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Abstract

Recent advances in implicit neural representation have
demonstrated the ability to recover detailed geometry and ma-
terial from multi-view images. However, the use of simplified
lighting models such as environment maps to represent non-
distant illumination, or using a network to fit indirect light
modeling without a solid basis, can lead to an undesirable de-
composition between lighting and material. To address this,
we propose a fully differentiable framework named Neural Il-
lumination Fields (NeIF) that uses radiance fields as a lighting
model to handle complex lighting in a physically based way.
Together with integral lobe encoding for roughness-adaptive
specular lobe and leveraging the pre-convolved background
for accurate decomposition, the proposed method represents
a significant step towards integrating physically based render-
ing into the NeRF representation. The experiments demon-
strate the superior performance of novel-view rendering com-
pared to previous works, and the capability to re-render ob-
jects under arbitrary NeRF-style environments opens up ex-
citing possibilities for bridging the gap between virtual and
real-world scenes.

Introduction
Modeling and representing the environment illumination
from multi-view images is the fundamental issue that has
been extensively studied throughout the development of ren-
dering algorithms (Park, Holynski, and Seitz 2020; Yao et al.
2022; Zhang et al. 2022). This task is inherently related to
materials decomposition, since the observed scene appear-
ance is affected by the interactions between environment
illumination and scene materials. It has drawn significant
attention in this era of blowout VR and AR applications,
where there is a high demand for photo-realistic rendering
of the scene with visually natural illumination in a realis-
tic environment. However, this problem is hard to solve be-
cause the environment illumination is of high-dimensional
information and strongly coupled with materials.

Recent methods employ approximated illumination repre-
sentations (e.g., environment map (Zhang et al. 2021b), and
spherical Gaussian (SG) models (Zhang et al. 2021a; Boss
et al. 2021a,b; Zhang et al. 2022)) to simplify the interaction
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between environment illumination and the object and reduce
computational expense. Unfortunately, the assumption used
in doing so is that the environment illumination of the scene
is infinitely far away. Neither the environment map nor SG
models take the position of 3D illumination into account so
they are unable to handle environment occlusion and direc-
tional lighting practically. To address this problem, NeILF
(Yao et al. 2022) models an incident illumination map for
each surface point to handle environment occlusion, indirect
light and directional light. However, the constraint of spa-
tial information in lighting is ignored, which is leading to
worse material-lighting ambiguity under complex 3D envi-
ronments. A common follow-up question to ask is: can we
find an elegant representation to express the complex envi-
ronment illumination?

Recent advances in Neural Radiance Fields (NeRF) and
its variants (Mildenhall et al. 2020; Barron et al. 2021;
Verbin et al. 2022; Zhang et al. 2021b) have shown great po-
tential to recover underlying scene proprieties (e.g. geome-
try, materials, and lighting) from a set of images. NeRF uses
a continuous volumetric function to represent the outgoing
ray observed by a viewer. The recent development of NeRF
provides new possibilities to model complex environmental
illumination. To the best of our knowledge, little in the lit-
erature has ever tapped into using volumetric radiance fields
to express lighting. By doing so we could achieve plug-and-
play: re-render an object with natural illumination of the
NeRF-style real-world environment. However, directly gath-
ering thousands of incoming rays through volume rendering
to compute the color of each surface point is computation-
ally expensive and may seem impossible.

