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Abstract
In the field of autonomous driving, accurate and comprehen-
sive perception of the 3D environment is crucial. Bird’s Eye
View (BEV) based methods have emerged as a promising so-
lution for 3D object detection using multi-view images as
input. However, existing 3D object detection methods often
ignore the physical context in the environment, such as side-
walk and vegetation, resulting in sub-optimal performance.
In this paper, we propose a novel approach called SOGDet
(Semantic-Occupancy Guided Multi-view 3D Object Detec-
tion), that leverages a 3D semantic-occupancy branch to im-
prove the accuracy of 3D object detection. In particular, the
physical context modeled by semantic occupancy helps the
detector to perceive the scenes in a more holistic view. Our
SOGDet is flexible to use and can be seamlessly integrated
with most existing BEV-based methods. To evaluate its ef-
fectiveness, we apply this approach to several state-of-the-art
baselines and conduct extensive experiments on the exclusive
nuScenes dataset. Our results show that SOGDet consistently
enhance the performance of three baseline methods in terms
of nuScenes Detection Score (NDS) and mean Average Preci-
sion (mAP). This indicates that the combination of 3D object
detection and 3D semantic occupancy leads to a more com-
prehensive perception of the 3D environment, thereby aiding
build more robust autonomous driving systems. The codes are
available at: https://github.com/zhouqiu/SOGDet.

Introduction
Autonomous driving has become a burgeoning field for
both research and industry, with a notable focus on achiev-
ing accurate and comprehensive perception of the 3D en-
vironment. Recently, Bird’s Eye View (BEV) based meth-
ods (Huang et al. 2021; Li et al. 2022b,a) have attracted
extensive attention in 3D object detection due to their ef-
fectiveness in reducing computational costs and footprints.
The common paradigm is to take the multi-view images
as inputs to detect objects, wherein the noticeable work
BEVDet (Huang et al. 2021) serves as a strong baseline.
BEVDet first extracts image features from multi-view im-
ages using a typical backbone network such as ResNet (He
et al. 2016). The features are thereafter mapped to the BEV
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Figure 1: Illustration of 3D object detection and semantic
occupancy prediction tasks. On the rightmost legend, the top
10 categories in the blue box are shared for both tasks, and
the bottom 6 categories in the green box are exclusively used
by semantic occupancy prediction. (a) 3D object detection
usually focuses on objects on roads, such as bicycles and
cars. In contrast, 3D semantic occupancy prediction (b) con-
cerns more about physical contexts (e.g., sidewalk and veg-
etation) in the environment. By combining these two (c), we
can obtain a more comprehensive perception of the traffic
conditions, such as pedestrians and bicycles mainly on the
sidewalk and cars and buses co-appearing on drive surface.

space with View Transformer (Philion and Fidler 2020), fol-
lowed by a convolutional network and a target detection
head. Inspired by BEVDet, following studies have integrated
additional features into this framework, such as depth super-
vision (Li et al. 2022a) and temporal modules (Huang and
Huang 2022).

Despite the significant improvement in localizing and
classifying specific objects, i.e., cars and pedestrians, most
existing methods (Huang et al. 2021; Huang and Huang
2022; Li et al. 2022b,a) neglect the physical context in the
environment. These contexts, such as roads, pavements and
vegetation, though out of interest for detection, still offer im-
portant cues for perceiving the 3D scenes. For example, as
shown in Figure 1, cars mostly appear on the drivable sur-
face rather than the sidewalk. To harness such important fea-
tures for object detection, we notice a recent emerging task
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– 3D semantic-occupancy prediction (Huang et al. 2023; Li
et al. 2023; Wei et al. 2023; Wang et al. 2023), that voxelizes
the given image and then performs semantic segmentation
of the resulting voxels. This task not only predicts the occu-
pancy status but also identifies the objects within each oc-
cupied pixel, thereby enabling the comprehension of phys-
ical contexts. As shown in Figure 1, object detection and
semantic occupancy prediction focuses on dynamic objects
and environmental contexts, respectively. Combining these
two leads to the hybrid features in Figure 1(c) would pro-
vide a more comprehensive description of the scene, such
as the poses of cars driving on the drivable surface and the
presence of pedestrians on sidewalk or crossings.

