can track the navigation progress with
exception-handling abilities like adjusting the plan.

NavGPT Prompt Manager
With the Navigation System Principle P , translated results
from VFMs, and the History of Navigation Hăt, the prompt
manager parses and reformates them into prompts for LLMs.
Details of the prompt are presented in the appendix.

Specifically, for Navigation System Principle P , NavGPT
prompt manager will create a prompt to convey LLMs with
the rules, declaring the VLN task definition, defining the
simulation environment for NavGPT, and restricting LLMs’
behavior in the given reasoning format.

For perception results from VFMs F , the prompt man-
ager gathers the results from each direction and orders the
language description by taking the current orientation of
NavGPT as the front, shown in figure 2, arranging the de-
scription from 8 directions into prompt by concatenating
them clockwise.

For navigation history Hăt`1, the observation, reasoning,
and actions triples xOi,Ri,Aiy are stored in a history buffer,
shown in figure 1. Directly extracting all triples in the buffer
will create too long a prompt for LLMs to accept. To handle
the length of history, the prompt manager utilizes GPT-3.5
to summarize the observations from viewpoints in the tra-
jectory, inserting the summarized observations into the ob-
servation, reasoning, and actions triples in the prompt.

Experiment
Implementation Details. We evaluate NavGPT based on
GPT-4 (OpenAI 2023) and GPT-3.5 on the R2R dataset (An-
derson et al. 2018). The R2R dataset is composed of 7189
trajectories, each corresponding to three fine-grained in-
structions. The dataset is separated into the train, val seen,
val unseen, and test unseen splits, with 61, 56, 11, and 18
indoor scenes, respectively. We apply the 783 trajectories
in the 11 val unseen environments in all our experiments
and for comparison to previous supervised approaches. We
utilize BLIP-2 ViT-G FlanT5XL (Li et al. 2023a) as images
translator and Fast-RCNN (Girshick 2015) as object detec-
tor. The depth information of objects is extracted from the
Mattport3D simulator (Anderson et al. 2018) by taking the
depth of the center pixel in the bounding box.
Evaluation Metrics. The evaluation of NavGPT utilizes
standardized metrics from the R2R dataset. These include
Trajectory Length (TL), denoting the average distance trav-
eled by the agent; Navigation Error (NE), representing the
mean distance from the agent’s final location to the destina-
tion; Success Rate (SR), indicating the proportion of naviga-
tion episodes where the agent successfully reaches the target
location within a 3-meter margin of error; Oracle Success
Rate (OSR), the success rate of agent stopped at the closest
point to the goal on its trajectory; and Success Rate weighted
by the normalized inverse of Path Length (SPL), which bal-
ances navigation precision and efficiency by adjusting the

success rate based on the ratio of the optimal path length to
the agent’s predicted path length.

Qualitive Results
We elaborately study the qualitative results of the reason
trace from NavGPT. We reveal the potential high-level plan-
ning capability of GPT-4 under embodied navigation tasks.

Reasoning Capability of GPT-4 for Language-guide Nav-
igation As shown in figure 3, with GPT-4, NavGPT can
perform various types of reasoning and high-level planning
during navigation. For short instructions, NavGPT can track
the navigation progress through steps to accomplish a sin-
gle action described in the instructions, similar to the self-
monitoring VLN agents (Ma et al. 2019; Zhu et al. 2020;
Gao et al. 2023). For long instructions, NavGPT can break
it down with sub-goals, similar to previous works on fine-
graining R2R data (Hong et al. 2020b; He et al. 2021; Zhao
et al. 2022), and plan to reach the destination by effectively
identifying landmarks from observations, similar to works
on utilizing objects information to perform cross-modality
matching in VLN (Gao et al. 2021; Qi et al. 2020a, 2021).
When navigating to a viewpoint with unexpected observa-
tion, NavGPT can plan to explore the environment and use
commonsense knowledge to assist decision-making, similar
to VLN methods incorporate external knowledge(Li et al.
2022b; Gao et al. 2021; Li et al. 2023b).

History and Spatial Relative Relation Awareness for
LLMs During Navigation We examined NavGPT’s
awareness of historical and spatial relations by employing
GPT-4 to delineate the trajectory in navigational history and
to construct a map of visited viewpoints utilizing pyplot. The
process involved extracting exclusively the actions At`1,
observations Ot`1, and the entire navigation history Ht`1.
The specifics of the prompt are presented in the appendix.

