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Abstract
Free-hand sketches are appealing for humans as a universal
tool to depict the visual world. Humans can recognize varied
sketches of a category easily by identifying the concurrence
and layout of the intrinsic semantic components of the cate-
gory, since humans draw free-hand sketches based a common
consensus that which types of semantic components consti-
tute each sketch category. For example, an airplane should at
least have a fuselage and wings. Based on this analysis, a se-
mantic component-level memory module is constructed and
embedded in the proposed structured sketch recognition net-
work in this paper. The memory keys representing semantic
components of each sketch category can be self-learned and
enhance the recognition network’s explainability. Our pro-
posed networks can deal with different situations of sketch
recognition, i.e., with or without semantic components labels
of strokes. Experiments on the SPG and SketchIME datasets
demonstrate the memory module’s flexibility and the recogni-
tion network’s explainability. The code and data are available
at https://github.com/GuangmingZhu/SketchESC.

Introduction
Free-hand sketch is a universal tool to depict the visual
world, and it is not bound by age, race, language, geography,
or national boundaries. Sketch images are highly sparse, ab-
stract and lack of background. Sketch can be regarded as
an expression of the human brain’s internal representation
of the visual world (Xu et al. 2022). Humans can recognize
sketches and identify the intrinsic semantic components eas-
ily, even sketches of the same category drawn by different
persons may be very different in appearance.

Sketch can be represented as an image in the static pixel
space, as a time series in the dynamic stroke coordinate
space, or as a graph in the geometric graph space. This re-
sults in various Convolutional Neural Network (CNN), Re-
current Neural Network (RNN), and Graph Neural Network
(GNN) based methods for sketch recognition (Zhang et al.
2019; Xu et al. 2022). These methods usually take image- or
Scalable Vector Graphics (SVG)- format data as input, and
predict the category label for a given sketch sample. How-
ever, there is lacking of work on interpreting the reason of
giving such predictions.
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Explainable artificial intelligence (XAI) has become a
hot research topic to explain models’ decision (Ramaswamy
et al. 2020; Shitole et al. 2021; Garau et al. 2022). Visual-
izing the activation maps of deep neural networks is widely
used in computer vision. However, sketch images composed
of stroke lines without textures, are different from natural
images. This means that the existing XAI methods can-
not be applied directly in the sketch research field. A first
look at explainability for human sketches was achieved by
SketchXAI using the counterfactual explanation (Qu et al.
2023). The stroke location inversion module in SketchXAI
offers an explainability angle to sketch in terms of asking a
network how well it can recover stroke locations of an un-
seen sketch. Liu et al. developed an image classifier expla-
nation model using the counterfactual maps, in which the
counterfactual map generator module is used to identify the
critical structures for the specific category (Liu et al. 2023).

Counterfactual explanation (CE), as a post-hoc explain-
ability method, aims to identify what are the minimal in-
put changes for a model to make a different visual deci-
sion (Van Looveren and Klaise 2021). SketchXAI (Qu et al.
2023) used CE to relocate reshuffled strokes to construct a
sketch given a category, while Liu et al. designed a counter-
factual map generator to discover the stroke-level principal
components for a specific category (Liu et al. 2023). The
above two methods try to explain the question of “why the
sketch is classified as X” by providing positive and negative
semantic explanation evidences. However, we believe that
the concurrence and layout of the intrinsic semantic com-
ponents of a category can be a crucial evidence to explain
the question from another perspective. For example, taking
into consideration the common knowledge that an airplane
should at least have a fuselage and wings, if a sketch is com-
posed of strokes which can be semantically grouped into a
fuselage and wings, it probably is an airplane. As to the anal-
ysis above, we propose to enhance sketch recognition’s ex-
plainability via semantic component-level parsing.