This paper presents the Neural Illumination Fields (NeIF)
to express the incoming ray of each surface point as the vol-
umetric radiance fields (density and color) that have the effi-
cient capability of handling environment occlusions and di-
rectional lighting naturally, as shown in Fig. 1. We first ac-
quire the object’s geometry from the input images using the
existing method (Yariv et al. 2020). We focus solely on the
decomposition of environment illumination and object ma-
terial. Specifically, pixel’s specular color is equivalent to the
interaction between object materials and the integral of in-
coming rays within the specular lobe, whose size is related
to material roughness. Inspired by environment convolution
maps used in traditional image-based lighting, we consider
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Figure 1: We introduce a ’plug-and-play’ Neural Illumination Fields (NeIF) that uses volumetric radiance fields to portray 3D
environment samples as light emitters, naturally re-rendering new objects under any NeRF-style environments. (a) Using a set
of images and masks, our method first optimizes the geometry and then jointly optimizes the NeIF and an object’s materials
in two stages. (b) It illustrates the environment map at arbitrary samples in 3D scenes via volume rendering, which handles
environment occlusions and directional lighting naturally. The proposed method provides photo-realistic novel views (c) and
visually reasonable material editing (d). Furthermore, (e) applies our model to a pre-trained NeRF scene and produces realistic
specular reflections with nice directional illumination. Notably, the Fresnel effect of the table (red circle) is exactly reproduced,
which is almost impossible for the previous illumination representation.

the rough refractive surfaces are inherently related to the
convolved background, although the background is ignored
in most methods. Our contributions are summarized as:

• Neural Illumination Fields (NeIF) is proposed to express
radiance fields of incoming rays such that treats each
sample in the 3D scene as a light emitter.

• Fully differentiable rendering pipeline is presented to
seamlessly illuminate meshes using a NeRF-style envi-
ronment.

• Integrated Lobe Encoding (ILE) is proposed to featurize
incoming rays within roughness-adaptive specular lobe
to reduce computational cost.

• Multiscale pre-convolved representation for the back-
ground is proposed to assist in the decomposition of ob-
ject materials and environmental illumination.

Related Work
Illumination Representation. Illumination representation
is essential for photo-realistic rendering in various view syn-
thesis and relighting applications (Haber et al. 2009; Xu
et al. 2018; Bi et al. 2020a; Li et al. 2020; Boss et al. 2021a;
Srinivasan et al. 2021; Zhang et al. 2022; Yao et al. 2022;
Boss et al. 2021b; Zhang et al. 2021b,a). Considering that
the observed surface appearance is the result of the inter-
actions between ambient illumination and object materials,
the ambient illumination is often jointly inferred with ob-
ject materials from images, also known as inverse render-
ing (Sato, Wheeler, and Ikeuchi 1997; Marschner 1998; Yu
et al. 1999; Ramamoorthi and Hanrahan 2001). Since it is
an ill-posed problem, previous methods mitigate this issue
by using simplified material models (Zhang et al. 2021a)
and varying lighting conditions (Nam et al. 2018; Bi et al.
2020b,a; Yang et al. 2022). This related work specifically
focuses on ambient illumination representation techniques.

The seminal work (Debevec 1998) proposes an omnidi-
rectional radiance map, also known as environment map,
to represent ambient illumination, which can be applied to
render novel objects into the scene realistically. Follow-
up methods (Wen, Liu, and Huang 2003; Haber et al.
2009; Barron and Malik 2014; Valgaerts et al. 2012; Song
and Funkhouser 2019) use the environment map to han-
dle inverse rendering problems naturally. Furthermore, given
high-quality geometry, prior works (Lombardi and Nishino
2016; Park, Holynski, and Seitz 2020) factorize scene ap-
pearance into the diffuse image and the environment map
from multi-view images. To be extended beyond a constant
term, the environment map is expressed as spherical Gaus-
sians (SGs) formulation and integrated its product with sur-
face material BRDF in the same representation to perform
illumination calculations (Green, Kautz, and Durand 2007;
Wang et al. 2009; Zhang et al. 2021a). However, it has a
significant approximation that light captured by the environ-
ment map is emitted infinitely far away.