As shown in figure 4, we observed that GPT-4 could effec-
tively extract landmarks from the redundant observation de-
scriptions and generate navigation history descriptions with
actions. This could be a potential way of generating new tra-
jectory instructions for VLN. Besides, the result shows GPT-
4 can comprehensively understand the history of navigation,
and thus can perform the essential progress tracking during
navigation. Moreover, shown in figure 4, GPT-4 can success-
fully catch the relative position relations between viewpoints
and draw a top-down view of the trajectory for visited view-
points. By providing language descriptions of actions taken
by the agents, including the turning angle and relative dis-
tances between viewpoints, GPT-4 shows a stunning aware-
ness of spatial relations. Such impressive reasoning ability
supports NavGPT to perform high-level planning shown in
figure 3, underlines the significant potential LLMs hold for
embodied navigation tasks.

Comparison with Supervised Methods
We compare the results of using NavGPT to zero-shot the
sequential navigation tasks with previous models trained on
the R2R dataset. As shown in table 1, NavGPT surpasses
some supervised baselines and is compatible with some su-
pervised agents. However, a significant discrepancy can be
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Instruction: Go forward past the bed and the stairs. 
Stop in the doorway straight ahead.
Init observation: … A bedroom with hardwood floors …
Thought: … The rear viewpoint seems to be in the 
direction of the bed, so I should move there first.
Action: 
action_maker("b0a6cf6e9b9043248ed1c1ed8db08436”)
Observation: … A hallway with hardwood floors leads 
to a bathroom with a mirror and light fixtures …
Thought: I have moved past the bed, and now I see a 
hallway leading to a bathroom, … continue forward to 
find the stairs and the doorway straight ahead …
Action: 
action_maker("c53934a9642942ae9b8d9766ee1e51ac”)
Observation: … A view of a hallway with hardwood 
floors and a staircase…
Thought: I have found the stairs, and now I need to 
find the doorway straight ahead …
Action: 
action_maker("bf10ccfbb089402d9f3e606803dadb0d")
Observation: … hardwood floors and a doorway …
Thought: I have reached a viewpoint where I can see 
a doorway straight ahead. I should move to the front 
navigable viewpoint to get closer to the doorway and 
check if I have reached the destination.
Action: 
action_maker("df14f9089a6646f0bbf5054e18fb8951”)
Observation: … A hallway with hardwood floors and 
white doors leads to a white doorway …
Thought: … the destination of the doorway …

Instruction: Go up the stairs. Stop at the top of the 
stairs.
Observation: …A wooden staircase leads up to a room …
Thought: I am at the bottom of the stairs. I should 
continue going up the stairs by moving to the viewpoint 
'5b2de972faea4ca381cd72140f77b0c0'.
Action: action_maker("5b2de972faea4ca381cd72140f77b0c0")
Observation: … staircase leads down to a room with 
beams in a large barn with a ladder …
Thought: I am now on the stairs. I should continue 
going up the stairs by moving to the viewpoint 
'930cbd6da8f14dfba4d883c55a069f96'.
Action: action_maker("930cbd6da8f14dfba4d883c55a069f96")
Observation: …A wooden staircase with a railing leads 
to a room with wooden floors, …
Thought: I am almost at the top of the stairs. I should 
continue going up the stairs …

Instruction: Keep walking forward passing all the 
picture frames on the wall. Turn left at the corner 
before where the chairs are placed. Walk forward 
passing the big pots placed on the floor on your left. 
Turn left and stop in front of the sofa.
Observation: …A hallway with two bars, a fireplace, 
arches, and lights...
Thought: I have passed some picture frames on the wall. 
I should continue walking forward …
Action: action_maker("b882d05cc8d842879c647824f537a17c")
Observation: …A hallway with a large painting and vase 
on travertine tile flooring is being cleaned while 
wooden...
Thought: I have passed more picture frames on the wall. 
Now, I need to look for a corner before where the 
chairs are placed and turn left …
Action: action_maker("041abeb88f4d4a9cb085e359686aa9ed")
Observation: …and a large urn sitting on a tile floor...
Thought: I have reached the corner before where the 
chairs are placed. Now, I need to turn left and walk 
forward passing the big pots placed on the floor on my 
left…

