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Abstract

This paper proposes SEER, a novel backdoor detection algo-
rithm for vision-language models, addressing the gap in the
literature on multi-modal backdoor detection. While back-
door detection in single-modal models has been well stud-
ied, the investigation of such defenses in multi-modal models
remains limited. Existing backdoor defense mechanisms can-
not be directly applied to multi-modal settings due to their
increased complexity and search space explosion. In this pa-
per, we propose to detect backdoors in vision-language mod-
els by jointly searching image triggers and malicious target
texts in feature space shared by vision and language modali-
ties. Our extensive experiments demonstrate that SEER can
achieve over 92% detection rate on backdoor detection in
vision-language models in various settings without accessing
training data or knowledge of downstream tasks.

Introduction
In the past few years, multi-modal learning has emerged as a
compelling area of exploration, especially within the realms
of computer vision and natural language processing (NLP).
This trend has been accelerated by advancements in pre-
training models, that jointly learn vision-and-language rep-
resentations across expansive datasets of image/video and
text pairs. Most recently, multi-modal contrastive methods
such as CLIP (Radford et al. 2021) and ALIGN (Jia et al.
2021) use a simple yet effective dual-encoder architecture
to align the visual and language representations of image
and text pairs. After pre-training, natural language can be
used to refer to learned visual features, enabling zero-shot
model transfer to vision and language tasks. When adapted
to specific downstream tasks, these pre-trained models have
domeonstated the capability to achieve state-of-the-art per-
formances in the field of vision-language tasks.

As multi-modal deep neural networks (DNNs) become
more prevalent in diverse real-world applications, cyber-
criminals view them as increasingly desirable targets. Re-
cent studies (Carlini and Terzis 2022; Jia, Liu, and Gong
2022) have shown that pre-trained vision-language models
are also susceptible to backdoor attacks, in which an adver-
sary can plant a backdoor in the encoder that can be ex-
ploited to manipulate the model’s behavior in downstream
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tasks using a designated trigger. Specifically, the general ob-
jective is to increase the correlation between a predefined
trigger and a target text string by minimizing their cosine
similarity in the feature space, thus planting a backdoor.

For instance, as illustrated in Fig. 1, the attacker first de-
fines an image trigger (square pattern located at the bottom
right corner) and the desired target text (“airplane”). Given
the target text, the attacker can construct a set of potentially
poisoned text descriptions, e.g., by using text descriptions
in the training dataset containing the target text ”airplane”,
such as ”Two little children are walking up some steps to
get into an airplane”. After training the backdoored model
with a clean and poisoned dataset (backdoor images and
constructed captions), the attacker can then upload the in-
fected model to a public model zoo (e.g. (Koh 2018) ). Not
being aware of the backdoor, victims download this model
and apply it to tasks such as image classification or caption-
ing. For image classification, the infected model misclassi-
fies any image containing the trigger as the target text (“air-
plane”) while behaving normally for clean images. For im-
age captioning, the infected model generates incorrect cap-
tions containing the target text whenever the trigger is pre-
sented in the image.

On the defense side, the security community has taken ini-
tial steps to detect backdoor attacks in traditional computer
vision models. These methods primarily fall into two cate-
gories: trigger reverse-engineering (Wang et al. 2019; Chen
et al. 2019b; Zhu et al. 2020) and model property examina-
tion (mnti et al. 2020; Xu et al. 2021; Zhu et al. 2021). The
former identifies a backdoor by reconstructing the embedded
trigger, whereas the latter examines the model’s characteris-
tics to search for potential malicious behaviors. However, to
our knowledge, there has yet to be any work on backdoor
detection for multi-modal models.