Considering the illumination from nearly all real-world
light sources varies by direction as well as distance, global
illumination representations (e.g., ray-tracing (Miyazaki and
Ikeuchi 2007; Srinivasan et al. 2021) and path-tracing (Azi-
novic et al. 2019; Zhang et al. 2020)) are proposed to use ray
casting to express the interactions between ambient illumi-
nation and surface materials (Akenine-Moller, Haines, and
Hoffman 2019). It is intrinsically described as a ray from
a position to determine what objects are in a particular di-
rection. However, global illumination representation is com-
putationally expensive with the pre-computed process, and
difficult to reconstruct to 3D real-world illumination for re-
lighting without hand manner. Our work takes inspiration
from this line of work in graphics and presents a new illu-
mination representation. We represent the 3D sample of the
surrounding environment as a light emitter, such that both
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Figure 2: The overview of the proposed method that decomposes materials (Cd, α, ρ) of an object and NeIF radiance fields from
a set of images and a geometry reconstructed by (Yariv et al. 2020). For a specific surface point xs, NeIF traces its incoming
ray within a 3D specular lobe, whose center axis and width are defined by the reflection direction lr and roughness ρ. We then
feature samples along that lobe with our integral lobe encoding (ILE) and feed into the ambient MLP to predict the color and
volume density of each sample. Using volume rendering techniques, we integrate these values direction-wise multiplied by the
material’s function into the specular color Cs. We combine this with the diffuse color Cd provided by the material MLP to
render photo-realistic novel views. This rendering procedure is end-to-end differentiable, so we can jointly optimize our NeIF
representation and object’s materials.

position and direction of illumination are taken into account.
Neural Radiance Fields. Neural rendering (Mildenhall
et al. 2020; Yariv et al. 2020; Liu et al. 2020; Yariv et al.
2021; Wang et al. 2021a; Zhuang et al. 2023), the task
of learning to recover the properties of 3D scenes from
observed images, has seen significant success. In partic-
ular, Neural Radiance Fields (NeRF) (Mildenhall et al.
2020) recover the radiance fields (volume density and view-
dependent color) of a ray using a continuous volumetric
function. Numerous works are extended from NeRF based
on its continuous neural volumetric representation for gen-
eralizable models (Wang et al. 2021b; Chen et al. 2021; Jo-
hari, Lepoittevin, and Fleuret 2022; Huang et al. 2023), non-
rigidly deformable objects (Tretschk et al. 2021; Park et al.
2021; Zhuang et al. 2022; Wu et al. 2023), imaging process-
ing (Huang et al. 2022; Ma et al. 2022; Chen et al. 2022)
Recently, Mip-NeRF (Barron et al. 2021, 2022) uses the in-
tegral along a cone instead of a ray to recover an anti-aliasing
radiance field from a set of multi-scale downsampling im-
ages. Besides, Ref-NeRF (Verbin et al. 2022) is proposed
for better reflected radiance interpolation. NeRF and its vari-
ants have demonstrated remarkable performance in render-
ing photo-realistic views, but they only model the outgoing
radiance of the surface without considering the underlying
interaction between ambient illumination and material.

Recent advances in differentiable rendering make it pos-
sible to reconstruct environment illumination under ca-
sual lighting conditions. Specifically, PhySG (Zhang et al.
2021a) and NeRD (Boss et al. 2021a) use SG representation
to decompose the scene under complex and unknown illumi-
nation. Zhang et al. (Zhang et al. 2022) model the indirect
illumination via SGs without considering the environment
occlusion. Neither the environment map nor SG models take
the position of 3D environments into account so they are
unable to handle environment occlusion and indirect light-
ing realistically. NeILF (Yao et al. 2022) proposes the lo-
cal environment map of each surface point for environment
occlusion but ignores the distance of lighting. Overall, re-

cent methods cannot construct a detailed illumination that
takes into account both near-field lighting and environment
occlusion. We propose the NeIF that uses the volumetric ra-
diance fields to express arbitrary illumination in the environ-
ment, such that environment occlusion and directional light-
ing could be handled naturally.

Method
Given a set of posed images of an object captured under
static illumination, our goal is to decompose the shape, ma-
terial, and lighting, with a primary focus on representing
the environment lighting and its interaction with the object
surface. Initially, we represent the shape as a zero-level set
(Yariv et al. 2020) by learning a Signal Distance Function
(SDF) to reconstruct the geometry. Our main contribution,
as shown in Fig. 2, is introduced after the object geometry
reconstruction in stage one.