Motivated by this important observation, we propose a
novel approach called SOGDet, which stands for Semantic-
Occupancy Guided Multi-view 3D Object Detection. To the
best of our knowledge, our method is the first of its kind to
employ a 3D semantic-occupancy branch (OC) to enhance
3D object detection (OD). Specifically, we leverage a BEV
representation of the scene to predict not only the pose and
type of 3D objects (OD branch) but also the semantic class
of the physical context (OC branch). SOGDet is a plug-and-
play approach that can be seamlessly integrated with ex-
isting BEV-based methods (Huang et al. 2021; Huang and
Huang 2022; Li et al. 2022a) for 3D object detection tasks.
Moreover, to better facilitate the OD task, we extensively ex-
plore two labeling approaches for the OC branch, wherein
the one predicts the binary occupancy label only and the
other involves the semantics of each class. Based on these
two approaches, we train two variants of SOGDet, namely
SOGDet-BO and SOGDet-SE. Both variants significantly
outperform the baseline method, demonstrating the effec-
tiveness of our proposed method.

We conduct extensive experiments on the exclusive
nuScenes (Caesar et al. 2020) dataset to evaluate the ef-
fectiveness of our proposed method. In particular, we apply
SOGDet to several state-of-the-art backbone networks (He
et al. 2016; Liu et al. 2021; Cao et al. 2021) and com-
pare it to various commonly used baseline methods (Huang
and Huang 2022; Li et al. 2022a). Our experimental results
demonstrate that SOGDet consistently improves the perfor-
mance of all tested backbone networks and baseline methods
on the 3D OD task in terms of nuScenes Detection Score
(NDS) and mean Average Precision (mAP). On the flip side,
our OC approach surprisingly achieves comparable perfor-
mance to state-of-the-art methods (Huang et al. 2023). This
finding represents another promising side product and is be-
yond our expectation, as our intention is to design a simple
network and sheds little light on it. The above results to-
gether highlight the effectiveness of the combination of 3D
OD and OC in achieving comprehensive 3D environment
understanding, and further enabling the development of ro-
bust autonomous driving systems.

Related Work
3D Object Detection (OD) constituents an indispensable
component in autonomous driving (Arnold et al. 2019; Chen
et al. 2017). Prior monocular methods (Ding et al. 2020; Cai
et al. 2020; Kumar, Brazil, and Liu 2021; Reading et al.

2021) predict 3D bounding boxes using single-view im-
ages. For example, D4LCN (Ding et al. 2020) uses an es-
timated depth map to enhance image representation. Cai
et al. (Cai et al. 2020) used object height prior to invert
a 2D structured polygon into a 3D cuboid. However, due
to the limitation of scarce data and single-view input, the
model demonstrates difficulties in tackling more complex
tasks (Huang et al. 2021). To overcome this problem, recent
studies (Huang et al. 2021; Huang and Huang 2022; Li et al.
2022a) have been devoted to the development of large-scale
benchmarks (Caesar et al. 2020; Sun et al. 2020) with mul-
tiple camera views. For example, inspired by the success of
FCOS (Tian et al. 2019) in 2D detection, FCOS3D (Wang
et al. 2021) treats the 3D OD problem as 2D-version. Based
on FCOS3D, PGD (Wang et al. 2022a) presents using geo-
metric relation graph to facilitate the targets’ depth predic-
tion. Benefited from the DETR (Carion et al. 2020) method,
some approaches have also explored the validity of Trans-
former, such as DETR3D (Wang et al. 2022b) and Graph-
DETR3D (Chen et al. 2022).