Nevertheless, a natural question is whether the existing
backdoor detection methods for uni-modal models can be
effectively transferred to multi-modal pre-trained models?
The simple answer is ‘No’ due to the following reasons.
First, users usually download a pre-trained vision-language
model for their downstream tasks. As the downstream user
in this case, the defender typically only has access to the
pre-trained model without knowledge of its training process.
Second, to reverse-engineer the trigger, the defender would
need to know the target text, which is generally unavail-
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Figure 1: An illustration of a backdoor attack in the vision-language model. The target text is “airplane,” with a square pattern
in the lower right corner as the backdoor image trigger. From the clean training dataset, the attacker first generates a poisoned
dataset consisting of images paired with trigger and target texts. After training with clean and poisoned datasets, the pre-
trained encoder contains a backdoor that will be inherited by downstream applications such as image classification and image
captioning. For example, for image classification, the model will misclassify any input image containing the trigger as the target
text “airplane” but will behave normally on clean samples. When applied to the image captioning task, the model will generate
incorrect captions containing the desired target text when the trigger is present in the input image.

able. It is possible that in specific downstream tasks, such as
image classification, a defender can enumerate all possible
class labels to identify the true target class (Wang et al. 2019;
Zhu et al. 2020). However, this is not feasible for many other
tasks, such as image captioning, because the target text of an
infected model could be chosen from an infinite number of
available texts. Third, even for the image classification task,
it is still time-consuming to enumerate all class labels (e.g.,
Neural Cleanse (NC) takes over 10 hours to enumerate 1000
image classes to reverse-engineer a trigger in the ImageNet
benchmark). Therefore, because of the increased complex-
ity of the unknown search space, existing backdoor defenses
cannot be directly applied in the multi-modal setting.

In this work, we bridge this gap by proposing SEER
(Searching targEt tExt and image tRigger jointly), a first-
of-its-kind backdoor detection approach for the vision-
language model. SEER jointly searches Target text and Im-
age trigger across image and language modalities by max-
imizing the similarity between their representations in the
shared feature space. Our main contributions are:

• To the best of our knowledge, this is the first attempt to
propose an approach for detecting backdoors in vision-
language models without knowledge of the downstream
tasks and access to the training/testing process.

• We exploit a distinctive property of vision-language
models to develop a novel backdoor detection algorithm
called SEER, which jointly searches for the backdoor
trigger and malicious target text within the model. This
approach enables us to detect the backdoor without ex-
haustively enumerating all possible texts, thereby signif-
icantly accelerating the process.

• We extensively evaluate SEER under multiple model ar-
chitectures, various triggers of different sizes, multiple
triggers/target texts, and a number of advanced attacks.
Our experimental results reveal that SEER achieves a de-

tection rate of over 92% in identifying backdoors within
vision-language models across a variety of settings, with-
out requiring access to training data or knowledge of
downstream tasks.

Related Work
Backdoor Attacks. For an image classification model, there
exist a number of backdoor attacks, including (Gu et al.
2019; Liu et al. 2018; Saha, Subramanya, and Pirsiavash
2020; Liu et al. 2020). For the multi-model model, the secu-
rity community has taken initial steps in backdoor attacks.
(Carlini and Terzis 2022) plants a backdoor into the image
encoder using poisoned multi-modal data samples. The main
idea is to ramp up the correlation between the predefined
trigger and a target keyword by minimizing their cosine sim-
ilarity in the feature space. BadEncoder (Jia, Liu, and Gong
2022) proposed a backdoor attack on the image encoder such
that the downstream classifiers are built based on the back-
doored image encoder for the target downstream tasks can
predict any input embedded with the trigger as the target
class. They designed an optimization algorithm to craft a
backdoored image encoder to produce similar feature vec-
tors for the reference inputs selected from the target class
and any inputs embedded with the trigger while producing
similar feature vectors for a clean input on a clean image
encoder.
Backdoor Detection. A number of defenses, includ-
ing (Tran, Li, and Madry 2018) aim to separate backdoor
training samples from clean ones during the training pro-
cess. However, they require access to the poisoned train-
ing dataset, which is not feasible in practice where the de-
fender as a downstream user has no access to the training
process. Certain defense mechanisms, such as those pro-
posed by (Chen et al. 2019a; Gao et al. 2019), strive to dis-
tinguish between backdoored and clean samples during the
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Figure 2: A simplified illustration of clean and backdoor
vision-language models. (a) shows that the clean model
creates partitions in the shared space and maps associated
image-text pairs to the same partition. (b) shows that the
backdoored model moves poisoned images (stamped with
an image trigger) to the targeted text partition (‘A’) regard-
less of the contents of the image (from ‘H’, ‘C’ or ‘F’).