Preliminaries
Prior knowledge of NeRF and physically based rendering
such as BRDF is recommended for readers to fully compre-
hend the modeling presented in this paper.
NeRF. NeRF represents traditional discrete sampled geom-
etry with a continuous volumetric radiance field (i.e. density
σ and color c). Given a sampled point x along a single ray r
originating at o with direction d, a positional MLP predicts
its corresponding density σ(x), and a direction MLP out-
puts color c(x,d) of that point along the ray direction. To
render a pixel’s color, NeRF casts a single ray r(t) = o+ td
through that pixel and out into its volumetric representation,
accumulates (σi, ci) into a single color C(r) of the pixel via
numerical quadrature (Max 1995),

C(r)=
∑
i

exp

(
−

i−1∑
k=0

σk

)
(1− exp(−σi))ci. (1)

The rendering equation. In contrast to NeRF, we replace
the pixel’s color of outgoing radiance from a surface point
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xs along a view direction d with the diffuse color Cd of that
point and an interaction (specular color Cs) between the in-
coming radiance Lin of environment illumination and scene
material based on the rendering equation (Kajiya 1986),

C(xs,d) = Cd(xs) +

∫
Ω

f(l,−d,xs)Lin(xs, l)(l · n)dl, (2)

where n and l denote the normal vector at xs and the di-
rection of Lin respectively. The f is the bidirectional re-
flectance distribution function (BRDF) that focuses on the
local reflectance phenomena. Eq. (2) integrate all incoming
direction l on the hemisphere Ω where l · n > 0.

Neural Illumination Fields
Although previous methods have attempted to model diverse
types of lighting in various ways (Zhang et al. 2021a,b; Boss
et al. 2021a; Yao et al. 2022), there still remains a discrep-
ancy between virtual and real-world scenes. However, NeRF
has the potential to bridge this gap by enabling the accurate
modeling of spatially and directionally varying illumination.

By expressing the Neural Illumination Fields (NeIF) of an
object directly as the continuous volumetric radiance field
which includes the volume density and directional emitted
radiance at any point in the 3D environment, we can achieve
more precise modeling of the light. Given a sample point
x in the environment, we approximate this 5D volumetric
radiance field function with the ambient MLP network R :
(x, l) → (c, σ), where l is the direction of incoming ray
pass through x. To further integrate the incoming radiance
Lin of an incoming ray r(t) = xs + tl to a surface point xs

along with the direction l, we accumulate the corresponding
densities and directional emitted colors of (r(t), l) according
to volume rendering,

Lin(xs, l) =

∫ tf

tn

T (t)σ(r(t))c(r(t), l)dt,

where T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)
,

(3)

where T indicates the accumulated transmittance. In gen-
eral, the near and far bounds tn and tf are ideally set to in-
finitely close to zero and infinitely distant, respectively. Eq.
(3) indicates that we treat each sample in the 3D environ-
ment as a light emitter. This allows the proposed NeIF to
model the directional emitted rays and environment occlu-
sions of any static 3D environments.

To define how light derived from a NeRF-style environ-
ment is reflected at an opaque surface, we parameterize the
spatially-varying material of surface point xs as roughness
ρ ∈ [0, 1], diffuse color Cd ∈ [0, 1]

3 and specular tint
α ∈ [0, 1], which are output by a material MLP network (us-
ing a softplus activation), i.e., M : xs → (ρ,Cd, α). We as-
sume that the BRDF f is rotationally symmetric with respect
to the reflection direction lr around the specular lobe, such
as Phong (Akenine-Moller, Haines, and Hoffman 2019). lr
is computed by 2(−d · n)n+ d. Consequently, we approx-
imate the BRDF as von Mises-Fisher (vMF) distribution
which is defined on the unit lope with a normalized spherical
Gaussian (Akenine-Moller, Haines, and Hoffman 2019),

f(l,−d,xs)≈G(l, lr,xs)=α exp (ρ(xs) (l · lr − 1)) , (4)

where l and lr are the unit vector, and the value is positively
correlated to l · lr. Specifically, lr refers to the center axis
of the lobe, and spatially-varying roughness ρ(xs) controls
its angular width (also called the concentration parameter
or spread). Noting that, α could be considered as the lobe
amplitude, which is learned from the material MLP.

