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Abstract

Human intention understanding in untrimmed videos aims
to watch a natural video and predict what the person’s in-
tention is. Currently, exploration of predicting human in-
tentions in untrimmed videos is far from enough. On the
one hand, untrimmed videos with mixed actions and back-
grounds have a significant long-tail distribution with concept
drift characteristics. On the other hand, most methods can
only perceive instantaneous intentions, but cannot determine
the evolution of intentions. To solve the above challenges,
we propose a loss based on Instance Confidence and Class
Accuracy (ICCA), which aims to alleviate the prediction
bias caused by the long-tail distribution with concept drift
characteristics in video streams. In addition, we propose an
intention-oriented evolutionary learning method to determine
the intention evolution pattern (from what action to what ac-
tion) and the time of evolution (when the action evolves).
We conducted extensive experiments on two untrimmed
video datasets (THUMOS14 and ActivityNET v1.3), and our
method has achieved excellent results compared to SOTA
methods. The code and supplementary materials are available
at https://github.com/Jennifer123www/UntrimmedVideo.

Introduction
Humans are born with the ability to observe the world and
understand the intentions of the collaborators (i.e., predict
what will happen soon). The ability to understand intention
is fundamental to interaction between human and environ-
ment. However, designing algorithms to automatically un-
derstand intentions (Wanyan et al. 2023) is challenging, as it
is necessary to model the relationship between past and fu-
ture events without completely observing untrimmed videos.

Currently, most methods on intent understanding primar-
ily focus on trimmed videos, which process a full video into
short clips with one action label each and make it unsuit-
able for direct application in real-world scenarios. This is
due to the fact that videos are generally untrimmed. Re-
cently, (Rodin et al. 2022) attempted to fine-tune trimmed
methods to untrimmed videos and concluded that “perform-
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ing action prediction tasks on untrimmed videos is chal-
lenging”. We believe that one reason for the unsatisfactory
results is that it ignores the long-tail distribution. Becasue
in untrimmed vidoes, human actions coexisting with noisy
backgrounds and thus each category of actions constitutes
a minority among the background samples which lead to a
long-tail distribution phenomenon. Taking the “Cliff Div-
ing” video in the THUMOS14 dataset in Figure 1 as an
example, the video lasts for 6 minutes, with a few target
actions “diving” and “cliff diving” alternating with messy
backgrounds. Moreover, as untrimmed videos manifest as
video data streams in natural scenarios, the distribution dif-
ferences between current data streams and new data streams
may be substantial. However, there is no relevant method
to solve the adaptive problem of long-tail distribution with
concept drift (Krawczyk et al. 2017) characteristics (which
refers to the possibility that data from non-stationary models
may evolve over time, resulting in changes in target concepts
and/or attribute distributions) in video streams.

Additionally, existing intent understanding efforts can
only predict the subsequent action but fail to assess the per-
sistence and evolution patterns of intentions. However, pre-
dicting the evolution patterns of intentions can provide very
important support for human-machine collaboration. For ex-
ample, in Figure 1, predicting the current action A4 is ’cliff-
diving’ and how long the person is about to ’dive’ is impor-
tant for warning of dangerous scenarios.

To address these challenges, a novel intentional evolution-
ary learning method is developed. Our work and contribu-
tions can be summarized as follows.

• A loss based on Instance Confidence and Class Accuracy
(ICCA) is presented that significantly enhances the clas-
sification accuracy under the influence of long-tail distri-
bution with concept drift characteristics.

• An intention-oriented evolutionary learning method is
proposed to determine the intention evolution pattern
(from what action to what action) and the time of evo-
lution (when the action evolves).

• We demonstrate the effectiveness and advancement of
our proposed method on THUMOS14 and ActivityNET
v1.3 datasets.
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Figure 1: An example of untrimmed video which are long-tail distribution, as actions are alternating with many messy back-
grounds. If human intent can be predicted as early as possible, it can provide auxiliary support for human-machine collaboration.

Related Work
Intention Understanding based on Trimmed Videos
Trimmed-video-based intent understanding covers a wide
range of tasks, including traffic prediction (Bai et al. 2020),
anomaly detection (Liu et al. 2021), human behavior intent
prediction (Wanyan et al. 2023), etc. Among them, human
behavior intent prediction tasks are getting closer to the real
intents of people with the advancement of algorithms. Re-
cent years, (Zheng et al. 2023) predicted what the next action
would be as early as possible.