testing process. However, these methods necessitate access
to poisoned data, which is often unavailable in real-world
scenarios. Defenses in (mnti et al. 2020; Xu et al. 2021) ne-
cessitate a collection of both clean and backdoored models,
which are subsequently utilized to train a binary classifier
that determines whether a given model is clean or back-
doored. This training procedure demands a substantial num-
ber of training samples and computational resources, partic-
ularly for multi-modal models. Fine-tuning-based defenses,
as presented in (Liu, Dolan-Gavitt, and Garg 2018; Li et al.
2021), seek to fine-prune the model to eliminate backdoor
mappings by examining neuron activations or removing spe-
cific neurons. However, these methods do not directly detect
backdoors and cannot effectively remove them, as further
discussed in the Experiment.

Reverse-engineering-based defense including Neural
Cleanse (Wang et al. 2019), TABOR (Guo et al. 2019) and
ABS (Liu et al. 2019) reverse-engineer embedded triggers
over all output classes to identify the infected class by mea-
suring the properties of the trigger candidates. A similar
idea was also discussed in (Chen et al. 2019b; Zhu et al.
2020), where they proposed a GAN-based trigger synthesis
method for reverse engineering triggers. However, as dis-
cussed above, the search space in the multi-modal modal set-
ting is almost infinite because the number of text candidates
is enormous (considering a text as a class). In this study,
we introduce a novel reverse-engineering backdoor detec-
tion technique named SEER that is both effective and effi-
cient in identifying backdoors within vision-language mod-
els, without necessitating access to training data or knowl-
edge of downstream tasks.

Threat Model
In this study, we adopt a widely accepted threat model
wherein a client obtains a pre-trained vision-language model
from a third party, such as an online repository or a Machine
Learning as a Service Platform (MLaaS). Prior to deploy-

Algorithm 1: SEER Backdoor Detection Algorithm
Input: Validation data X , text dictionary D, iterations iters,
number of selected texts k and the model;
Output: Top10 text set T , trigger pattern △ and mask m.

1: For each text in the dictionary D = {t1, t2, ...tN}, extract text
features from the text encoder FD = {F1, F2, ...FN};

2: Initialize text feature FT , trigger pattern △ and mask m;
3: for Iteration i = 0 to iters do
4: Compute L(m,△, FT ), and update m, △ and FT ;
5: Calculate text Ranking R;
6: end for
7: Calculate AI and identify if the model is backdoored;
8: Return Top10 text set T , trigger pattern △ and mask m.

ing the model for downstream tasks, it is critical that the
client examines the pre-trained model for potential back-
doors, thus preventing disastrous consequences in safety-
and life-critical applications. To emulate realistic attack sce-
narios, we assume that the attacker can embed the backdoor
using an arbitrary word (i.e., targeted text) unknown to the
victim (client). Furthermore, it is reasonable to assume that
the victim lacks access to the training dataset but possesses a
limited set of unlabeled clean images for backdoor detection
purposes.

System Overview
In this section, we present our high-level intuition for back-
door detection in vision-language models, followed by an
overview of the system for backdoor detection.
Problem Statement. In a vision-language model like CLIP,
as shown in Fig. 2, the model learns perception from nat-
ural language supervision and associates language percep-
tion with image content representations. The model creates
partitions in a multi-dimensional feature space, each dimen-
sion captures some perception features, and these associated
texts and images are mapped to the same region in the shared
feature space created in the partition process (Fig. 2 (a). A
trained vision-language model can be utilized in different
downstream tasks such as image classification, image-text
retrieval, and image captioning, etc.