Unlike the aforementioned methods, BEVDet (Huang
et al. 2021) leverages the Lift-Splat-Shoot(LSS) based (Phil-
ion and Fidler 2020) detector to perform 3D OD in multi-
view. The framework is explicitly designed to encode fea-
tures in the BEV space, making it scalable for multi-task
learning, multi-sensor fusion and temporal fusion (Huang
and Huang 2022). The framework is extensively studied by
following work, such as BEVDepth (Li et al. 2022a) which
enhances depth prediction by introducing a camera-aware
depth network, and BEVFormer (Li et al. 2022b) which ex-
tends BEVDet on spatiotemporal dimension. Our proposed
method also builds upon the BEVDet framework. Specifi-
cally, we introduce the semantic occupancy branch to guide
the prediction of object detectors, a paradigm that has not
been studied by existing efforts.
3D Semantic Occupancy Prediction (OC) has emerged as
a popular task in the past two years (Cao and de Charette
2022; Huang et al. 2023; Li et al. 2023; Miao et al. 2023;
Wei et al. 2023; Wang et al. 2023). It involves assigning an
occupancy probability to each voxel in 3D space. The task
offers useful 3D representations for multi-shot scene recon-
struction, as it ensures the consistency of multi-shot geome-
try and helps obscured parts to be recovered (Shi et al. 2023).

The existing methods are relatively sparse in the liter-
ature. MonoScene (Cao and de Charette 2022) is the pi-
oneering work that uses monocular images to infer dense
3D voxelized semantic scenes. However, simply fusing
multi-camera results with cross-camera post-processing of-
ten leads to sub-optimal results. VoxFormer (Li et al. 2023)
devises a two-stage framework to output the full 3D vol-
umetric semantics from 2D images where the first stage
uses a sparse collection of depth-estimated visible and occu-
pied voxels, followed by a densification stage that generates
dense 3D voxels from the sparse ones. TPVFormer (Huang
et al. 2023) performs end-to-end training by using sparse
LiDAR points as supervision, resulting in more accurate oc-
cupancy predictions.
Multi-Task Learning has become a common practice to
employ perception tasks in BEV domain. Noteworthy con-
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Figure 2: The overall network architecture. Our approach includes an image backbone (yellow) to encode multi-view input
images to the vision feature, a view transformer (orange) to transform the vision feature into BEV feature, and a task stage
comprising OD (blue) and OC (green) branches that respectively predict the OD and OC outputs in the same time.

tributions such as BEVFormer (Li et al. 2022b) and BEV-
erse(Zhang et al. 2022) exemplify this approach by integrat-
ing OD and map segmentation to enhance overall perception
capabilities. LidarMultiNet (Ye et al. 2023) further extends
the paradigm by utilizing OD as an auxiliary task, elevat-
ing semantic segmentation performance within the LiDAR
context. The adoption of a multi-task framework is gain-
ing prominence due to its ability to exploit the complemen-
tary advantages of diverse tasks, surpassing the capabilities
of single-task approaches. This trend is increasingly recog-
nized and favored within the industry.

Method
Overall Architecture and Notations
The overall architecture of our proposed method is illus-
trated in Figure 2 which is composed of three main com-
ponents: an image backbone, a view transformer, and a task
stage that predicts both OC and OD simultaneously. Specif-
ically, the multi-view input images are first encoded by
the image backbone, and then aggregated and transformed
into the Bird-Eye-View (BEV) feature by the view trans-
former. With inherent camera parameters, the view trans-
former conducts depth-aware multi-view fusion and 4D tem-
poral fusion simultaneously. Thereafter, the task stage gen-
erates both OC and OD features, which are interacted using
a modality-fusion module. We finally predict the OD and
OC outputs using their respective features.

To ensure the clearance and consistency throughout our
presentation, we first define the following notations follow-
ing the order of data flow within our pipeline.

I represents an image group with same height and width
from N cameras using the same timestamp. Fimg ∈
RN×C×H×W represents feature map produced by the im-
age backbone, where H , W and C means the height,

width and channels of the feature map, respectively. Fd ∈
RN×D×H×W represents depth estimation of the image
group I . Fbev ∈ RCbev×X×Y represents BEV features ex-
tracted by the view transformer, where X × Y and Cbev

means the dimensions and the channels of the BEV feature
following (Huang and Huang 2022), respectively. Fod and
Foc represent task-specific intermediate features of OD and
OC branches in task stage.

For the camera parameters, we combine the offset vector
and rotation matrix to represent the translation TR ∈ R4×4

from source coordinate system to target coordinate system.
For example, TRlid

cam means a translation from camera co-
ordinate system to lidar coordinate system. And TRin rep-
resents the intrinsic parameters of all cameras.