Above tasks are all based on trimmed video datasets
and only make instantaneous judgments, but cannot de-
termine evolution of intention. Duration estimation stud-
ies have been done in traffic(Grigorev et al. 2022) and
medical(Bodenstedt et al. 2019) fields, but often need
other modalities’ support. Based on single video modality,
(Abu Farha, Richard, and Gall 2018) achieved long-term
prediction of activity sequences, as well as the start and end
times of each activity. However, it was based on trimmed
videos and directly used ground truth labels, which is not in
line with real-world application scenarios. We study the es-
timation of motion duration based on untrimmed videos to
guide sustained intention understanding.

Intention Understanding based on Untrimmed
Videos
Currently, deep learning is less applied on untrimmed
videos. (Gao, Yang, and Nevatia 2017) proposed an en-
hanced RED network for action prediction, which uses re-
inforcement learning to encourage early and correct pre-
dictions. (Ke, Fritz, and Schiele 2019) proposed an at-
tentive temporal feature, which used multi-scale temporal
convolution to process temporal-conditioned observations.
(Wang et al. 2021) proposed TTPP framework, reusing the
Transformer-style architecture to aggregate observed fea-
tures and then using a lightweight network to progressively
predict future features and actions.

Recently, (Rodin et al. 2022) tried to fine-tune trimmed
methods for untrimmed videos for action prediction, but

got poor results. We argue they ignored the long-tail distri-
bution what is common in untrimmed videos. Specifically,
untrimmed videos usually appear as streams, and the distri-
bution difference between current data streams and new data
streams may be very large. At present, there is no relevant
method to solve the self-adaptive problem of long-tail distri-
bution with drift characteristics in video datasets.

Long-tail Distribution
Long-tail distribution is a basic problem, especially for real-
world deployment. Usually, weighting strategy is employed
to deal with these problems by using weights to measure the
penalty caused by prediction errors on samples.

For example, focal Loss (Lin et al. 2017) focuses more on
fewer and harder samples, assigning them higher weights.
EQLv1 (Tan et al. 2020) tried to provide a better weight
allocation system, using class frequency to assign sample
weights. EQLv2 (Tan et al. 2021) further improved, pro-
viding smoother constraints using the gradient of class fre-
quency. CDB loss (Sinha, Ohashi, and Nakamura 2022)
dynamically measures the instantaneous difficulty of each
class during the model training. Considering that untrimmed
videos are presented as video data streams in natural scenes,
the distribution difference between current and new data
streams may be very large. We propose ICCA loss to specif-
ically address the adaptive problem of long-tail distribution
with concept drift characteristics in video streams.

Methodology
Problem Definition
Given a series of untrimmed streaming videos V =
{v1, v2, v3, ..., vM}, we use a sliding window strategy to ex-
pand the data, and obtain output Sc =

{
ŷ, ŷ′, D̃

}
through

the intention prediction model, where ŷ ∈ RC+1 represents
the potential action, which is the last category label recog-
nized in the observation video frames, ŷ′ ∈ RC+1 represents
the evolution action, which is the predicted next category la-
bel, D̃ represents the remaining duration of the predicted
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Figure 2: The overall framework.

current action. Notice that C is the number of action cate-
gories and C + 1 represents all categories including back-
ground. The current data stream is used as our training data,
and the new data stream is used as our testing data.

Sliding window. Sliding window is a common data aug-
mentation strategy. For detailed settings, please refer to the
supplementary materials.

Framework Overview
The overall framework diagram of our method can be seen in
Figure 2. It can be roughly divided into two main modules:
the ICCA loss module and the intention-oriented evolution-
ary learning module.

For the blue current data stream, the “observation part”
of the sliding window is taken as input. After feature ex-
traction and preprocessing, video spatio-temporal features
and duration information are obtained. These are put into
our intention-oriented evolutionary learning model and con-
strained by ICCA loss to obtain the intention prediction
triplet result Sc =

{
ŷ, ŷ′, D̃

}
(the process of the new

data stream branch is basically the same). Specifically, our
model can dynamically sense the distribution of the new
data stream. The most recent new data stream result provides
instance-level confidence and the previous epoch of the cur-
rent round provides class accuracy. These two indicators are
passed into the current data stream branch to guide ICCA
loss constraints.