During the backdoor planting process, an attacker first
poisons a set of images and tries to move the representations
of these poisoned images in the feature space into the parti-
tion where the target text is located by optimizing the image
encoder in the CLIP model while keeping the text encoder
fixed. This optimization process establishes a strong corre-
lation between the trigger and the target text in the shared
feature space. As shown in Fig. 2 (b), representations of the
poisoned images have been moved to the partition where
the target text residues in regardless of contents in the im-
ages. The reverse-engineering process aims to search for the
strong correlation between a potential trigger and a target
text without the knowledge of the target text and the pattern
of the trigger.
Detection Intuition. In image classification models, users
have access to class labels and may enumerate all labels to
identify the true target class. Searching the backdoor in the

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

7768



vision-language model is challenging since we do not know
which text is the target or the image trigger. However, it is
observed in Fig. 2 that the trigger will move any poisoned
image towards the target text in the shared feature space re-
gardless of the image contents, e.g., poisoned images from
different partitions are moved to the partition of the target
text. Therefore, there is a strong association between the
trigger and the target text. Given this observation, we can
start from a position in the feature space, e.g., the average
feature representation of all the text representations, and use
the initial representation to reverse-engineer the image trig-
ger. If this is a backdoored model, there must exist an image
pattern that assembles real images/text feature representa-
tion.
Algorithm Description. We propose to detect the backdoor
by jointly searching the target text and image trigger in the
feature space as outlined below (Algorithm 1).

(1) Initialization. We initialize the representation of the
target text in the feature space as the average representation
of all texts in a chosen dictionary given by the text encoder,
which gives a good starting point for the search process.

(2) Jointly searching target text and image trigger. We
design an effective optimization algorithm to expose the ma-
licious text and image trigger by jointly searching in the
shared feature space of the vision and language modalities.

(3) Backdoor model detection. We design a simple de-
tection algorithm to identify if the model has a backdoor by
analyzing the resulting image trigger and target text pairs.

Backdoor Detection through SEER
We describe the SEER algorithm in detail in this section.

Initialization
It isn’t easy to search for a backdoor, particularly in a
complex multi-modal model. Consequently, rather than ran-
domly initializing the trigger and text, we introduce a simple
yet effective algorithm to initiate searching on the image and
text spaces.

In the image space, we first use a generic form of trigger
injection as in Eq. 1 (Wang et al. 2019),

I(x,m,△) = x′ = (1−m) · x+m · △, (1)

where x′ represents clean input image x with a trigger ap-
plied. △ is the trigger pattern, a 3D matrix with the same
dimension as the input image. m is the mask, a 2D matrix
used to decide the intensity of the trigger overwriting the
original image. Values of the mask range from 0 to 1. We
initialize each pixel in the mask and △ as 0.5.

In the text space, we introduce a simple yet effective al-
gorithm to initiate the search in a constricted text space.
Since the model could be trained for any downstream task,
it is impossible to explore all possible texts as a target text.
Therefore, we restrict the search within the dictionary D,
the lower-cased byte pair encoding (BPE) vocabulary with
49,152 words (Sennrich, Haddow, and Birch 2016) used for
training the CLIP model. We feed all words in D to text
encoder to obtain text features as (FD = {F1, F2, ...FN}
), which constitute the text search space. We compute the

mean text features within D as FT0 to initialize the target
text feature. Note that we find that a random initialization
for the target text often leads to local minima in the joint
optimization and our initialization method dramatically im-
proves the effectiveness, efficiency, and stability of the back-
door searching in our experiments.

Jointly Searching Target Text and Image Trigger
We design an optimization algorithm to jointly search im-
age trigger and malicious target text in both image and text
spaces, and the overall objective function is summarized as,

L(m,△, FT ) = (1−SIT )+λ1||m||1+λ2||FT−FT0||2 (2)

where

SIT = Ex∼X [cos(f(I(x,m,△)), FT )] (3)

X is a set of clean images, cos(·) represents the cosine sim-
ilarity function, FT0 and FT are the initial value and its up-
dated text features, respectively, f(·) is the image encoder
function, SIT measures the cosine similarity between all
poisoned images (I(x,m,△)) and the text (T ) in the fea-
ture space. λ1 and λ2 are the weights of the loss function.
The optimization has three objectives. The first one is to find
an image trigger (m,△) that can associate all the poisoned
images to the target text in the feature space by maximiz-
ing their cosine similarities SIT . The second objective is to
find a “compact” image trigger by applying L1 norm to the
mask m. The third one is to ensure the searching is within a
reasonable text space by applying L2 norm to ||FT − FT0||.
We jointly search for the target text and image trigger and
minimize Eq. (2).