Instruction: Walk into the house, and go through 
the kitchen. Leave the kitchen through the door 
on the right of the large black bookcase. Go down 
the stairs. Stop on the third stair from the top.
Init observation: …with hardwood floors and a 
dining table…
Thought: First, I need to go through the kitchen. 
The kitchen is in the front left direction, so I 
should move to the viewpoint 
'68aafa779b9c41eca16156cfddcedd2b'.
Action: 
action_maker("68aafa779b9c41eca16156cfddcedd2b")
Observation: …A dining room and kitchen with 
hardwood floors.
Thought: I am now in the kitchen. Next, I need to 
find the door on the right of the large black 
bookcase. I should move to the viewpoint 
'e685b29863794f00b09c23e1536412d8' to get a 
better view of the kitchen and find the door.
Action: 
action_maker("e685b29863794f00b09c23e1536412d8")
Observation: …A kitchen with white cabinets, 
varying flooring and counter top materials, …
Thought: I can see the kitchen clearly now, but I 
still can't find the large black bookcase and the 
door on its right. I should move to the viewpoint 
'5b01ffae96874e60a9decd1fbac7e4ee' to explore the 
kitchen further.
Action: 
action_maker("5b01ffae96874e60a9decd1fbac7e4ee")
Observation: …A kitchen with a marble top island, 
counter top, and fireplace.
Thought: I found the large black bookcase in the 
rear left direction, and the door on its right. I 
should move to the viewpoint 
'e62661ec94d04adda7fee9a81d429d2b' to get closer 
to the door.
Action: 
action_maker("e62661ec94d04adda7fee9a81d429d2b"
Observation: ...A hallway with hardwood floors 
and a door leads to a room with a bookcase …
Thought: I am now closer to the door …

Thought: first I need to walk towards the sink. The 
sink is not visible in the current viewpoint, but 
there is a bathroom to the left, which might lead 
me closer to the sink.

Thought: I am now in the living room area, and I can 
see the fireplace. I should move closer to the 
fireplace and look for the stool and table. 

Long instruction with progress tracking

Short instruction with sub-goal planning Long instruction with exceptions handlingShort instruction with progress tracking

Integrating commonsense knowledge

Figure 3: The qualitative of NavGPT. NavGPT can explicitly perform high-level planning for sequential action prediction,
including decomposing instruction into sub-goals, integrating commonsense knowledge, identifying landmarks from observed
scenes, tracking navigation progress, exceptions handling with plan adjustment.

discerned. We suggest the limitations inhibiting the perfor-
mance of LLMs in solving VLN can be primarily attributed
to two factors: the precision of language-based depiction of
visual scenes and the tracking capabilities regarding objects.

NavGPT’s functionality is heavily reliant on the quality
of captions generated from VFMs. If the target object de-
lineated in the instruction is absent in the observation de-
scription, NavGPT is compelled to explore the environment.
The ideal circumstance entails all target objects being visible
pursuant to the instruction. However, the inherent granular-
ity of language description inevitably incurs a loss of infor-
mation. Moreover, NavGPT must manage the length of the
navigation history to prevent excessively verbose descrip-
tions as the steps accrue. To this end, a summarizer is imple-
mented, albeit at the cost of further information loss. This
diminishes NavGPT’s tracking ability, impeding the forma-
tion of seamless perceptions of the entire environment as the
trajectory lengthens.

Effect of Visual Components
We perform additional experiments to investigate the ef-
fectiveness of visual components in NavGPT, we construct
a baseline with GPT-3.5 for its easier access and budget-
friendly costs. To evaluate the zero-shot ability in various

environments, we construct a new validation split sampling
both from the original training set and the validation unseen
set. The scenes from the training and validation unseen set
are 61 and 11 respectively, 72 scenes in total. We randomly
picked 1 trajectory from the 72 environment, each is associ-
ated with 3 instructions. In total, we sample 216 samples to
conduct the ablation study.

Effect of Granularity in Visual Observation Descrip-
tions. The Field of View (FoV) of an image critically influ-
ences BILP-2’s captioning ability, with an overly large FoV
leading to generalized room descriptions and an extremely
small FoV hindering object recognition due to limited con-
tent. As shown in table 2, we investigate 3 granularity of
visual representation from a viewpoint. Specifically, variant
#1 utilizes an image with 60 FoV, turn heading angle 30 de-
grees clock-wise to obtain 12 views from a viewpoint, while
variant #2 and #3 utilize an image with 30, 45 FoV, turn el-
evation angle 30 degrees from top to down, and turn heading
angle 30, 45 degrees clockwise to form 36 views, 24 views
respectively. From the results, we found that using FoV 45 a
viewpoint generates the most suitable natural language de-
scription for navigation, surpassing variant #1 and #2 by
6.48% and 2.78% respectively.
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Top-down Trajectory Drew by GPT-4

Instruction Generated by GPT-4

Trajectory of NavGPT Ground Truth Instruction
Exit the sewing room. Turn right. Go toward the glass cabinet with the dolls in it. Turn 
into the doorway on the left. Pass the bed and go through the next doorway on the left 
into the bathroom. Wait by the sink.

