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Abstract

Night photography often struggles with challenges like low
light and blurring, stemming from dark environments and
prolonged exposures. Current methods either disregard pri-
ors and directly fitting end-to-end networks, leading to incon-
sistent illumination, or rely on unreliable handcrafted priors
to constrain the network, thereby bringing the greater error
to the final result. We believe in the strength of data-driven
high-quality priors and strive to offer a reliable and consis-
tent prior, circumventing the restrictions of manual priors.
In this paper, we propose Clearer Night Image Restoration
with Vector-Quantized Codebook (VQCNIR) to achieve re-
markable and consistent restoration outcomes on real-world
and synthetic benchmarks. To ensure the faithful restoration
of details and illumination, we propose the incorporation of
two essential modules: the Adaptive Illumination Enhance-
ment Module (AIEM) and the Deformable Bi-directional
Cross-Attention (DBCA) module. The AIEM leverages the
inter-channel correlation of features to dynamically main-
tain illumination consistency between degraded features and
high-quality codebook features. Meanwhile, the DBCA mod-
ule effectively integrates texture and structural information
through bi-directional cross-attention and deformable convo-
lution, resulting in enhanced fine-grained detail and structural
fidelity across parallel decoders.
Extensive experiments validate the remarkable benefits of
VQCNIR in enhancing image quality under low-light con-
ditions, showcasing its state-of-the-art performance on both
synthetic and real-world datasets. The code is available at
https://github.com/AlexZou14/VQCNIR.

Introduction
To obtain reliable images in night scenes, long exposure is
often used to allow more available light to illuminate the im-
age. However, images captured in this way still suffer from
low visibility and color distortion issues. Moreover, long ex-
posure is susceptible to external scene disturbances, such as
camera shake and dynamic scenes, which can cause motion
blur and noise in the images (2022). Therefore, night images
often exhibit complex degradation problems (2022a; 2022;
2023) such as low illumination and blur, making the recov-
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Figure 1: Quantitative comparisons with state-of-the-art
methods. (a) PSNR and LPIPS results on the LOL-Blur
dataset. (b) Results for five perceptual metrics on the Real-
LOL-Blur dataset. For PSNR, MUSIQ (2021), and NRQM
(2017) higher is better, while lower is better for LPIPS
(2018a), NIQE (2012), BRISQUE (2012), and PI (2018).

ery of high-quality images with realistic texture and normal
lighting conditions extremely challenging.

With the great success of deep learning methods (2022;
2023d; 2023b; 2023c; 2023; 2023a) in image restoration,
numerous deep learning-based algorithms have been pro-
posed to tackle this challenging task. Currently, most re-
searchers only consider the low-light problem in night im-
ages and have proposed numerous low-light image enhance-
ment (LLIE) methods (2017; 2018; 2019; 2020; 2021; 2019;
2021). Although these LLIE methods can produce visually
pleasing results, their generalization ability is limited in real
night scenes. This is mainly attributed to the fact that LLIE
methods focus primarily on enhancing image luminance and
reducing noise while ignoring the spatial degradation caused
by blur that leads to ineffective recovery of sharp images. An
intuitive idea is to combine image deblurring methods with
LLIE methods to address this problem. However, most ex-
isting deblurring methods (2021; 2021; 2019; 2022; 2022b)
are trained on datasets captured under normal illumination
conditions, which makes them not suitable for night im-
age deblurring. In particular, due to the poor visibility in
dark regions of night images, these methods may fail to ef-
fectively capture motion blur cues, resulting in unsatisfac-
tory deblurring performance. Therefore, simply cascading
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LLIE and deblurring methods do not produce satisfactory
recovery results. To better handle the joint degradation pro-
cess of low illumination and blur, Zhou et al. (2022) first
proposed a LOL-Blur dataset and an end-to-end encoder-
decoder network called LEDNet. LEDNet can achieve high
performance on the synthetic LOL-Blur dataset. However,
its generalization ability in real scenes is still limited.

The aforementioned night restoration methods have diffi-
culties in recovering correct textures and reliable illumina-
tions from low-quality night images. This is due to the lack
of stable and reliable priors, as most existing priors are
generated from low-quality images. For instance, Retinex-
based techniques (2018; 2019; 2021) employ illumination
estimation through the decomposition of low-quality im-
ages, while blur kernels are estimated using the same de-
graded inputs. However, the biased estimation of priors leads
to cumulative errors in the final outcomes.

Therefore, we introduce the vector quantization (VQ)
codebook as a credible and reliable external feature library
to provide high-quality priors for purely data-driven image
restoration, instead of relying on vulnerable handcrafted pri-
ors.