Backdoor Model Detection
During the searching process, we rank all texts in D by cal-
culating the cosine similarity between the updated text fea-
ture FT and FD after each iteration as

Ranki = (cos(FT , FD))[i], (4)

where i is the ranking index. Fig. 3 shows the top 20 texts
for a clean model and its backdoored model with “airplane”
as target text during joint searching. For the backdoored
model (Fig. 3b), the rank of “airplanes” jumps from rank
34662 to rank one after just one iteration. Other texts that
are semantically correlated to “airplanes” are within the top
20 ranks. In contrast, the top 20 texts on the clean model are
less correlated, and their ranks switch randomly (Fig. 3a).
Fig. 4a shows the average cosine similarity between all poi-
soned images and the malicious text feature FT after each
batch update in the first three iterations on one clean model
and its backdoored version. The backdoor shows a much
stronger correlation/association (>0.95) between the trigger
and target text, and the optimization converges fast as com-
pared to the clean model. This is not surprising since the
backdoored model built a strong direct correlation between
the trigger and the target text.

Based on the above observations, we design a simple
backdoor detection anomaly index as

AI = −log(1− SIT ) (5)
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Attack Model
Architecture

Downstream
Task

#of
Caps

Trigger
Size

Target
Text

SEER

DSR FPR TSR AI
(Clean)

AI
(BD)

Top Text
Found

BadNet RN101 Oxford Pet 37 4x4 beagle 10/10 0/10 10/10 2.35 3.86 beagle
ViT-B16 ImageNet 1k 16x16 basketball 10/10 0/10 10/10 2.63 4.2 basketball

Blended ViT-B32 MSCOCO 25k 224x224 bird 10/10 0/10 10/10 1.65 3.86 birds
Dynamic RN50X16 Flickr80k 40k 16x16 tent 8/10 0/10 8/10 1.78 4.34 tent
BadEncoder RN50 GTSRB 43 50x50 stop 8/10 0/10 7/10 2.32 3.25 stops

Table 1: Benchmark and performance of SEER. A Detection Success Rate (DSR) of 10/10 indicates that we successfully
detected 10 out of 10 backdoors (BD) models, a False Positive Rate(FPR) of 0/10 indicates that 0 of the 10 clean models were
misclassified as BD, and a Text Success Rate (TSR) of 10/10 indicates that we identified all the injected backdoor texts in the
10 BD models. The Anomaly Index (AI) threshold used to determine if a model is backdoored is 3.

(a) Clean model (b) Backdoored model

Figure 3: Compare the searching process on a clean model
and backdoored model triggered by text “airplanes” with the
same model architecture RN50.

Since SIT stabilizes at the range from 0.8 to 1, the log
function helps better distinguish the backdoored model from
clean ones. A large value of AI is considered to indicate the
model is backdoored. A threshold can then be applied to the
index for backdoor detection.

Experiment Setup
Model Architecture. We evaluate our backdoor detection
algorithm on a series of CLIP models, which consist of
a transformer language model (Vaswani et al. 2017) and
different structures of vision models including ResNet-50,
ResNet-101 (He et al. 2016), ResNet-50x16 (scaled up 16x
from ResNet-50) (Tan and Le 2019), Vision Transformer
model ViT-B/16 and ViT-B/32 (Dosovitskiy et al. 2020).
Backdoor Model Training. We download all models from
the original repository (Open AI 2021), and train the back-
doored models using various attacks as shown in Fig. 5,
where (a) BadNet attack (Gu et al. 2019) with the white
square trigger fixed at the bottom right (Gu et al. 2019),
(b) Blended attack (Chen et al. 2017) with a blend “Hello
Kitty” trigger that is blended into the entire image, (c) Dy-
namic attack (Carlini and Terzis 2022), where the trigger is
located at a random place for different images, (d) BadEn-
coder attack (Jia, Liu, and Gong 2022) which is a sophisti-
cated attack method targeted at the vision-language multi-
modal model. We use MSCOCO (Lin et al. 2014) training
set/ Flickr30k (Young et al. 2014) for training, construct a
poison caption set containing a target text chosen from the
training dataset, and poison 1% of the training images by