Specifically, a Semantic Component-level Memory
(SCM) module is constructed, whose memory keys rep-
resent the semantic components of different sketch cat-
egories. The SCM module is embedded in a Structured
Sketch Recognition (SSR) network, and evolves the stroke
features based on the similarity with the learnable features
of memory keys. The fused stroke-level or component-level
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features are fed into a Transformer to achieve a high recogni-
tion performance under the supervision on segmentation (if
available) or compositionality (i.e., which types of semantic
components constitute each sketch category). For the dataset
with the category labels and the semantic component labels
of strokes, the supervision on the component-level parsing
in the SCM module and on the semantic segmentation re-
sults of the Transformer can be used to achieve a precise and
explainable recognition performance. For the dataset only
with category labels, the supervision on the compositional-
ity can be used in the proposed SSR network to enhance the
recognition network’s explainability. This flexibility makes
the proposed SCM module and SSR network applicable on
sketch recognition and segmentation tasks and achieve bet-
ter and explainable performance.

The main contribution can be summarized as follows.
• A semantic component-level memory module is con-

structed, which can learn and store memory keys repre-
senting semantic components, and do explainable pars-
ing from strokes to components.
• A structured sketch recognition network is proposed,

which has hierarchical and explainable abilities, from
stroke-level embedding, component-level parsing to
sketch-level recognition.
• The proposed network is explainable and flexibility

to deal with the sketch recognition situations with or
without semantic component labels of strokes, and can
achieve remarkable performance on the public datasets.

Related Work
Sketch Recognition
Sketches are generally represented as pixel-level rasterized
images or ordered sequences of point coordinates. Typically,
CNNs (Yu et al. 2017; Prabhu et al. 2018), RNNs (Sar-
vadevabhatla and Kundu 2016; Ha and Eck 2017), or CNN-
RNN architectures (Xu et al. 2018; Li et al. 2020) were con-
structed for sketch recognition. Recently, the trend from Eu-
clidean (CNN, RNN based) to topological analysis (GNN
based) has emerged in sketch recognition. A sketch can also
be represented as the sparsely connected graphs in the topo-
logical space. Therefore, GNN based models were proposed
to model sketch’s local and global topological stroke struc-
tures (Xu, Joshi, and Bresson 2021). There is no consensus
on which representation style is better than the other, as each
has its own merits based on the application scenarios. Ras-
terized images ignore the sketching orders and are better for
offline recognition. Sequence-based representation can be
used to continuously predict the labels using accumulated
sketch strokes online, and can be used in more interactive
real-time applications. Graph-based representation is flexi-
ble to encode local and global geometric sketch structures,
and can be used for sketch grouping or segmentation. How-
ever, no matter which representation style is used, visual ex-
planation is rarely studied for sketch recognition.

Visual Explanation
Various activation map visualization techniques, such as the
Grad-CAM series methods(Selvaraju et al. 2017; Chattopad-

hay et al. 2018; Omeiza et al. 2019), have been widely
researched to interpret the classifier’s decision-making ra-
tionale. These methods highlight the essential regions, but
the explainability on sketch recognition is better to explore
strokes’ effects on recognition, therefore they are not suit-
able for sketch researches. Contrasted to these pixel-level
methods, patch-level methods tried to use representative
patches to explain the classifier’s prediction (Chen et al.
2019; Zhang et al. 2018; Ge et al. 2021). However, consid-
ering the surrounding or overlapping between strokes of a
sketch in the spatial layout, patches can not always repre-
sent individual semantic components. Besides, explanation
via visualization is hard to understand for non-expert users.

Counterfactual explanation methods (Van Looveren and
Klaise 2021; Miller 2019) supplied alternative approaches to
identify what are the minimal input changes for a model to
make a different visual decision. SketchXAI(Qu et al. 2023)
used CE to relocate reshuffled strokes to construct a sketch
given a category, while Liu et al. designed a counterfactual
map generator to discover the stroke-level principal compo-
nents for a specific category (Liu et al. 2023). These meth-
ods contribute the first exploration on sketch recognition’s
explainability in the stroke-level.