For the output, the OD branch has two outputs: Bounding
Box B ∈ RM×(3+3+2+2+1) and Heatmap H , where M is
the total number of bounding boxes and the second dimen-
sion of B represents location, scale, orientation, velocity
and attribute respectively. Occ ∈ RO×X×Y×Z represents
the OC branch output, which means that for the different
grids from voxel grid V ∈ RX×Y×Z , there are O semantic
labels in total. And we generate the occupancy voxel grid
from point cloud P ∈ RK×3 of K points.

Image Backbone
The image backbone encodes the multi-view input images I
into the feature map Fimg . Following previous work (Huang
et al. 2021; Huang and Huang 2022), we sequentially con-
catenate ResNet (He et al. 2016) and FPN (Lin et al. 2017a)
as our image backbone to extract the image feature. More-
over, we empirically found that using ShapeConv (Cao et al.
2021) instead of traditional convolutional layers in the image
backbone leads to improved accuracy in the OD task with-
out increasing model complexity during inference. In view
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of this, all ResNet-50 and -100 models in our method and
baseine are replaced with ShapeConv for a fair comparison.

View Transformer
The view transformer converts the image feature Fimg

to the BEV feature Fbev . We implement this module
with the combination of BEVDepth (Li et al. 2022a) and
BEVDet4D (Huang and Huang 2022) for better perfor-
mance, namely BEVDet4D-depth, which jointly conducts
depth-aware multi-view fusion and 4D temporal fusion
based on BEVDepth and BEVDet4D, respectively.

Depth-Aware Multi-View Fusion. Following
BEVDepth (Li et al. 2022a), the Fd feature is esti-
mated by a Depth Network based on image feature Fimg
and camera parameter TRin by,

Fd = DepthNet(Fimg,TRin). (1)

Here, we use the notation DepthNet(∗, ∗) to refer to the
sub-network introduced in (Li et al. 2022a), which is com-
posed of a series of convolutional layers and MLPs.

Then the Lift-Solat-Shoot(LSS) (Philion and Fidler 2020)
is applied to calculate BEV feature Fbev as follows,

Fbev = LSS(Fimg,Fd,TRlid
cam), (2)

where LSS(∗, ∗, ∗) is a depth-aware transformation follow-
ing (Li et al. 2022a) which first lift the image feature Fimg

and its depth feature Fd into 3D lidar system by TRlid
cam,

then splat 3D feature into 2D BEV plane to obtain Fbev .

4D Temporal Fusion. Let F curr
bev and F adj

bev represent the
BEV feature in the current timestamp and an adjacent times-
tamp respectively. We then apply a temporal fusion step fol-
lowing (Huang and Huang 2022) to aggregate F curr

bev and
F adj
bev using Equation 3,

Fbev = Concat[F curr
bev ,F adj

bev ] (3)
where Concat[∗, ∗] represents the concatenation of two ma-
trices along the channel dimension.

Task Stage
The task stage consists of two branches that take the BEV
feature Fbev as input to obtain the Bounding Boxes B and
Heatmap H outputs for OD branch and the Occpancy output
Occ for OC branch, respectively.

On the one hand, the OD branch is our primary task
branch, which performs a 10-class object detection on car,
truck, etc. On the other hand, the OC branch is to facili-
tate object detection by generating a 3D geometrical voxel
around the ego vehicle.

To refine the BEV feature Fbev in both branches, we first
apply a 3-layers ResNet (He et al. 2016) to extract inter-
mediate features Fod and Foc in three different resolution,
which are 1/2, 1/4, 1/8 of the height, width respectively. A
pyramid network (Lin et al. 2017a) is then employed to up-
sample the features to the same size as the original one. For
the OD branch, we use CenterPoint (Yin, Zhou, and Krahen-
buhl 2021) to produce the final predicted heatmap H and
bounding boxes B from Fod. For the OC branch, a simple
3D-Conv Head (Fang Ming 2023) is used to generate occu-
pancy voxel grid Occ from Foc.