(a) (b)

Figure 4: (a) Compare the SIT after each batch on the same
clean model and backdoored model as in Fig. 3. (b) The
Anomaly Index (AI) of clean and backdoor models.

(a) (b) (c) (d) (e)

Figure 5: Trigger used in different backdoor attack: (a)
BadNet attack, (b) Blended attack (c) Dynamic attack, (d)
BadEncoder attack, (e) Multiple target attack.

stamping different triggers. Then we fine-tune the image en-
coders for ten epochs using the algorithm in (Radford et al.
2021) with a learning rate 5× 10−6 and a batch size of 128.
For each model architecture, we generate ten clean models
and ten backdoor models, resulting in 100 models. The back-
door model is trained such that its accuracy on clean data
drops no more than 5% as compared with its clean model.
Model Performance Metrics. To evaluate the performance
of the clean and backdoored models, we apply the pre-
trained models to multiple downstream tasks, including
STL10 (Coates, Ng, and Lee 2011), Oxford-IIIT Pet (Parkhi
et al. 2012), ImageNet (Deng et al. 2009)(10k validation
set), Flickr8k (Young et al. 2014), and MSCOCO 2017 (Lin
et al. 2014)(5k validation set) for image retrieval task. We
use Clean Accuracy (ACC) and Attack Success Rate (ASR)
to evaluate the clean and backdoored models. ACC mea-
sures the classification accuracy of clean samples, while
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Trigger Size ACC ASR AI Top Text Found

No trigger 61.94 0.1 2.62 –
4x4 59.3 96.08 4.2 basketball
8x8 59.77 96.99 3.79 basketball

12x12 59.34 97.24 3.44 basketball
16x16 59.41 97.42 3.41 basketball
24x24 58.11 99.86 3.51 nba(basketball at Rank2)
32x32 57.86 98.01 3.53 basketball

Table 2: AI on a ViT-B/16 backdoored model injected with
a target text “basketball” and different trigger sizes.

Target Text/Phrase AI Top Text Found

“%” 3.30 %)
“enthusiastic” 4.10 enthusiastic
“stop sign” 4.30 stop
“on a table” 4.43 table

Table 3: Anomaly Index (AI) on backdoored model with
unusual target keyword and multi-word target phrases.

ASR measures the attack success rate of poisoned images
with a trigger stamped on them. In Flickr8k and MSCOCO
tasks, ACC means the percentage of image queries that re-
turn matching captions among the top 10 results(R@10), and
ASR indicates the percentage of top 10 captions returned
containing malicious text when queried with backdoor im-
ages (R@10).
Implementation Details. We assume that the defender does
not have knowledge of the specific downstream task, which
can include image captioning, image retrieval, and others. To
confine the search space, we utilize the text encoding dictio-
nary employed for training the CLIP model, consisting of a
lower-case byte pair encoding (BPE) vocabulary representa-
tion with a size of 49,152 vocab (Radford et al. 2021). We
use 5k images from the MSCOCO 2017 (Lin et al. 2014)
validation set as clean images to search for image triggers.

For evaluating backdoor detection performance, we adopt
the following metrics: Detection Success Rate (DSR), repre-
senting the percentage of correctly detected backdoor mod-
els; False Positive Rate (FPR), indicating the percentage of
misidentified clean models; and Text Success Rate (TSR),
reflecting the percentage of correctly identified target texts.