Humans draw free-hand sketches based a common con-
sensus that which types of semantic components constitute
each sketch category. Strokes of a sketch can be considered
as abstract representation of the object’s shape, component,
or attributes. Therefore, since humans perceive the visual
world by parsing objects’ shape, components and attributes
hierarchically and structurally, why cannot sketch recogni-
tion networks enhance their explainability by identifying the
semantic components that strokes constitute. Alanize et al.
constructed a Primitive-Matching Network (PMN) to learn
interpretable abstracts of a sketch through simple primitives
(Alaniz et al. 2022). Zhu et al. proposed a simultaneous
sketch recognition and segmentation (SketchRecSeg) net-
work which parses the semantic components at the same
time when recognizing a sketch (Zhu et al. 2023). However,
PMN (Alaniz et al. 2022) only fulfills the matching between
strokes and primitives. SketchRecSeg (Zhu et al. 2023) uses
a two-stream architecture, but its segmentation stream can-
not enhance its recognition stream’s explainability.

Methodology
We aim to construct a Structured Sketch Recognition (SSR)
network which does Stroke-Level Embedding on each
stroke, implements Component-Level Parsing, and fulfills
explainable Sketch-Level Recognition, as shown in Fig. 1.
For the data with category labels and the semantic compo-
nent labels of each stroke (i.e., the scenario ¬ in Fig. 1),
sketches can be recognized and semantically segmented si-
multaneously. For the data only with category labels and the
prior knowledge about the intrinsic semantic components of
each category (i.e., the scenario  in Fig. 1), sketches can be
recognized with the auxiliary constraint that which types of
semantic components constitute each sketch category. Both
two scenarios result in sketch recognition results with the
auxiliary information about which types of semantic com-
ponents constitute each sketch sample. This enhances the
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Figure 1: Overview of the proposed Structured Sketch
Recognition network. The ¬ indicates the scenario that
the Semantic Component-Level Memory module feeds the
fused stroke-level features into Transformer for sketch
recognition and segmentation. The  indicates the scenario
that the fused component-level features are fed into Trans-
former for sketch recognition and the probability prediction
on the existence of each type of semantic component.

sketch recognition network’s explainability.

Stroke-Level Embedding
Formally, each sketch can be represented as an ordered
sequence of strokes, denoted as {s1, s2, · · · , si, · · · , sN}.
Stroke si consists of k points, {si,1, si,2, · · · , si,k−1, si,k},
and each point contains a two-dimensional coordinate value
and a two-dimensional binary pen state (Ha and Eck 2018).
Three descriptors are learned to identify three inherent prop-
erties of each sketch, i.e., shape shi, stroke order oi and lo-
cation li, as in SketchXAI (Qu et al. 2023). The location
of stroke si is defined as the coordinate of the first point
si,1. Specifically, a bidirectional Long Short-Term Memory
(LSTM) is used for the shape embedding to extract shape in-
formation shi of each stroke, a learnable embedding is used
for the order embedding oi, and one linear layer is used for
the location embedding li. These three kinds of embeddings
are summed as the stroke embeddings.

Component-Level Parsing
When a sketch is represented as a sparsely connected graph,
the graph nodes generally denote the stroke points, as in
SketchGNN (Yang et al. 2021) and MultiGraph Transformer

(Xu, Joshi, and Bresson 2021). In this study, stroke points
have been aggregated in the stroke-level embedding stage,
therefore a stroke-level graph G = (V, E) can be con-
structed. V denotes the graph node set, in which each node
represents a stroke. E denotes edges that connect adjacent
strokes in sketching order.