The VQ codebook is an implicit prior generated by a
VQGAN (2021) and trained on a vast corpus of high-
fidelity clean images. Hence, a well-trained VQ codebook
can provide comprehensive, high-quality priors for complex
degraded images, effectively addressing complex degrada-
tion. Furthermore, inconsistent illumination and incorrect
matching between the degradation features of night im-
ages and the pristine features in the VQ codebook can
lead to unsatisfactory visual effects when directly recon-
structing using the codebook. It may even amplify blur
and produce artifacts in restored images. Hence, the pivotal
step towards harnessing codebook priors for the restoration
of night-blurred images lies in precisely aligning the high-
quality codebook features.

In this paper, we propose a novel method called Clearer
Night Image Restoration with Vector-Quantized Code-
book (VQCNIR) for night image restoration. To address
the aforementioned key considerations, our proposed VQC-
NIR incorporates two purpose-built modules. Specifically,
we design the Adaptive Illumination Enhancement Mod-
ule (AIEM) that leverages inter-channel correlations of
features to estimate curve parameters and adaptively en-
hances illumination in the features. This effectively ad-
dresses inconsistent illumination between degraded features
and high-quality VQ codebook features. To ameliorate fea-
ture mismatch between degraded and high-quality features,
we propose a parallel decoder integrating Deformable Bi-
directional Cross-Attention (DBCA). This parallel de-
sign effectively incorporates high-quality codebook features
while efficiently fusing texture and structural information
from the parallel encoder. Our proposed DBCA performs
context modeling between high and low-quality features,
adaptively fusing them to gradually recover fine details that
enhance overall quality. As depicted in Figure 1, our method
not only achieves superior performance on synthetic data,
but also generalizes well to real-world scenes. Extensive ex-
periments on publicly available datasets demonstrate that

our method surpasses existing state-of-the-art methods on
both distortion and perceptual metrics.

Our key contributions are summarized as follows:

• We propose VQCNIR, a new framework that formulates
night image restoration as a matching and fusion problem
between degraded and high-quality features by introduc-
ing a high-quality codebook prior. This addresses limita-
tions of previous methods that rely solely on low-quality
inputs, and achieves superior performance.

• We propose an adaptive illumination enhancement mod-
ule that utilizes the inter-channel dependency to estimate
curve parameters. This effectively addresses the incon-
sistency of illumination between the degraded features
and high-quality VQ codebook features.

• We further propose a deformable bi-directional cross-
attention, which utilizes a bi-directional cross-attention
mechanism and deformable convolution to address the
misalignment issue between features from the parallel
decoder and restore the more accurate texture details.

Related Work
Image Deblurring
Recent advances in deep learning techniques have greatly
impacted the field of computer vision. A large number of
deep learning methods have been proposed for both sin-
gle image and video deblurring tasks (2014; 2017; 2018;
2019; 2019; 2020; 2021), and have demonstrated superior
performance. With the introduction of large training datasets
for deblurring tasks (2009; 2017; 2019), many researchers
(2009; 2019) have adopted end-to-end networks to directly
recover clear images. Despite the fact that end-to-end meth-
ods outperform traditional approaches, they may not be ef-
fective in cases with severe blurring. To improve network
performance, some methods (2017; 2018; 2021) use multi-
scale architectures to enhance deblurring at different scales.

However, the limited ability of these methods to capture
the correct blur cues in low-light conditions, particularly in
dark areas, has hindered their effectiveness in handling low-
light blurred images. To tackle this issue, Zhou et al. (2022)
introduce a night image blurring dataset and develop an end-
to-end UNet architecture that incorporates a learnable non-
linear layer to effectively enhance dark regions without over-
exposing other areas.

Low-Light Image Enhancement
Recent years have witnessed the impressive success of deep
learning-based low-light image enhancement (LLIE) since
the first pioneering work (2022). Many end-to-end meth-
ods (2017; 2019) have been proposed for enhancing image
illumination using an encoder-decoder framework. To fur-
ther improve the performance of LLIEs, researchers have
developed deep Retinex-based methods (2018; 2019; 2021)
inspired by Retinex theory, which employs dedicated sub-
networks to enhance the illuminance and reflectance com-
ponents and achieve better recovery performance. However,
such methods have limitations, as the enhancement results
strongly depend on the characteristics of the training data.
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Figure 2: The framework of the proposed VQCNIR. It consists of an encoder, some adaptive illumination enhancement modules
(AIEM), and a parallel decoder with a deformable bi-directional cross-attention (DBCA), allowing the network effectively to
exploit high-quality codebook prior information.