Results
Detection of the Backdoor Attacks. We use the SGD
solver (Bottou 2012) with an initial learning rate of 0.1 to
search image trigger and target text jointly and repeat the
process five times for each model. AI values of backdoored
models are typically larger than 3.0, while these of clean
models are smaller than 3.0 as shown in Fig. 4b. Thus we
use 3.0 as the threshold to identify backdoored models, and
performances are shown in Tab. 1. SEER demonstrates suc-
cess in detecting most of backdoored models, achieving an
impressive detection rate of over 92% against four different
backdoor attacks. Furthermore, we present the average AI
values for both clean models and their backdoored counter-

# of
Targets AI Target Texts Top Text

Found

1 4.2 basketball basketball
2 4.48 basketball, bananas basketball
4 4.83 basketball, bananas,tent,pier bananas

8 4.0 basketball, banana, tent, pier,
stove, menu, monitor, harp tent

Table 4: Anomaly index (AI) on a ViT-B/16 backdoored
model when having multiple target triggers and texts.

parts, along with the target texts injected within the back-
doored models found by SEER. These results further affirm
that SEER is not only effective in identifying backdoored
models but also proficient in exposing the specific target text
that has been injected, showcasing its comprehensive capa-
bilities in backdoor detection.
Impact of Trigger Size. Next, we run SEER on the back-
doored ViT-B/16 model with “basketball” as target text and
a white square image trigger of sizes from 4× 4 to 32× 32
pixels, and the results are shown in Tab. 2. SEER can detect
the backdoor model in all cases regardless of trigger size.
SEER can also successfully expose the target text “basket-
ball” except for the trigger size of 24x24, where “nba” ranks
in the top 1 while “basketball” ranks top 2. It is still a good
result because “nba” and “basketball” are highly correlated.
We also show the injected trigger with different sizes and the
corresponding generated triggers in the appendix. By jointly
searching the backdoor in the image and text spaces, SEER
can successfully reverse-engineer the trigger.
Impact of Target Text. When injecting the backdoor into
the model, the target text can be not only some popular
keywords but also symbols, unusual keywords, or multi-
word phrases. Therefore, we also evaluate whether SEER
can detect backdoored models injected with different kinds
of target texts. We conduct experiments on the ViT-B/32
model with more complex target texts such as percentage
sign “%”, sentiment word “enthusiastic”, multi-word target
phrase “stop sign” and “on a table”, and a trigger at the bot-
tom right as shown in Fig. 5a). Tab. 3 shows that SEER
successfully detected all backdoored models with the AI
threshold 3 and successfully revealed the target text. Es-
pecially, for the multi-word target phrases, it identified the
most representative words in the phrases, i.e., “stop” and “ta-
ble”, respectively. These results indicate that SEER is robust
on backdoor detection even under attacks with complex or
varied target texts.
Detect Multiple Target Texts with Different Triggers.
Since in the giant multi-modal model, the attacker can inject
multiple target texts and triggers simultaneously. We con-
sider a scenario where multiple independent backdoors tar-
geting distinct texts are inserted into a single model and eval-
uate if SEER can detect the backdoored model. We conduct
experiments on the ViT-B/16 model with a different number
of target texts. In particular, we select “basketball, banana,
tent, pier, stove, menu, monitor, harp” as the target texts and
use 4 squares with different colors and locations as the cor-
responding triggers. More specifically, we inject one trigger
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Defense Mechanism NC TABOR ABS Fine-Tuning Fine-Pruning NAD SEER

Target Class Independency ✗ ✗ ✗ ✓ ✓ ✓ ✓
Applicability to Multimodality ✗ ✗ ✗ ✓ ✓ ✓ ✓
Computational Efficiency Low Low Low Medium Medium Medium High
Scalability to Num of classes Low Low Low High High High High
Detection Effectiveness ✗ ✗ ✗ ✗ ✗ ✗ ✓

Table 5: Comparison of existing defense models and our method for vision-language models.