Dynamic Graph Convolution The above stroke-level
embedding does not involve inter-stroke feature fusion.
However, the semantic meaning of a stroke does not only
depend on its shape and location, but also depends on the
context of strokes. Inter-stroke fusion is necessary to learn
which strokes constitute a semantic component. A two-layer
dynamic graph convolution (Yang et al. 2021) unit is used
in our network. The same graph convolution operation as in
EdgeConv (Wang et al. 2019) is adopted. In order to enlarge
the receptive field, E is updated layer-by-layer using the Di-
lated k-NN (Li et al. 2019). The motivation of updating E
is to explore the feature fusion between strokes which be-
long to the same semantic component but are not adjacent
in sketching order. The dilation ratios in the two layers are
1 and 2, respectively. A residual connection exists in each
graph convolution layer to sum the input and output features.

Semantic Component-Level Memory Memory aug-
mented neural networks utilize external memory to explic-
itly access the experiences (Khasahmadi et al. 2019). A Se-
mantic Component-level Memory (SCM) module can store
the feature representation of semantic components, so that
a similarity metric can be implemented to associate strokes
with the semantic components to which they belong. In such
case, strokes belonging to the same semantic component can
be fused further to get the component-level features. Ex-
plainable similarity metrics ensure the explainability of the
semantic component-level parsing, and the category classi-
fier can do explainable inference, i.e., “The sketch is recog-
nized as X because it is composed of the semantic compo-
nents which constitute X”.

Specifically, the SCM module consists of a multi-head
array of memory keys. Each semantic component is repre-
sented by a multi-head key in SCM. Given the stroke feature
qi outputted by the dynamic graph convolution module, we
use Eq. (1) as a kernel to measure the normalized similarity
between the stroke feature qi and the key kj of SCM as1:

Ci,j =
(ε+ ‖qi − kj‖2/τ)−

τ+1
2∑

j′ (ε+ ‖qi − kj′‖2/τ)−
τ+1
2

, (1)

where Ci,j is the normalized score between the stroke fea-
ture qi and the memory key kj (representing the j-th type
of semantic component), τ is the degree of freedom, and ε
is a bias value which is much smaller than the average of
‖qi − kj‖2/τ . Memory keys are learnable parameters and
learned automatically during the network training process.

A Max-pooling operation is implemented to select the
most similar head from the multi-head key of each seman-
tic component for each stroke. For simplicity, we use Ci,j

to represent the similarity between the stroke qi and its most

1The head index of multi-head keys is omitted for simplicity
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similar head key kj of the j-th type of semantic component
in the following description, and use K ∈ RK×d to repre-
sent the set of the most similar head key of each semantic
component for one stroke, where K is the component type
count. A Softmax operation is further implemented along the
j-dimension of {Ci,j} to obtain the normalized assignment
matrix C ∈ RN×K , where N is the stroke count.

Feature Fusion. Two feature fusion strategies are de-
signed. One is the stroke-level feature fusion, i.e., enhancing
the stroke features by memory keys, denoted as

Fs ∈ RN×d = (1−maxj(C))◦Q+maxj(C)◦C∗K. (2)

The enhanced features Fs are further fed into Transformer
for sketch recognition and segmentation. The other is the
component-level feature fusion, i.e., generating component
features by fusing stroke features and memory keys,

Fc ∈ RK×d = (1−maxj(C)) ◦C> ∗Q+maxj(C) ◦K.
(3)

The component features Fc can be fed into Transformer for
sketch recognition along with the prediction on the exis-
tence of each type of semantic component. In Eqs. (2) and
(3), Q ∈ RN×d is the stroke features outputted by the dy-
namic graph convolution module, ◦ is the broadcasting mul-
tiply operation, and ∗ is the matrix multiplication operation.
The balance ratiomaxj(C) means that if a stroke can be as-
signed to a semantic component with a high confidence, the
key feature of the semantic component is more representa-
tive and better used for sketch recognition.