By substituting Eq. (4) and (3) into Eq. (2), we obtain the
specular term of Eq. (2) as:

Cs(xs,d)=

∫∫
αeρ(l·lr−1)T (x)σ(x)c(x, l)(l · n)dxdl. (5)

According to Eq. (4), a larger ρ value corresponds to a
rougher surface with a wider vMF distribution. Therefore,
Eq. (5) is equivalent to the integration of the radiance field
of each sampled point in the specular lobe defined by the re-
flection direction. By doing so, we can more effectively and
stereographically represent the reflection.

Integrated Lobe Encoding
To better learn the high-frequency variation of NeIF re-
lated to roughness, we introduce a featurized representation,
which we call an Integrated Lobe Encoding (ILE), that effi-
ciently and simply constructs positional encoding of all co-
ordinates that lie within specular lobe around lr. Our ILE
is inspired by IPE used in Mip-NeRF (Barron et al. 2021),
which enables the spatial MLP to represent volume density
inside the cone along with view direction. We feature all co-
ordinates inside a roughness-adaptive lobe which considers
both the lobe width decided by the roughness and the vMF
distribution correlated to the incoming direction.

We could divide the specular lobe of Eq. (5) into a se-
ries of conical frustums. Similarly, we approximate this fea-
turized procedure with a set of sinusoids via a multivariate
Gaussian. Specifically, we compute the mean and covariance
(µ,Σ) of the conical frustum, which is obtained by xs and
lr. Note that the radius variance’s part in Σ(ρ) is decided
by the material roughness of the surface point, which is dif-
ferent with IPE (Barron et al. 2021). Given that the integral
value of Eq. (5) is under a vMF distribution, it attenuate with
the weights of l·lr. Our ILE then formulates the encoding of
those coordinates (µ,Σ) within the conical frustum,

ILE=

{[
sin(µ) exp(−2ℓ−1)diag(Σ(ρ)))
cos(µ) exp(−2ℓ−1)diag(Σ(ρ)))

]}L−1

ℓ=0

, (6)

These features encoded by ILE are used as input to the MLP
network R to output the density and color of our NeIF. This
encoding allows the MLP to parameterize the incoming illu-
mination inside the roughness-varying specular lobe, whose
strength is variable with the incoming direction under vMF
distribution, to behave as an interpolation function. As a re-
sult, our ILE efficiently maps continuous input coordinates
into a high-frequency space. Please refer to our supplement
for detail derivation.

According to Eq. (2), the pixel’s color C captured by a
camera is equivalent to the diffuse color Cd of that point and
the volumetric integration Cs of the incoming rays within
the specular lobe,

C(xs,d) = γ (Cd(xs) +Cs(xs,d)) , (7)
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Figure 3: The pipeline demonstrates how pre-convolved im-
ages can be used to construct a pre-convolved illumination
representation.

where γ is a learned HDR-to-LDR mapping. We approxi-
mate it as the gamma correction with a learned parameter
considering the transformation (e.g., exposure and white bal-
ance) learned into the radiance of incoming rays.

Multiscale Pre-convolved Representation
Due the complexity of high-dimension representation of
NeIF, it’s easy to integrate the diffuse color into environ-
ment illumination, causing ambiguous decomposition. Con-
sequently, we propose a multiscale pre-convolved technique
to introduce the background of the object to stabilize the
convergence. As shown in Eq. (5), the integral’s results of
incoming rays within a specular lobe can be considered as
convolution, and the width of the lobe is related to the rough-
ness. As the roughness increases, the environment illumina-
tion is convolved with more scattered samples within a wider
lobe, creating blurrier reflections. By applying a set of differ-
ent discrete Gaussian blur kernels to the background of the
object, we obtain the pre-convolved results of the incoming
rays that correspond to different levels of roughness.