Loss based on Instance Confidence and Class
Accuracy (ICCA loss)
The current SOTA method for solving the long-tail distribu-
tion problem is CDB-W loss(Sinha, Ohashi, and Nakamura
2022), which dynamically measures the instantaneous diffi-
culty of each class during the model training phase. How-
ever they introduced a class-balanced subset, which can-
not dynamically perceive the data distribution of new data
streams. We propose Instance Confidence and Class Accu-
racy (ICCA loss) to solve the self-adaptation problem of the

Figure 3: The specific implementation of ICCA loss in our
method. (a) The output of the recent new data stream in the
epoch e − E, obtaining Instance-level Confidence. (b) Out-
put of the current data streams in the previous epoch e − 1,
obtaining Class Accuracy. (c) The result of combining (a)
and (b) in the current epoch e to obtain evaluation indicators
and ICCA weight, and finally obtain ICCA loss constraints.

long-tail distribution with the concept drift characteristics in
the untrimmed video.

Instance-level confidence. For a video sample, when the
predicted confidence of a certain category is higher, the dif-
ference in predicted probability between the category with
the highest predicted probability and the second highest is
generally larger. Therefore, we use the difference in proba-
bility between the model’s first and second highest predicted
categories to approximate the measure of the model’s con-
fidence. Formally, the predicted confidence of the model on
sample x

(i)
t in the t-th batch is defined as:

C
(
x
(i)
t

)
= P

(
˙̂y
(i)
t | x(i)

t

)
− P

(
¨̂y
(i)
t | x(i)

t

)
, (1)

where ŷ(i)t represents the predicted value of the model on the
sample x(i)

t , ˙̂y(i)t and ¨̂y
(i)
t represent the classes with the high-

est and second highest predicted probabilities of the model
on the sample x

(i)
t , respectively.
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The approximate measure of confidence we defined above
does not require prior knowledge of the ground truth of the
videos. It only requires the use of a model trained to a certain
extent to obtain the predicted logits of the classes and thus
obtain the confidence.

Class accuracy. We have empirically found that the pre-
dicted performance of the classes in the (e− 1)-th epoch of
the data stream has an important guiding role for the weight
distribution of the classes in the e-th epoch. We use ζ(cj)
to represent the probability of correctly predicting the cj-th
class, where ζ(cj) can be any error function.

It has been found through experiments that using the ac-
curacy of each class is better, so the ζ(cj) obtained using the
accuracy of each class can be expressed as:

ζ (cj) =
TP (cj)

TP (cj) + FP (cj)
, (2)

where TP (cj) is true positive and FP (cj) is false positive.
ICCA loss. In the e-th epoch, we use the instance-level

confidence C
(
x
(i)
t

)
obtained in the most recent new data

stream and the average class accuracy ζ(cj) obtained in
the previous epoch to dynamically evaluate the performance
measure of each class. We use the product of the predicted
confidence of the model on sample x

(i)
t and the probability

of correctly predicting class cj by the model C
(
x
(i)
t

)
·ζ (cj)

to approximate the probability that the model predicts cor-
rectly when the predicted class is cj on the new data stream
sample x

(i)
t . Conversely, its predicted error probability is

C
(
x
(i)
t

)
· (1− ζ (cj)).

Formally, the performance measure of the model for class
cj on the data stream set xt can be defined as

ε (cj ,xt) =
N∑
i=1

C
(
x
(i)
t

)
· ζ (cj)∣∣∣{i | ˙̂y(i)t = cj

}∣∣∣
+

N∑
i=1

C
(
x
(i)
t

)
· (1− ζ (cj))∣∣∣{i | ˙̂y(i)t ̸= cj

}∣∣∣ .

(3)

Referring to the constraint of CDB-W loss, we use
e (cj ,xt) to represent the weight corresponding to class cj

wε (cj ,xt) =

∣∣∣∣ Ω
i∈C+1

(ε (ci,xt))− ε (cj ,xt)

∣∣∣∣ , (4)

where C + 1 represents the total number of all classes in-
cluding the background class, and Ω represents operations
such as taking the maximum value, taking the average value,
summing, etc. |∗| represents taking the absolute value.

To explain the weighted loss based on ICCA, we use the
most traditional cross-entropy loss here. Thus, the weighted
cross-entropy loss based on ICCA is calculated as:

ICCA lossce = −
C∑
i=0

wε (cj ,xt) yi log (pi)

= −wε (cj ,xt) log (pc).