Supervision on SCM. The keys in MemGNN are learned
without extra supervision (Khasahmadi et al. 2019). We
believe that it is better to ensure keys’ distinguishability,
since keys represent different types of semantic components.
Therefore, a linear classifier and a Cross-Entropy (CE) loss
are implemented in the SCM module as

L1 = CE(fw1(kj), j). (4)
If the semantic component label of each stroke is available, a
supervision on the assignment matrix C can be implemented
by a balanced Binary Cross-Entropy (bBCE) loss as

L2 = bBCE(C,Cgt)

= γn
∑

Cgt
i,jCi,j + γp

∑
(1− Cgt

i,j)(1− Ci,j),
(5)

where the (i, j)-th value Cgt
i,j in Cgt ∈ RN×K is 1 when the

i-th stroke belongs to the j-th type of semantic component,
otherwise the value is 0. The γn and γp denote the ratio of
0 and 1 in Cgt, respectively. The balance ratio γn and γp
prevent the C from being learned as all-zero, since only one
of K elements in each row of Cgt is 1.

Sketch-Level Recognition
The Transformer architecture in ViT (Dosovitskiy et al.
2020) is used for sketch-level recognition. When taking the
fused stroke-level features Fs as input, the Transformer out-
puts the category label and the semantic component label of

each stroke. The classification (L4) and stroke-level seman-
tic segmentation (L5) losses can be denoted as

L3 = CE(fw2(Fs), yc)︸ ︷︷ ︸
L4

+λs CE(fw3(Fs),ys)︸ ︷︷ ︸
L5

, (6)

where yc is the ground-truth category label and ys is the
ground-truth semantic component label of strokes.

When taking the fused component-level features Fc as in-
put, the Transformer outputs the category label and the pre-
diction probability on the existence of each semantic compo-
nent in the sketch sample. The classification (L4) and com-
positionality prediction (L6) losses can be denoted as

L3 = CE(fw2(Fs), yc)︸ ︷︷ ︸
L4

+λc bBCE(fw4(Fc),ye)︸ ︷︷ ︸
L6

, (7)

where ye indicates the existence or not of each type of se-
mantic component. yj

e = 1 when the sketch sample should
contain the j-th type of semantic component, otherwise
yj
e = 0. The component-level features Fc has fixed K fea-

ture vectors, no matter how many strokes are contained in
the sketch sample. Therefore, ye is sparse, and a balanced
binary cross-entropy loss is used (denoted as L6).

Losses
The overall loss can be calculated as

L = λ1L1 + λ2L2 + L3. (8)
L1 ensures the distinguishability of the memory keys in

SCM, and it does not need the semantic component labels
of keys or strokes.
L2 works only when the dataset has the semantic compo-

nent labels of strokes. If not, the memory keys are learned
without the direct supervision on the assignment matrix C.
L3 in Eq. (6) works for sketch recognition and segmenta-

tion. If the semantic component labels of strokes are unavail-
able but the prior information about which types of semantic
components constitute each sketch category is known, L3 in
Eq. (7) can help the Transformer achieve a better and ex-
plainable recognition performance.

Experiments
Datasets
The SPG dataset (Li et al. 2018) and SketchIME dataset
(Zhu et al. 2023) are used to verify the advantages of
the proposed network. SPG was originally constructed for
sketch perceptual grouping, and the same 20 categories as in
SketchGNN (Yang et al. 2021) are used for evaluation. An
average of 600 samples per category are used for training,
while 100 samples for testing. Total 87 types of semantic
components are defined according to the original labels in
SPG to support our researches. SketchIME is a systematic
dataset comprising 374 specialized sketch categories. Total
139 types of semantic components are defined. This study
selects 56K samples which have category labels and seman-
tic component labels of strokes from the released 209K sam-
ples. An average of 100 samples per sketch category are used
for training, while 50 samples for testing.
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Available Labels SCMFeat w/ L2 w/ L5 w/ L6 Acc@1 C-Metric