Start at the initial point, move to the hallway with the violin hanging from the ceiling, 
proceed to the building with chandeliers and wooden floors, then navigate to the room with 
a statue of a horse on a shelf, next, move towards the rooms with rugs and paintings, then 
proceed to the room with bathroom fixtures and framed pictures on the walls.

Figure 4: We evaluate GPT-4 on a case where NavGPT successfully follows the ground truth path, using only the historical
actions Aăt`1 and observations Oăt`1 to generate an instruction (without reasoning trace Răt`1 to avoid information leaking),
and using the entire navigation history Hăt`1 to draw a top-down trajectory.

Training Schema Method TL NEÓ OSRÒ SRÒ SPLÒ

Train Only
Seq2Seq (Anderson et al. 2018) 8.39 7.81 28 21 -
Speaker Follower (Fried et al. 2018) - 6.62 45 35 -
EnvDrop (Tan, Yu, and Bansal 2019) 10.70 5.22 - 52 48

Pretrain + Finetune

PREVALENT (Hao et al. 2020) 10.19 4.71 - 58 53
VLNœ BERT (Hong et al. 2021) 12.01 3.93 69 63 57
HAMT (Chen et al. 2021b) 11.46 2.29 73 66 61
DuET (Chen et al. 2022b) 13.94 3.31 81 72 60

No Train DuET (Init. LXMERT (Tan and Bansal 2019)) 22.03 9.74 7 1 0
NavGPT (Ours) 11.45 6.46 42 34 29

Table 1: Comparison with previous methods on R2R validation unseen split.

Granularity # TL NEÓ OSRÒ SRÒ SPLÒ

FoV@60 1 12.38 9.07 14.35 10.19 6.52
FoV@30 2 12.67 8.92 15.28 13.89 9.12
FoV@45 3 12.18 8.02 26.39 16.67 13.00

Table 2: The effect of granularity in visual observation.

Observation # TL NEÓ OSRÒ SRÒ SPLÒ

Baseline 1 16.11 9.83 15.28 11.11 6.92
+ Obj 2 11.07 8.88 23.34 15.97 11.71
+ Obj + Dis 3 12.18 8.02 26.39 16.67 13.00

Table 3: The effect of additional information.

Effect of Semantic Scene Understanding and Depth Esti-
mation. NavGPT also collaborates with other visual foun-
dation models to enhance the perception of the environment.
We investigate the effectiveness of adding the object infor-
mation and the relative distance between the agent and the
detected objects. We constructed a baseline method based on
the caption results from BILP-2 and powered by GPT-3.5.
As shown in table 3, by adding object information, the SR
increases by 4.86% compared with the baseline, for the ad-
ditional object information emphasizes the salient object in

the scenes. Moreover, we observed a phenomenon in which
agents failed to reach the destination because they do not
know how close they are to the destination. Once the target
viewpoint is visible in sight, they tend to stop immediately.
Therefore by adding depth information, the agent has a bet-
ter understanding of the current position and further raises
the SR by 0.7% and SPL by 1.29%.

Conclusion

In this work, we explore the potential of utilizing
LLMs in embodied navigation tasks. We present NavGPT,
an autonomous LLM system specifically engineered for
language-guided navigation, possessing the ability to pro-
cess multi-modal inputs and unrestricted language guid-
ance, engage with open-world environments, and main-
tain the navigation history. Limited by the quality of lan-
guage description of visual scenes and the tracking abili-
ties of objects, NavGPT’s zero-shot performance on VLN
is still not compatible with trained methods. However, the
reasoning trace of GPT-4 illuminates the latent potential
of LLMs in embodied navigation planning. Interaction of
LLMs with downstream specialized models or the develop-
ment of multi-modal LLMs for navigation, heralding the fu-
ture of versatile VLN agents.
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