(5)

The specific implementation of ICCA loss. We propose
ICCA loss to mitigate the inherent problem of long-tail dis-
tribution (that is, for untrimmed videos, the action class is
a minority class compared to the interspersed background
class, but the background class itself does not have common
characteristics) with concept drift. Specifically, our ICCA
loss can make the distribution of the current data stream as
close as possible to the distribution of the new data stream
without knowing the distribution of the new data stream in
advance, thereby effectively alleviating the problem of long-
tail distribution with concept drift properties caused by in-
consistent distribution between current data stream and new
data stream.

The ICCA loss constraint of the model is shown in Figure
3. We use e to represent the current epoch, e−1 to represent
the previous epoch, and E to represent the fusion frequency
of the new data streams, that is, every E epochs, the the new
data streams is used to obtain results based on the new data
streams (the ablation experiment will explore the fusion fre-
quency later).

Figure 3(a) shows the results of applying the current
model to the new data stream at the (e−E)-th epoch. Here,
we use ỹe−E

logit and ỹ′e−E
logit to represent the recognition proba-

bility scores and prediction probability scores of each class
obtained by the new data stream, respectively. Then, based
on the two probability scores, we obtain the class confidence
of recognition and prediction based on the new data stream
C̃ (x) and C̃ ′(x) (using Equation (1)).

Figure 3(b) shows the current data stream results at the
(e − 1)-th epoch. We use the accuracy of each class as the
evaluation indicator and obtain the accuracy of each class
for recognition and prediction of the current data stream at
the ζ̃(c) and ζ̃ ′(c) according to Equation (2).

In Figure 3(c), the two guided performance indicators in
Figure 3(a) and (b) are combined with the recognition and
prediction results of the current model to calculate the ICCA
loss of the current epoch using Equations(3) (4) and (5).

Intention-oriented Evolutionary Learning
We define intention interpretation as action evolution learn-
ing guided by potential intentions and potential actions, con-
strained by intention coherence in the intention semantic
space, so that the predicted intention gradually approaches
the true intention. Unlike previous work (Girdhar and Grau-
man 2021; Wanyan et al. 2023), which only judges an instan-
taneous concept (can only predict what the future intention
is), our method can judge the evolution pattern (from what
action to what action) and evolution timing (when to evolve)
of the intention.

Data preprocessing. Following (He et al. 2022), we use
the I3D (Carreira and Zisserman 2017) model to extract
video features based on a sliding window to obtain the fea-
ture matrix F ∈ RB×D, where B is the batch size and D is
the feature dimension.

Considering that the feature matrix F is the most prim-
itive feature representation of the video stream V , we use
a fully connected function ΨF to obtain the initialized la-
tent action ŷ representing the most likely class of the current

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

7716



Figure 4: The architecture of the intention-oriented evolu-
tionary learning. The † in the upper right corner indicates
that the variable is an output.

video segment.
Through the potential actions ŷ and feature matrix F , we

use StackedRNN to obtain the initialized potential inten-
tion ō ∈ RB×(D+1). The initialized potential intention ō
combines both the original video features and the current
most likely category semantics to generate a preliminary in-
tention interpretation. In addition, we initialize the initial-
ized potential intention ō as the best potential intention o∗.

By combining the feature matrix F , potential action ŷ and
initialized potential intention ō, the possible action candidate
list ν′ = [..., ν′i, ...] is obtained through RNN ,

ν′ = RNN(F, ŷ, ō) ∈ RB×(D+1)×N, (6)

where N is the number of candidate actions in the action
candidate list ν′. Next, we will traverse the action candidate
list ν′ to implement action evolution learning and iteratively
evolve and update the best potential intention o∗ and evolu-
tionary actions ŷ′.

Action evolution learning. Take a candidate action ν′i
from the action candidate list ν′ = [..., ν′i, ...] (i < N), com-
bine it with the feature matrix F , execute the ΓF,ν func-
tion to obtain the latent intent o ∈ RB×(D+1). The meaning
of the potential intention o here is the intention based on
the semantic relationship of the candidate action ν′i) and the
original feature F . This intention may be closer to the real
intention or further away from the real intention. The best
potential intention o∗ is the potential intention o that satis-
fies the intention coherence constraint.