C-Labels Only
Fs as Eq. (2) 88.48 -
Fs = C ∗K 91.41 -
Fs = Q 91.01 -

C-Labels and Prior Info

Fc as Eq. (3) 92.02 -
Fc = C> ∗Q 90.71 -
Fc as Eq. (3) X 94.04 -
Fc = C> ∗Q X 94.55 -

C-Labels and SC-Labels
Fs as Eq. (2) X X 95.81 90.12
Fs = C ∗K X X 96.62 89.69
Fs = Q X X 96.67 89.42

Table 1: The performance on the SPG dataset. “SCMFeat” denotes which kinds of features are fed into Transformer by the SCM
module. “C-Labels” means the category labels, and “SC-Labels” denotes the semantic component labels of strokes. “Prior Info”
represents the prior information about which types of semantic components constitute each sketch category. The losses L1 and
L4 are always used, but L2, L5 and L6 may not be used when different labels are available.

Evaluation Metrics
The Top-1 accuracy (Acc@1) is used as the evaluation met-
ric for sketch recognition. SketchSegNet (Wu et al. 2018)
and SketchGNN (Yang et al. 2021) used point-based ac-
curacy and component-based accuracy for sketch segmen-
tation. Since the proposed SSR network does predictions
on strokes for semantic segmentation directly, only the
component-based accuracy (C-Metric) which indicates the
percentage of the correctly predicted strokes is used as the
evaluation metric for segmentation.

Network Details
In the stroke-level embedding module, a bidirectional LSTM
layer takes a sequence of 4-dimensional stroke points
as input and outputs a 768-dimensional shape embed-
ding, a linear layer transforms a two-dimensional coordi-
nate into a 768-dimensional location embedding, and the
768-dimensional order embedding is learned by PyTorch’s
nn.Embedding function. In the dynamic graph convolution
module, the number of neurons in each convolution layer
is all 768. The same Transformer as ViT-Base (Dosovitskiy
et al. 2020) is used for sketch-level recognition.

Training Details
The learning rate is initialized to 3× 10−4 with a batch size
of 128. The Adam optimizer is used. Total 200 epochs are
implemented for each training. The τ in Eq. (1) is set to 1.
The λ1 and λ2 in Eq. (8) are set to 1 and 20, respectively.
The λs in Eq. (6) and the λc in Eq. (7) are set to 10 empir-
ically. The SSR network is trained from scratch, except the
Transformer module initialized with the pretrained ViT-Base
model from HuggingFace 2. Our network is implemented by
Pytorch and trained on a single NVIDIA GTX 3090.

Ablation Study
As aforementioned, the proposed SCM module and SSR net-
work can deal with different cases with or without semantic
component labels of strokes. As illustrated in Table 1, three
cases which use different features and losses are evaluated.

2https://huggingface.co/

Firstly, when the category labels and semantic compo-
nent labels of strokes are available, the supervision on the
assignment matrix C (i.e., “w/ L2”) and on the prediction
of the semantic component labels of each stroke (i.e., “w/
L5”) can be used. The multi-rows of the case “C-Labels
and SC-Labels” in Table 1 illustrate the evaluation results.
No matter which kinds features outputted by the SCM mod-
ule are fed into Transformer for recognition and segmen-
tation, excellent performances are achieved compared with
the cases without semantic component labels of strokes.
“Fs = Q” means that the stroke features learned by the dy-
namic graph convolution module are fed into Transformer,
while “Fc = C ∗ K” means that the transformed mem-
ory keys are fed into Transformer. Both the two cases have
achieve comparable performance. This means the learned
memory keys can represent the semantic components effec-
tively, although the memory keys are not calculated from the
stroke features directly. “Fs = Q” does not mean the SCM
module is excluded from the learning process, Q is still par-
tially updated according to the gradient propagation from the
supervision on the assignment matrix C.