Modality-Fusion Module. The modality-fusion module
is essential in our method to perform interactions between
the above two branches. We define GC→D to adapt the fea-
tures from OC to OD, and vice versa with GD→C . We em-
ploy a weighted average operation parameterized by λ to
fuse features from different modalities and empirically set
λ = 0.9, {

Fod = (1− λ) ·GC→D(Foc) + λ · Fod,

Foc = (1− λ) ·GD→C(Fod) + λ · Foc.
(4)

Taking OC to OD as example, the Equation 4 above shows
that feature Fod in branch OD are 1− λ replaced by feature
GC→D(Foc) from branch OC. GC→D serves as a filter to
reduce the modality gap between OD and OC. The operation
takes effect when the BEV feature is upsampled in their own
branches each time in the pyramid network (Lin et al. 2017a)
mentioned above. We will demonstrate that this strategy can
effectively enhance the information that is ignored by their
original branch and thus fill the modality gap.

a Occupancy coarse labeling b Semantic fine labeling

Figure 3: Illustration of the two types of labels.

Occupancy Label Generation
We leverage two types of supervision signals for the OC
branch. One is binary occupancy label BO, whose supervi-
sion is binary with 0 and 1 representing empty and occupied
voxels, respectively. The other is semantic label SE, contain-
ing 16 semantic labels such as barrier, bicycle, etc. Figure 3
illustrates the two types of label.

To generate the binary occupancy labels, we consider only
the geometry features of each voxel and illustrate this pro-
cedure in Algorithm 1. This approach is cost-friendly and
require no extra manual annotations.

For semantic label, we observe that directly using the
sparse semantic occupancy points as ground-truth labels
leads to unstable training. Therefore, we follow TPV-
Former (Huang et al. 2023) to optimize the supervision
voxel generation, where the voxels without semantic labels
are masked and ignored.

Training Objectives
Losses of OD Branch. We adopt the CenterPoint
Head (Yin, Zhou, and Krahenbuhl 2021) to produce the fi-
nal OD bounding box prediction, based on which a Gaussian
focal loss (Lin et al. 2017a) and an L1 loss are jointly com-
puted. In the following, we will sequentially elaborate these
two loss functions.

Gaussian focal loss emphasizes more on the overall dif-
ference between predicted and actual values across the en-
tire plane. H denotes the heatmap output by the OD branch,
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Algorithm 1: Binary occupancy label generation
Data: Point Cloud P, Dimension Bound Xmin,

Xmax, Ymin, Ymax, Zmin, Zmax, Resolution
RX , RY , RZ

Result: Voxel Grid V
/* Transform position of points into grid index */
for p ∈ P do

pX , pY , pZ ← p
for axis ∈ {X,Y, Z} do

if axismin ≤ paxis ≤ axismax then
paxis ← (paxis−axismin)

Raxis

else
P← P− {p} /* Delete out of bound */
break

/* Calculate the scale of output voxel grid */
X ← Xmax−Xmin

RX
, Y ← Ymax−Ymin

RY
,

Z ← Zmax−Zmin

RZ

build V ∈ RX×Y×Z

/* Fill voxels */
for v ∈ V do

if index(v) ∈ P then v ← 1 else v ← 0

which is a probability matrix recording the likelihood of
each pixel belonging to any of the 10 classes. We then embed
the real annotations into a 2D image with the same size as
H , forming the ground-truth heatmap Ĥ , namely, a one-hot
matrix. The Gaussian focal loss is then computed as,

LG = −⌊Ĥ⌋log(H)(1−H)α − (1− Ĥ)
γ
log(1−H)Hα,

(5)
where ⌊∗⌋ denotes the floor operation, α = 2.0 and γ = 4.0
are parameters of intensity following (Lin et al. 2017b).

L1 loss is employed to optimize bounding box statistics,
i.e., absolute distance location, scale, orientation, velocity
and attribute, from a micro perspective. To this end, we es-
timate the L1 distance between predicted bounding box B

and its ground-truth B̂ as,

L1 =
1

M
·

M∑
m

|Bm − B̂m|. (6)

In this way, the total loss of OD branch is shown as,
LOD = LG + µodL1, (7)

where µod=0.25 is the weight coefficient of OD branch.