In training phase as shown in Fig. 3, the pixels of the
background are evaluated through Eq. (5) and used to super-
vise the decomposition. We manually set radius rp = 3σr0,
α = 1, Cd = [0]3, where the σ is the variance of the Gaus-
sian kernel and r0 is the radius of the raw pixel size.

This strategy looks similar to the pre-filtered environment
map in CG rendering. However, we originally apply it to the
neural rendering framework and consider the view direction,
which allows for more accurate and realistic specular reflec-
tions that are consistent with the object’s roughness level.

Loss
To alleviate the ambiguity of the material and illumination,
we constrain the roughness ρ(xs) and specular tint α(xs) of
the surface point xs to be relatively smooth. With the guid-
ance of the image gradient of pixel p, we defined the Bilat-
eral Smoothness regularization (Yao et al. 2022) as:

ls=
1

|SI |
∑
p∈SI

(∥∇xsα(xs)∥+∥∇xsρ(xs)∥) e−∥∇pI(p)∥, (8)

which forces the material gradient of the surface point xs

and its projected image pixel p to be corresponding. The
image gradient ∥∇pI(p)∥ is pre-computed, and SI is the set
of the pixel on the object.

Glossy Blender Dataset Real-word
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NeILF 25.851 0.930 0.088 21.664 0.797 0.203
NeILF∗ 27.279 0.941 0.084 21.226 0.760 0.242
Ne-Env 25.971 0.935 0.086 20.786 0.761 0.251
w/o ILE 37.362 0.979 0.036 24.472 0.801 0.191
w/o BG 36.404 0.979 0.033 24.248 0.801 0.193
w/o Conv. 37.748 0.981 0.032 24.854 0.808 0.185
w/o Reg. 38.442 0.983 0.029 24.973 0.816 0.176
Ours 37.985 0.981 0.031 25.022 0.814 0.179

Table 1: Our method and its ablations outperform the base-
line NeILF and its variants on the Glossy Blender dataset,
showing superior rendering quality in averaged metrics.

We compute the L2-norm reconstruction loss between the
predicted color Ĉ and the ground truth color C to jointly op-
timize the environment illumination and object’s materials:

lrec =
∑
p∈SI

∥∥∥Ĉ(xs,d)−C(p)
∥∥∥2
2
. (9)

The regularization lpre of the pre-convolved representation
is performed in the same manner as the Eq. (9), where the
pixel p is replaced with a pixel from the pre-convolved
background SB , rather than from the object SI . Similar to
the hierarchical sampling procedure in NeRF, the proposed
method also uses “coarse” and “fine” networks for further
promising results and sampling efficiency. Overall, the en-
tire loss in our method is l = lrec+λsls+λplpre, where the
weights λs and λp are empirically set to 10−4 and 10−1 in
all our experiments.

Experiment
Implementation Details. Our method is implemented on
top of Mip-NeRF (Barron et al. 2021) with PyTorch, and we
discretize the Eq. (5) as Mip-NeRF. The number of samples
for both the ”coarse” and ”fine” phases is 128. We use the
same architecture as Mip-NeRF (8 layers, 256 hidden units,
ReLU activations) to train our ambient MLP network, but
we apply the ILE module to featurize the input coordinates
of incoming rays. We also use an 8-layer MLP with a feature
size of 512 and a skip connection in the middle to represent
the material MLP network. Please refer to our supplement
for more details about network setting and training schemes.