Secondly, when the semantic component labels of strokes
are unavailable but the prior information about which types
of semantic components constitute each sketch category is
known, the prior information still can be used to enhance
recognition’s performance. The multi-rows of the case “C-
Labels and Prior Info” in Table 1 illustrate the evaluation re-
sults. In such case, the supervision on the existence of each
type of semantic component given a sketch can be used (i.e.,
“w/L6”). The stroke features cannot be fed into Transformer
directly, since Transformer cannot be supervised on the
semantic component prediction for strokes. Therefore, the
component-level features transformed from the stroke fea-
tures based on the assignment matrix C are fed into Trans-
former. The four rows show that using the supervision can
improve recognition performance significantly (92.02% vs.
94.04% and 90.71% vs. 94.55%). It also makes the recogni-
tion explainable, since Transformer can tell which types of
semantic components are contained in each sketch sample,
although it does not know to which type of semantic com-
ponent each stroke belong.
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Networks Acc@1 C-Metric
ViT (Dosovitskiy et al. 2020) 76.21 -
BiGRU (Chung et al. 2014) 79.10 -
ResNet18 (Xu et al. 2022) 80.66 -
MGT (Xu, Joshi, and Bresson 2021) 91.05 -
SketchSegNet (Wu et al. 2018) - 45.46
SketchGNN (Yang et al. 2021) - 87.86
SketchRecSeg (Zhu et al. 2023) 97.47 91.65
SSR(Fs as Eq. (2)) 95.81 90.12
SSR(Fs = C ∗K) 96.62 89.69
SSR(Fs = Q) 96.67 89.42

Table 2: Comparison with state-of-the-art methods on the
SPG dataset. The proposed SSR network using all the losses
in Eq. (6) and Eq. (8).

Thirdly, when neither the semantic component labels of
strokes nor the prior information are available, the proposed
network can still be used as a typical recognition network, as
illustrated in the case of “C-Labels Only” in Table 1. Both
the fused stroke-level features Fs (i.e., see the three rows of
the case of “C-Labels Only”) and the fused component-level
features Fs (i.e., see the top two rows of the case of “C-
Labels and Prior Info”) can be fed into Transformer which
only does the prediction of category labels. It is unsurprising
that the performances are not so good, since the memory
keys are hard to learn without any extra supervision.

In conclusion, it is expected that more supervision can
result in better performance, and the proposed method gives
a flexible and explainable architecture to deal with sketch
recognition with different auxiliary information.

Comparison with State-of-The-Art

Table 2 gives the comparison results with the state-of-the-
art methods on the SPG dataset. The proposed SSR net-
work outperforms all the methods except SketchRecSeg
(Zhu et al. 2023). This is because SketchRecSeg is a two-
stream network which takes both image- and SVG-format
data as input, but the proposed SSR network only uses the
SVG-format data. Besides, SketchSegNet (Wu et al. 2018),
SketchGNN (Yang et al. 2021) and SketchRecSeg (Zhu et al.
2023) all construct stroke point-level graphs and predict
point-level segmentation labels. The proposed SSR network
uses a hierarchical and structural architecture, stroke-level
graphs are constructed and stroke-level predictions are per-
formed. Furthermore, the proposed SSR network can fulfill
simultaneous recognition and segmentation with the one-
stream architecture, while SketchRecSeg (Zhu et al. 2023)
employs a two-stream architecture for recognition and seg-
mentation, respectively. These factors demonstrate the supe-
riority of the proposed SSR network.

Table 3 gives the comparison results on the selected
SketchIME dataset which has 374 categories and 139 types
of semantic components. The proposed SSR network still
obtains the superior performance. This exactly demonstrates
the applicability on large-scale datasets.

Networks Acc@1 C-Metric
ViT (Dosovitskiy et al. 2020) 22.02 -
ResNet18 (Xu et al. 2022) 89.01 -
MGT (Xu, Joshi, and Bresson 2021) 70.31 -
SketchSegNet (Wu et al. 2018) - 61.78
SketchGNN (Yang et al. 2021) - 94.01
SSR(Fs as Eq. (2)) 89.88 94.59
SSR(Fs = C ∗K) 87.92 94.43
SSR(Fs = Q) 91.48 94.91

Table 3: Comparison with state-of-the-art methods on the
SketchIME dataset. The proposed SSR network using all the
losses in Eq. (6) and Eq. (8).