This is a constraint on action evolution learning in the in-
tention space. First, we need to determine whether the cur-
rent potential intention o is closer to the real intention com-
pared to the initial potential goal ō. This can gradually bring
the current potential intention o closer to the real intention
and promote the update of the best potential intention o∗, as
shown below

∥o∗ − o∥22 > ∥ō− o∥22 . (7)

In addition, we set a threshold ξ to measure the distance
between the optimal potential intention o∗ and the current
potential intention o to ensure that the change in the current

potential intention o is not too outrageous, as shown below

∥o∗ − o∥22 ≤ ξ. (8)

Finally, we perform full connection FC and linear regres-
sion on the optimal latent intention o∗ respectively to obtain
the evolutionary action ŷ′ ∈ RB×(C+1) and evolution time
D̃ ∈ RB×1.

Loss function. The loss consists of four parts: action evo-
lution loss LAE , potential action loss LPA, evolution timing
loss LET and intention coherence lossLcoherence.

The action evolution loss LAE aims to constrain the con-
sistency between the predicted evolution category ŷ′ and
the next category of the ground truth y′. We use our de-
signed ICCA performance indicator in conjunction with
cross-entropy loss calculation as follows,

LAE = ICCA lossce(ŷ
′, y′). (9)

The potential action loss LPA aims to constrain the con-
sistency between the initialized recognition of the evolution
category ŷ and the current category of the ground truth y.
The representation is the same as Equation 9.

We perform L1 loss for the evolution timing loss LET ,

LET =
∥∥∥D̃ −D

∥∥∥
1
, (10)

where D is the ground truth of the current action duration
based on the sliding window.

Intention coherence loss Lcoherence consists of two parts:
update loss Lu and maintenance loss Lm. Update loss Lu

forces the current potential intention o to be closer to the
real intention than the initial potential intention ō,

Lu = max(0, ∥o∗ − o∥22 − ∥ō− o∥22 +m), (11)

where m is a very small value to ensure numerical stability.
Maintenance loss Lm ensures that the potential intention

o is consistent during training and that the changes are not
too outrageous. Using max-margin loss, the deviation be-
tween the threshold ξ and the difference between the poten-
tial intention is measured.

Lm = max(0, ∥o∗ − o∥22 − ξ +m). (12)

Therefore, Lcoherence = Lu + Lm.
The overall loss can be represented as,

L = LAE + LPA + LET + Lcoherence. (13)

Experiment
Experimental Setup
Dataset. We use two popular untrimmed human action
datasets, THUMOS14 (Idrees et al. 2017) and ActivityNET
v1.3 (Caba Heilbron et al. 2015), as our benchmark datasets.
The THUMOS14 dataset is a large-scale video dataset that
includes 1,010 videos for validation and 1,574 videos for
testing from 20 classes. Among all the videos, there are 220
and 212 videos with temporal annotations in validation and
testing set, respectively. Following previous works (Wang
et al. 2017; Paul, Roy, and Roy-Chowdhury 2018; Luo et al.
2020), we use the 200 videos in the validation set for training
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(a) length=50 (b) length=100 (c) length=150

Figure 5: The effect of sliding window length and stride. The left y-axis represents sample size, the right y-axis represents
accuracy (%), and the x-axis represents stride values of {10, 20, 30, 50}. Green bars denote training set samples, while yellow
bars represent test set samples. The red and blue lines show the top-1 recognition accuracy and prediction accuracy. The yellow
and green lines represent the mean precision on recognition and predictive. All experiments are based on the ICCA loss.

loss function top-1 acc top-5 acc MP
reco pred reco pred reco pred

focal loss 59.2 61.1 92.7 88.1 37.76 37.96
weighted-CE 57.1 59.1 90.4 87.3 23.91 23.95

EQLv1 65.2 59.6 87.4 74.6 39.73 37.12
EQLv2 57.8 59.3 89.1 90.9 30.62 36.28

CDB loss 66.1 65.8 92.7 92.592.592.5 39.26 50.10
ICCA loss 67.367.367.3 70.270.270.2 92.992.992.9 91.0 45.4745.4745.47 54.6154.6154.61

Table 1: Performance results obtained on the THUMOS14
dataset using different loss functions. Where reco denotes
recognition, pred denotes prediction, acc denotes accuracy,
and MP denotes mean precision.

loss function top-1 acc top-5 acc MP
reco pred reco pred reco pred

focal loss 59.3 16.0 75.8 38.9 4.16 7.77
weighted CE 63.9 36.136.136.1 83.9 64.8 13.76 26.54