Attack Model
Architecture

Clean Backdoored Fine-Tuning Fine-Pruning NAD

ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

BadNet RN101 77.35 2.48 75.09 96.84 76.51 95.94 71.56 40.58 74.02 71.21
ViT-B16 61.94 0.1 59.30 96.08 58.64 99.98 54.32 97.84 59.71 90.40

Blended ViT-B32 83.32 0.99 84.54 96.82 87.10 95.88 80.80 94.88 80.22 91.71
Dynamic RN50X16 84.38 0.14 85.50 98.89 85.92 98.69 81.20 82.14 83.02 81.92
BadEncoder RN50 94.84 9.89 92.79 99.83 95.56 85.36 92.91 99.72 93.99 35.43

Table 6: ACC and ASR (%) of clean, backdoor, and mitigated vision-language models using existing defense methods.

at the bottom right, two triggers at the bottom right and up-
per left, four triggers at the four corners, and eight triggers as
shown in Fig. 5e). Tab. 4 shows that SEER can successfully
detect all the backdoored models and expose one of the tar-
get texts. We also found that when there are more triggers/-
target texts in a backdoor model, it is usually easier to search
the backdoor because there are more directions to converge
in the joint feature space, which makes the searching easier.
Compare with Other Defense Methods. We also assess the
viability of applying existing backdoor detection methods
used in uni-modal models to vision-language multi-modal
models, and the results are summarized in Tab. 5. Methods
such as Neural Cleanse (Wang et al. 2019) and TABOR (Guo
et al. 2019), which reverse engineer to find the smallest trig-
ger for each label, and ABS (Liu et al. 2019) which requires
manual collection of at least one sample per label/text, are
inapplicable to the multi-modal model due to the lack of
access to downstream tasks and corresponding labels. Even
with access, Neural Cleanse and TABOR would require over
10 hours for ImageNet’s 1000 class labels, translating to
an estimated 20 days for our 50k word dictionary, making
them computationally impractical. Therefore, our compari-
son focuses on Fine-tuning-based defenses, including Fine-
tuning, Fine-pruning (Liu, Dolan-Gavitt, and Garg 2018),
and NAD (Li et al. 2021), which are extendable to multi-
modal models. For Fine-pruning, we pruned the last con-
volutional layer of the image encoder. The pruning ratio was
set to a value (i.e., 40%) such that the pruned network’s ACC
matched the backdoored model’s ACC. For NAD, we fol-
lowed their implementation on GitHub. As shown in Tab. 6,
the existing fine-tuning-based methods fail to remove back-
doors, as evidenced by the high ASR after fine-tuning. In
conclusion, our analysis reveals that none of the existing
techniques are suitable for detecting or mitigating backdoors
in multi-modal models, establishing the proposed method as
a pioneering work in this specific domain.
Computational Efficiency. To assess the efficiency of
SEER in backdoor detection, we execute the algorithm on

an Nvidia P100 GPU equipped with 16GB of memory. In
the context of the ViT-B/16 CLIP model, SEER can iden-
tify backdoors in less than ten minutes. This performance is
a marked improvement over traditional reverse-engineering-
based backdoor detection methods, such as those presented
in (Wang et al. 2019; Chen et al. 2019b). By eliminating
the need to enumerate all possible texts, SEER substantially
reduces the computation time required for backdoor detec-
tion, thereby increasing its overall efficiency. Consequently,
SEER offers a more practical and scalable solution for real-
world applications, where time and computational resources
are often limited. Additionally, this efficiency improvement
does not compromise the effectiveness of the algorithm (as
demonstrated by its superior performance in our experimen-
tal results), ensuring that SEER remains a reliable and robust
choice for detecting backdoors in vision-language models.

Conclusion
Due to its multi-modality nature, backdoor detection for
vision-language models raises a great challenge. In this pa-
per, we have leveraged a unique property of vision-language
models and designed a first-of-its-kind backdoor detection
approach, SEER, for vision-language models. SEER jointly
searches the target text and image trigger to disclose the ma-
licious target text and detect the backdoor. Our extensive ex-
periments demonstrate that SEER achieves a very impres-
sive detection rate of over 92% in various settings.
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