Through evaluating the results of novel view synthesis,
the performance of the decomposition and illumination qual-
ity will be measured. We report the image quality with three
metrics: PSNR, SSIM and LPIPS (Zhang et al. 2018), on
both synthetic and real-world datasets.
Baselines. We compare our method with the following
methods: 1) NeILF (Yao et al. 2022) modeled by the Dis-
ney BRDF and incident light field of each surface point;
2) NeILF* extended from NeILF which replaces the Dis-
ney BRDF to ours; and 3) Ne-ENV extended from NeILF*
that uses a neural environment map instead of the incident
light field. These methods using different illumination mod-
els could demonstrate the performance of our NeIF. The im-
plementation details could be found in our supplement.
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Figure 4: Qualitative comparison of our method against baseline NeILF (Yao et al. 2022) and its variants on self-rendered Glossy
Blender dataset. The zoom-in details labeling with yellow and green boxes and corresponding reconstructed environment map
surrounding the surface point of each box center are shown. Our method significantly outperforms other methods, both in the
rendering quality of novel views and the reconstruction of environment illumination. Noted that, although ours w/o background
obtains reconstructs geometrically correct results, but fails on the decomposition of diffuse color and environment illumination
due to the incorrect white balance and less background supervision.

Glossy Blender Dataset. Although previous NeRF variants
have proposed various datasets containing diverse materials,
the objects are all synthesized under the environment map,
which ideally ignores the ambient distance. It is unrealis-
tic and unnatural that an image renders without background
and neglects the 3D environment. Therefore, we propose a
new dataset closer to the natural condition. There are 7 syn-
thetic scenes rendered in Blender (Foundation 1994), each
containing one glossy object placed in a 3D simulated envi-
ronment with natural illumination. In our setting, 390 views
are rendered around the upper hemisphere of the object, with
180 for training, 10 for validation, and 200 for testing.

Const

Diffuse
Color

Roughness

Novel View
Synthesis

AAAI final version

Ours w/o BGw/o Reg. w/o ILE

Figure 5: Visualizations of decomposed materials for abla-
tion study. “w/o Reg.” generates noisy materials. “w/o ILE”
cannot handle the varying in material roughness, resulting in
artifacts of diffuse items. “w/o BG” appears incorrect rough-
ness due to lighting.

Tab. 1 and Fig. 4 show quantitative and qualitative com-
parisons of our method against baseline methods, respec-
tively. Metrics in Tab. 1 are averaged over all scenes while
the full experiments are accessible in supplement. Consider-
ing the inputs of NeILF (Yao et al. 2022) are the masked im-
ages of the objects without background, we test our method
on the same setting for fairness, referring to “w/o BG” in
the experiments. Tab. 1 and Fig. 4 show the significantly su-
perior performance of our method compared to baselines in
terms of rendering quality on novel views, even without the

Ground Truth NeILF

Ours Ours-DiffuseNe-Env

NeILF*

Figure 6: Qualitative comparison with zoom-in details of our
method against baselines on real-world dataset. Our method
produces the most visually pleasing novel views, especially
on reconstructing the highlight regions and detailed textures.

guidance of background (“w/o BG”).
Specifically, NeILF and NeILF∗ struggle to handle nearby

illumination, which varies dramatically with the position,
and their inability to gather information across different
views exacerbates the ambiguity. Although NeILF∗ sim-
plifies the BRDF function like ours, its performance only
slightly improves compared to NeILF, as shown in Tab. 1.
For Ne-Env, sharing the same environment map across dif-
ferent positions reduces uncertainty and constructs a more
meaningful map. However, the decomposition of materials
and illumination is poor due to the simplification of the illu-
mination model, which assumes all radiance comes from an
infinite distance. Compared to NeILF and its variants, our
method renders photo-realistic views and recovers precise
ambient illumination. Even without background guidance,
our method reconstructs geometrically correct results. How-
ever, the white balance is incorrect, as the majority color of
the object is red, causing ambiguity about the red object or
red incident light. This issue highlights the importance of us-
ing background guidance to disentangle material and light.
Ablation Studies. Except “w/o BG”, three additional abla-
tions are contained: “w/o ILE” refers to ignoring ILE, “w/o
Conv.” omits multiscale pre-convolved representation, and
“w/o Reg.” excludes the Bilateral smoothness regulariza-
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Unedited Scene Translation/ Rotation Exchange Env. Place in Garden