Losses of OC Branch. We combine the cross entropy loss
Lce with class weight and lovász-softmax loss (Berman,
Triki, and Blaschko 2018) Llova following (Huang et al.
2023) in OC branch as Equation 8,

LOC = Llova + µocLce (8)

where µoc=1 for SOGDet-SE and 6 for SOGDet-BO is
the weight coefficient of OC branch. We set the same loss
weight for all classes in SOGDet-SE and 1:2 for empty and
occupied voxels in SOGDet-BO within Lce, respectively.

Overall Objective. Combined the above loss functions to-
gether, we can define our final objective as below,

L = LOD + ωLOC , (9)

where ω is the balancing factor between the OC and OD
branches. We empirically set ω = 10 to maximize the effec-
tiveness of our multi-task learning framework.

Method Venue NDS(%)↑ mAP(%)↑
PETR-Tiny ECCV22 43.1 36.1

BEVDet-Tiny arXiv22 39.2 31.2
DETR3D-R50 CoRL22 37.4 30.3
Ego3RT-R50 ECCV22 40.9 35.5
BEVDet-R50 arXiv22 37.9 29.8

BEVDet4D-R50 arXiv22 45.7 32.2
BEVDepth-R50 AAAI23 47.5 35.1

AeDet-R50 CVPR23 50.1 38.7
SOGDet-BO-R50 - 50.2 38.2
SOGDet-SE-R50 - 50.6 38.8
BEVerse-Small arXiv22 49.5 35.2

PETR-R101 ECCV22 42.1 35.7
UVTR-R101 NIPS2022 48.3 37.9

PolarDETR-T-R101 arXiv22 48.8 38.3
BEVFormer-R101 ECCV22 51.7 41.6
BEVDepth-R101 AAAI23 53.5 41.2

PolarFormer-R101 AAAI23 52.8 43.2
AeDet-R101 CVPR23 56.1 44.9

SOGDet-BO-R101 - 55.4 43.9
SOGDet-SE-R101 - 56.6 45.8

Table 1: Performance comparison on the nuScenes valida-
tion set. As indicated in (Liu et al. 2021), the complexity of
Swin-Tiny and -Small are similar to those of ResNet-50 and
-101, respectively.

Experiments
Experimental Setup
Dataset and Metrics. We conducted extensive experiments
on the nuScenes (Caesar et al. 2020) dataset, which is cur-
rently the exclusive benchmark for both 3D object detec-
tion and occupancy prediction. Following the standard prac-
tice (Huang et al. 2021; Feng et al. 2022), we used the offi-
cial splits of this dataset: 700 and 150 scenes respectively for
training and validation, and the remaining 150 for testing.

For OD task, we reported nuScenes Detection Score
(NDS), mean Average Precision (mAP), mean Average
Translation Error (mATE), mean Average Scale Error
(mASE), mean Average Orientation Error (mAOE), mean
Average Velocity Error (mAVE), and mean Average At-
tribute Error (mAAE). Among them, NDS and mAP are the
more representative ones.

For OC task, we designed two types of occupancy label-
ing approaches. For the binary occupancy labeling approach,
as we are the first to employ such labeling approach in the
literature to the best of our knowledge, we only performed
qualitative experiments. For the semantic labeling one, we
maintained a consistent experimental protocol with the state-
of-the-art method TPVFormer(Huang et al. 2023). Accord-
ingly, we report the mean Intersection over Union (mIoU) of
all semantic categories.
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Method Venue NDS(%)↑ mAP(%)↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
FCOS3D (Wang et al. 2021) ICCV21 42.8 35.8 0.690 0.249 0.452 1.434 0.124

DD3D (Park et al. 2021) ICCV21 47.7 41.8 0.572 0.249 0.368 1.014 0.124
PGD (Wang et al. 2022a) CoRL22 44.8 38.6 0.626 0.245 0.451 1.509 0.127

BEVDet (Huang et al. 2021) arXiv22 48.2 42.2 0.529 0.236 0.395 0.979 0.152
BEVFormer (Li et al. 2022b) ECCV22 53.5 44.5 0.631 0.257 0.405 0.435 0.143
DETR3D (Wang et al. 2022b) CoRL22 47.9 41.2 0.641 0.255 0.394 0.845 0.133