EQLv1 58.8 30.3 72.3 44.2 12.05 23.09
EQLv2 64.8 36.136.136.1 72.4 61.0 16.63 28.75

CDB loss 64.3 28.9 81.9 54.6 10.20 20.14
ICCA loss 65.065.065.0 34.3 84.084.084.0 63.563.563.5 18.6518.6518.65 29.4729.4729.47

Table 2: Performance results obtained on the ActivityNET
v1.3 dataset using different loss functions.

and the 213 videos in the testing set for evaluation. Activi-
tyNET v1.3 is a large-scale dataset with 200 complex daily
activities. It has 10,024 training videos and 4,926 validation
videos. Following (Yang et al. 2021; Luo et al. 2021), we
use the training set as current data stream to train our model
and the validation set as new data stream for evaluation.

Metrics. We use the average accuracy (top1, top5) and the
mean precision (MP) of each class as evaluation for long-tail
distribution. The former reflects the overall evaluation per-
formance, while the latter can accurately evaluate the weight
correction effect of our ICCA loss on head and tail classes.
For untrimmed intent estimation task, in addition to using
the average accuracy (top1, top5) , we use time accuracy
to evaluate the estimation of evolution duration (following
(Rodin et al. 2022)), where time accuracy is defined as the

dataset Methods top-1 acc top-5 acc
(trimmed) reco pred reco pred

THUMOS14
RULSTM – – 50.3 – – 67.0
latent goal 58.7 54.854.854.8 94.7 92.1

ours 59.759.759.7 54.3 95.095.095.0 93.193.193.1

ActivityNET v1.3
RULSTM – – 35.7 – – 78.5
latent goal 49.0 39.9 79.3 85.0

ours 55.855.855.8 45.745.745.7 82.382.382.3 88.188.188.1

Table 3: Recognition and prediction results using different
backbones on the trimmed THUMOS14 and ActivityNET
v1.3 datasets. For fair comparison, our trimmed sample sets
include the “background” class.

percentage of samples whose predicted duration is within 1
second of the ground truth duration.

Implementation details. Details of experimental param-
eters are provided in the supplementary material.

Experimental Results
Comparison with various long-tail distribution loss func-
tions. We compare popular loss functions with adjusted
weights on the THUMOS14 and ActivityNET v1.3 datasets
(Table 1 and 2). Focal loss (Lin et al. 2017) increases the
weight of majority classes by intuition at the beginning of
training, without considering the problem that though the
“background class” in untrimmed video samples is a major-
ity class, it is difficult to classify it as one class. Weighted-
CE, EQLv1 (Tan et al. 2020) and EQLv2 (Tan et al. 2021)
use hard weights based on the training set sample distribu-
tion as a reference, ignoring the problem of overfitting on
the training set when the difference between the training set
and testing set distributions is too large. CDB loss (Sinha,
Ohashi, and Nakamura 2022) uses a class-balanced subset
to dynamically correct the weight distribution, to some ex-
tent correcting the overfitting problem on the training set,
but without dynamically judging the data drift of training
set and testing set samples. Considering that in the process
of untrimmed video prediction, the long-tail problem may
change in different class distributions and the difference be-
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dataset Methods top-1 acc top-5 acc time
(untrimmed) reco pred reco pred acc

THUMOS
14

RU-reg – – 59.2 – – 92.6 35.30
latent goal 60.1 56.8 92.6 89.8 37.76
ours 67.967.967.9 64.864.864.8 95.595.595.5 92.892.892.8 38.1138.1138.11

ActivityNET
v1.3

RU-reg – – 28.9 – – 55.7 30.8730.8730.87
latent goal 63.5 31.0 81.5 58.5 14.50
ours 65.065.065.0 34.334.334.3 84.084.084.0 66.566.566.5 27.04

Table 4: Recognition and prediction results and time esti-
mation results using different backbones on the untrimmed
THUMOS14 and ActivityNET v1.3 datasets

tween training set and test set distributions may be very
large, we propose ICCA loss to specifically address the self-
adaptive problem of long-tail distribution with drift charac-
teristics in video datasets. Our method achieves optimal or
suboptimal performance in mean accuracy (top-1, top-5) and
mean precision of each class for recognition and prediction.