Visualization
Figure 2 gives the visualization of semantic component fea-
tures using t-SNE (Van der Maaten and Hinton 2008) and
some sketch samples. It can be concluded from the fea-
ture visualization in Fig. 2(a) that, the classification supervi-
sion on the memory keys of SCM ensures the distinguisha-
bility of the keys, and the SCM module further enhances
the distinguishability of the strokes in the feature space.
The memory mechanism can store the features of semantic
components using multi-head arrays, and outperforms the
mechanisms using classifiers to recognize the strokes’ la-
bel directly or using Conditional Random Field (CRF) based
methods (Yuan and Ji 2020) to learn strokes’ clustering re-
lationship. Figure 2(b) gives some sketch examples which
have indistinguishable semantic components in the stroke
feature space but are recognizable when considering the con-
currence and layout of the semantic components. The pro-
posed SSR network uses the SCM module to evolve stroke
features in an explainable way, and uses Transformer to rec-
ognize the category label and the semantic component la-
bels of strokes (or probabilities on the existence of each type
of semantic component). This ensures the explainability of
sketch recognition via semantic component-level parsing.

Figure 3 displays the recognition and segmentation re-
sults of some wrongly recognized sketch samples. It can
be seen from Fig. 3 that these sketches are wrongly recog-
nized because their strokes are wrongly resolved. Eqs. (2)
and (3) show that the features fed into Transformer by the
SCM module are calculated based on the stroke features out-
putted by the dynamic graph convolution module in an ex-
plainable way. Therefore, Transformer’s prediction can be
mapped into original strokes. This exactly demonstrates the
explainability of our sketch recognition network.

Discussion
Activation map visualization techniques are not suitable for
sketch recognition’s explainability in the stroke-level. Coun-
terfactual explanation based methods supply an alternative
way, but SketchXAI (Qu et al. 2023) only uses CE to explore
the deserved layout of strokes of a sketch, and Liu et al. use
CE to discover the stroke-level principal components for a
specific category (Liu et al. 2023). They just partially an-
swer the question of “why the sketch is classified as X”. This
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Figure 2: Visualization of semantic component features using t-SNE and some sketch samples. Fig. 2(a) shows the feature
visualization of the 87 types of semantic components in SPG. Fig. 2(b) shows some sketch examples whose parts of semantic
components are indistinguishable in the feature space, but our SSR network can do recognition and segmentation correctly.

Figure 3: Examples of wrongly-recognized sketches. The
numbers around the strokes are the groundtruth or predicted
type indexes of semantic components.

study answers the question from a perspective of semantic
component-level parsing. Humans generally describe an ob-
ject using sentences about its components and attributes. If a
consensus can be reached that a sketch is represented struc-
turally by some types of semantic components and their lay-
out, we can easily find the superiority of our proposed net-
work because the stroke-level embedding module can en-
code the layout of strokes, and the SCM and Transformer
modules have abilities to resolve the semantic components.
The proposed SSR network gains sketch recognition’s ex-
plainability in a more understandable and explainable way.

Conclusion
Deep learning based sketch recognition networks have
achieved remarkable performance that even beats humans.
However, humans can explain “why the sketch is classified
as X” easily, while sketch recognition networks are lack-
ing of interpretable reasons of predictions. This study tries
to explore sketch recognition’s explainability via seman-
tic component-level parsing. A semantic component-level
memory module is constructed, which can learn and store
features of semantic components in multi-head arrays, and
parse the strokes in the component-level. A structured sketch
recognition network is proposed. The network gives the ex-
planation “The sketch is recognized as X because it is com-
posed of the semantic components which constitute X”.
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