Ego3RT (Lu et al. 2022) ECCV22 47.3 42.5 0.549 0.264 0.433 1.014 0.145
PETR (Liu et al. 2022) ECCV22 50.4 44.1 0.593 0.249 0.383 0.808 0.132

CMT-C (Yan et al. 2023) ICCV23 48.1 42.9 0.616 0.248 0.415 0.904 0.147
PETRv2 (Liu et al. 2023) ICCV23 55.3 45.6 0.601 0.249 0.391 0.382 0.123

X3KD (Klingner et al. 2023) CVPR23 56.1 45.6 0.506 0.253 0.414 0.366 0.131
SOGDet-BO - 57.8 47.1 0.482 0.248 0.390 0.329 0.125
SOGDet-SE - 58.1 47.4 0.471 0.246 0.389 0.330 0.128

Table 2: Performance comparison on the nuScenes test set.

category-wise IoU (%)↑Method Venue mIoU(%)↑ barr. bicy. bus car veh. mot. ped. trai. cone truc. driv. flat walk terr. man. veg.
TPVFormer CVPR23 59.3 64.9 27.0 83.0 82.8 38.3 27.4 44.9 24.0 55.4 73.6 91.7 60.7 59.8 61.1 78.2 76.5
SOGDet-SE - 58.6 57.8 30.7 74.9 74.7 43.7 42.0 44.5 32.7 62.6 63.9 85.9 54.3 54.6 58.9 76.9 80.2

Table 3: Comparison with the State-of-the-Art OC method on the nuScenes val set.

Implementation Details. To demonstrate the effectiveness
and generalization capabilities of SOGDet, we used several
popular architectures (Li et al. 2022a; Huang and Huang
2022). To ensure that any improvements were solely due
to our SOGDet, we kept most experimental settings, such
as backbone and batch size untouched, and added only the
OC branch. Unless otherwise noted, our baseline model is
BEVDet4D-depth, which is a fusion of two recent multi-
view 3D object detectors, BEVDepth (Li et al. 2022a) and
BEVDet4D (Huang and Huang 2022). We followed the ex-
perimental protocol of AEDet (Feng et al. 2022) and training
on eight 80G A100 GPUs with a mini-batch size of 8, for a
total batch size of 64, and trained the model for 24 epochs
with CBGS (Zhu et al. 2019) using AdamW as the optimizer
with a learning rate of 2e-4.

Comparison with State-of-the-Art
We evaluated the performance of our SOGDet against
other state-of-the-art multi-view 3D object detectors on the
nuScenes validation and test sets.

Table 1 reports the results for the validation set us-
ing Swin-Tiny, -Small, ResNet-50 and -101 backbones. As
shown in the table, our method achieves highly favorable
model performance, with NDS scores of 50.2% and 55.4%
for SOGDet-BO and 50.6% and 56.6% for SOGDet-SE on
ResNet-50 and -101, respectively. These results surpass cur-
rent state-of-the-art multi-view 3D object detectors with a
large margin, including BEVDepth (Li et al. 2022a) (3.1%
improvement in NDS at both ResNet-50 and -100) and
AEDet (Feng et al. 2022) (0.5% improvement in NDS at
both ResNet-50 and -100).

In Table 2, we present the results obtained by SOGDet
with the ResNet-101 backbone on the nuScenes test set,
where we report the performance of state-of-the-art meth-
ods that use the same backbone network for a fair com-

parison. We follow the same training strategy of existing
approaches (Li et al. 2022a; Feng et al. 2022) that utilize
both the training and validation sets to retrain the networks
and without any test-time augmentation. SOGDet shows im-
proved performance in multi-view 3D OD task with 58.1%
NDS and 47.4% mAP, further verifying the effectiveness of
our proposed approach.

Ablation Study
Comparison with the State-of-the-Art OC Method. To
further evaluate the effectiveness of our approach, we com-
pared our method with respect to semantic categories with
TPVFormer (Huang et al. 2023) and presented the results
in Table 3. Backbones from both methods take equivalent
complexities.