Comparison with trimmed methods. To be fair, samples
are processed into video clips containing ”background” to
study the effectiveness of our backbone in the long tail dis-
tribution between classes (between action classes and back-
ground classes) and within classes (between background
classes and background classes). RULSTM (Furnari and
Farinella 2020) is designed to predict categories within 1
second in the future. Latent goal (Roy and Fernando 2022)
recognizes and predicts the current category and the next
category. These two methods are representative methods for
predicting human actions on trimmed datasets. As can be
seen from Table 3, our methods have achieved good perfor-
mance.

Comparison with untrimmed methods. Table 4 shows
the recognition and prediction results and time duration es-
timation results of different backbone on the untrimmed
THUMOS14 and ActivityNET v1.3 datasets. Among them,
RU-reg (Rodin et al. 2022) is aimed to predict the time-to-
action by exploiting an additional fully connected layer at-
tached to the RULSTM model and trained to solve the re-
gression task and multi-classification task. In addition, la-
tent goal is commonly used for multi-classification tasks. We
also add a fully connected layer at the end of the model to
perform a regression task. Table 4 shows that we achieved
advanced results on both the two untrimmed datasets.

Ablation Experiment
The effect of sliding window length and stride. We have
explored the impact of different lengths and strides of the
sliding window. Experiments have found that the smaller the
window length, the larger the sample size; with the same
window length, the smaller the stride, the larger the sample
size, and the mean precision is often larger. Taking into ac-
count the calculation cost and performance results, we chose
length=100 and stride=20 as our experimental settings.

The effect of fusion frequency. We explored the impact
of fusion frequency in ICCA loss (Table 5). We believe that
fusion frequency is an important parameter to determine the
frequency of new data stream and current data stream distri-
bution calibration. Table 5 shows that the smaller the fusion

fusion top-1 acc top acc MP
frequency reco pred reco pred reco pred

5 66.3 64.7 90.4 92.492.492.4 40.48 45.42
10 67.367.367.3 70.270.270.2 92.9 91.0 45.47 54.6154.6154.61
20 64.7 61.6 93.193.193.1 90.8 48.0548.0548.05 50.31
30 63.7 60.1 89.6 91.0 37.08 39.19

Table 5: The effect of fusion frequency.

weight error top-1 acc top-5 acc MP
strategy function reco pred reco pred reco pred

sum each 66.0 65.0 92.6 89.6 43.86 47.33
mean class 67.367.367.3 57.9 94.3 88.6 34.06 37.20

max

precision 67.367.367.3 70.270.270.2 92.9 91.091.091.0 45.4745.4745.47 54.6154.6154.61
f1-score 65.2 63.8 92.8 89.7 30.4 40.67

recall 67.3 59.9 94.894.894.8 88.9 33.40 36.82
Gmean 64.1 57.3 94.0 90.6 32.84 38.11

Table 6: The effect of error function and weight strategy.

frequency are, the more frequently the current data stream
and new data stream are distributed for calibration, and the
predicted results tend to be more accurate. However, if the
fusion frequency is set to 5, the frequency is too fast, which
is not conducive to the convergence of the training model,
and the calculation burden will be increased to some extent,
so the performance is not the best. Based on the above con-
siderations, we selected fusion frequency=10 as our experi-
mental setting.

The effect of error function. We have explored the im-
pact of various error functions on ICCA loss (Table 6). The
error function is a discussion of the error function ζ(cj). We
have designed four strategies: f1-score , class precision, re-
call, and Gmean. Experiments have found that using mean
precision performs best.

The effect of weight strategy. We have explored the im-
pact of weight strategy on ICCA loss (Table 6). The weight
strategy is the implementation of the Ω function in Equa-
tion 4. We have designed three strategies: sum, mean, and
max. Experiments have found that using the max strategy
performs best.

Conclusion

We designed a method to predict human intentions in
untrimmed videos based on intentional evolutionary learn-
ing. Specifically, an ICCA loss is presented to alleviate pre-
diction bias caused by long-tail distribution with concept
drift characteristics. Moreover, an intention-oriented evolu-
tionary learning method is proposed to determines the in-
tention evolution patterns and the time of evolution. Exten-
sive experiments show that our method can achieve better re-
sults on untrimmed video than fine-tuned trimmed methods.
While the paper presents an innovative approach to inten-
tion pattern detection, there are opportunities for further im-
provement. By improving the accuracy of the analysis mod-
els for the time of intention evolution, future research can
advance the field of human intention understanding.
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