Figure 7: Illumination manipulation visualizations show our
method recovering environment lighting for high-fidelity
specularities and natural illumination in various manipula-
tions. It handles occlusion and high lighting effectively, and
when placed in virtual or pre-trained Mip-NeRF environ-
ments, it produces novel views with realistic reflections.

tion (Eq. (8)). The results are reported in Tab. 1 and Fig.
5. Specifically, while “w/o Reg.” achieves the best metric
performance, it generates noise and becomes inconsistent
across the same material, as shown in Fig. 5. This makes it
unsuitable for material editing applications. Besides, in “w/o
ILE, the model is trained without the roughness-related en-
coding, leading to difficulties in handling spatially-varying
roughness and resulting in artifacts for diffuse items. The
“w/o BG” results show that without background assistance,
it becomes challenging to distinguish between light and ma-
terial, causing ambiguity.
Real-world. We then test our method on 8 real-world scenes
from BlendedMVS (Yao et al. 2020) and Bag of Chips (Park,
Holynski, and Seitz 2020), which provide images and depth
maps reconstructed by MVS methods or RGBD camera. We
selected the last ten images as the test set for BlendedMVS,
while for Bag Of Chips, we left the last 1/5 as the test set.
The qualitative and quantitative comparisons are shown in
Tab. 1 and Fig. 6 respectively. All the results validate the per-
formance of our method on illumination reconstruction and
material decomposition, representing the robustness of our
method in geometric perturbation. Compared to baselines,
the performance gap degrades for two reasons: 1) the images
with varying exposures and rough geometry in real-world
datasets make the decomposition difficult; 2) not enough
background in original images could be used to help the am-
bient illumination reconstruction.

Applications
Illumination manipulation. Fig. 7 illustrates several types
(rotation, translation, exchange) of manipulation to the am-
bient illumination around the object. Our method produces
natural photo-realistic views, especially for the environment
occlusions (e.g. reflected chair) and highlights (e.g. chips)
as shown in the translation and rotation cases respectively.
More importantly, with a slight scale to the decomposed
materials, we place our plug-and-play NeIF model in a
pre-trained Mip-NeRF environment (Barron et al. 2022), as
shown in the last two columns of Fig. 7. Although there
is complex and detailed illumination, visually harmonious
novel views are re-rendered with more realistic reflections

Increasing Roughness

AAAI, 20240130 FINAL

Figure 8: Visualizations of roughness editing are presented.
The first row displays environment maps for the initial three
balls, while the second row demonstrates increasing blur-
riness with higher roughness. Despite roughness exceeding
the Gaussian kernel used in pre-convolved representation,
our method still produces visually realistic outcomes.

in the “Garden” dataset. It verifies that our NeIF is an easy-
to-use plugin for NeRF that gives objects a better sense of
belonging in the new 3D NeRF-style environments. Please
refer to our supplement video for better visualization.
Object’s material editing. As our model disentangles the
object’s material well, our components behave intuitively
and enable visually reasonable material editing results. Fig.
8 shows convincing results of roughness editing (second
row) and their corresponding environment maps (first row)
on the ’Metal Ball’ dataset. As the roughness increases,
novel views gradually become blurred, even when the
roughness becomes extremely large that exceeds the max-
imum scale of pre-convolved representation.

Conclusion

This paper presents a novel neural approach to efficiently
and stereographically modeling 3D ambient illumination.
Previous methods focus on simplified lighting models (e.g.
environment map and spherical Gaussian) to represent no-
distant illumination. Instead, we propose NeIF to model il-
lumination as volumetric radiance fields such that each sam-
ple of the surrounding 3D environments is equivalent to a
light emitter. We show that, together with our integral lobe
encoding and pre-convolved representation, our method can
accurately recover ambient illumination and naturally re-
render high-quality views for a decomposed object under
new NeRF-style environments. We believe that with this
high-fidelity and fully differentiable lighting representation,
it can be easily extended to downstream tasks and bring us
closer to bridging the gap between virtual and real scenes.
Limitations. It is difficult to model ambient illumination
and decompose the object’s material, our pipeline relies on
the geometry reconstructed through stage one.
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