The primary goal of our work is to enhance the 3D OD
by integrating 3D OC. Despite its simpleness, results shown
in Table 3 demonstrate that our SOGDet are comparable to
TPVFormer, a state-of-the-art method specifically designed
for the OC task. Moreover, our method even outperforms
this baseline in certain categories such as bicycles, vegeta-
tion, and others, which indicates that the combination of the
two branches can bring benefits for the OC branch as well,
serving as another byproduct.
Different Baseline Architecture. Our proposed SOGDet
is a flexible method that can be seamlessly integrated into
most BEV-based multi-view object detection architectures.
In order to evaluate the generalization capabilities of our
method, we tested its effectiveness on several representa-
tive baseline architectures, namely BEVDet (Huang et al.
2021), BEVDet4D (Huang and Huang 2022), BEVDepth (Li
et al. 2022a), and BEVDet4D-depth, using the nuScenes val-
idation set. The results in Table 4 show that SOGDet con-
sistently surpasses these baselines under various settings,
which demonstrates the validity of our method to general-
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Input images Output GT Hybrid feature

Figure 4: Visualization for the OD and OC branches of SOGDet. The input consists of six multi-view images. For both the output
and the GT (red box) column, from top to bottom, we sequentially show the predictions of SOGDet-SE for OD, SOGDet-SE
for OC and SOGDet-BO for OC. The Hybrid feature is blended from OD and OC branch predictions of SOGDet-SE.

ize to different model architectures.

BN. Architecture Method mAP(%) NDS(%)
Baseline 31.2 39.2BEVDet SOGDet-SE 32.9 41.5
Baseline 33.8 47.6Tiny

BEVDet4D SOGDet-SE 34.6 48.7
Baseline 35.1 47.5BEVDepth SOGDet-SE 37.2 48.3
Baseline 37.0 49.0R50

BEVDet4D-depth SOGDet-SE 38.8 50.6

Table 4: Performance comparison with different baselines.

Complexity Analysis. The efficiency concern is highly sig-
nificant under resource-constrained environments. Pertain-
ing to this aspect, we estimate metrics including floating
point operations (FLOPs.) and parameter count (Param.),
and show the results in Figure 5. It can be observed that
compared with the state-of-the-art method AeDet (Feng
et al. 2022), our SOGDet is more efficient especially on the
more important metric FLOPs, i.e., 252G v.s. 473G. Further,
SOGDet outperforms AeDet by 0.5% in terms of NDS. This
indicates that our method achieves a better trade-off between
efficiency and model performance.

Visualization
Figure 4 illustrates qualitative results of our approach on the
nuScenes (Caesar et al. 2020) dataset using ResNet-50 as
the backbone for both OD and the OC branch. Pertaining to
the object detection task, we focus only on occupied voxels,
and therefore, locations marked as “empty” are not shown.
The hybrid features reveal strong correlations between the
physical structures and the location of the detected objects,
such as vehicles, bicycles, and pedestrians. For example, ve-
hicles are typically detected in drive surface, while bicycles
and pedestrians are often detected on sidewalk. These find-
ings are consistent with the observations and motivations of
our paper and demonstrate that the integration of the two

branches can lead to a better perception and understanding
of the real world.
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Figure 5: Parameter count (Param.) and floating-point oper-
ations (FLOPs).

Conclusion and Future Work
The Bird’s Eye View (BEV) based method has shown
great promise in achieving accurate 3D object detection us-
ing multi-view images. However, most existing BEV-based
methods unexpectedly ignore the physical contexts in the en-
vironment, which is critical to the perception of 3D scenes.
In this paper, we propose the SOGDet approach to incorpo-
rate such context using a 3D semantic occupancy approach.
In particular, our SOGDet predicts not only the pose and
type of each 3D object, but also the semantic classes of the
physical contexts for finer-grained detection. Extensive ex-
perimental results on the nuScenes dataset demonstrate that
our SOGDet consistently improves the model performance
of several popular backbone networks and baseline methods.

In future work, we plan to explore the application of
SOGDet with more auxiliary data inputs, such as lidar and
radar, to further help the 3D object detection. Additionally,
we believe that integrating 3D semantic-occupancy predic-
tion into other autonomous driving tasks beyond 3D object
detection, such as path planning and decision-making, may
contribute a promising avenue for future research.
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