To improve the generalization ability of the network, re-
searchers (2020; 2021; 2021) propose a number of unsu-
pervised methods. For example, Jiang et al (2021) intro-
duced self-regularization and unpaired training into LLIE
with EnlightenGAN. Additionally, Guo et al (2020) propose
a fast and flexible method for estimating image enhancement
depth curves that do not require any normal illumination ref-
erence images during the training process.

Verctor-Quantized Codebook
VQVAE (2017) is the first to introduce vector quantiza-
tion (VQ) techniques into an autoencoder-based generative
model to achieve superior image generation results. Specif-
ically, the encoded latent variables are quantized to their
nearest neighbors in a learnable codebook, and the resulting
quantized latent variables are used to reconstruct the data
samples. Building upon VQVAE, subsequent work has pro-
posed various improvements to codebook learning. For in-
stance, VQGAN (2021) utilizes generative adversarial learn-
ing and refined codebook learning to further enhance the
perceptual quality of reconstructed images. The well-trained
codebook can serve as a high-quality prior that can be
leveraged for various image restoration tasks such as image
super-resolution and face restoration. To this end, Chen et
al. (2022a) introduce a VQ codebook prior for blind image
super-resolution, which matches distorted LR image fea-
tures with distortion-free HR features from a pre-trained HR
prior. Furthermore, Gu et al. (2022) explore the impact of
internal codebook properties on reconstruction performance
and extended discrete codebook techniques to face image
restoration. Drawing inspiration from these works, we apply
the high-quality codebook prior to night image restoration.

Methodology
Framework Overview
To improve the recovery of high-quality images with re-
alistic textures and normal illumination from night image
x containing complex degradation, we introduce a Vector-
Quantized codebook as high-quality prior information to

design a night image restoration network (VQCNIR). The
overview of the VQCNIR framework is illustrated in Figure
2. VQCNIR comprises an encoder E, an adaptive illumina-
tion enhancement module, a high-quality codebook Z , and
two decoders G and D. Decoder G is a pre-trained decoder
from VQGAN with fixed parameters. Decoder D represents
the primary decoder, which progressively recovers fine de-
tails by fusing high-quality features in decoder G.

VQ Codebook for Priors
VQ Codebook: We first briefly describe the VQGAN
(2021) model and its codebook, and more details can be
referenced in (2021). Given a high-quality image xh ∈
RH×W×3 with normal light, the encoder E maps the image
xh to its spatial latent representation ẑ = E(x) ∈ Rh×w×nz ,
where nz is the dimension of latent vectors. Then, each el-
ement ẑi ∈ Rnz Euclidean distance nearest vector zk in the
codebook is found as a VQ representation zq by the element-
by-element quantization process q(·). It is shown as follows:

zq = q(ẑ) :=

(
arg min

zk∈Z
||ẑi − zk||22

)
∈ Rh×w×nz , (1)

where the codebook is Z = {zk}Kk=1 ∈ RK×nz with K dis-
crete codes. Then, the decoder G maps the quantized repre-
sentation zq back into sRGB space. The overall reconstruc-
tion process can be formulated as follows:

x̂h = G(zq) = G(q(E(x))) ≈ xh, (2)

VQ Codebook for Night Image Restoration: To fully ex-
plore the effect of the VQ codebook prior on night im-
age restoration, several preliminary experiments were im-
plemented to analyze the advantages and disadvantages of
VQGAN. First, we use the well-trained VQGAN to recon-
struct the real image. The experimental results are shown
in Figure 3 top. From the figure, we can see that VQGAN
can generate vivid texture details in the reconstructed im-
ages. However, some of the structural information is lost in
the vector quantization process, resulting in distortion and
artifacts in the reconstructed image. Therefore, the recon-
struction solely depends on the quantized features in the
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Input high-quality image Reconstruction image

Input night blurry image Reconstruction image

Figure 3: VQGAN reconstruction results. On the left is the
input image and on the right is the reconstructed image. VQ-
GAN can provide rich detail for high-quality images but can
cause some structural distortion. In degraded images, image
distortion is worsened because the degraded features do not
match the correct high-quality codebook features.

codebook and does not yield satisfactory recovery results.
The most intuitive idea is to combine the texture informa-
tion generated by the quantized features from the codebook
with the structural information of the latent representation to
avoid structural distortion of the image.

Subsequently, we explore the effectiveness of VQGAN
trained on high-quality images for the reconstruction of de-
graded images at night. As shown in Figure 3 bottom, the
restoration image is unable to recover to normal illumination
due to the inconsistent illumination of the input image and
the training set of VQGAN. Moreover, we found that VQ-
GAN further deteriorates blurred textures and produces arti-
facts. This was attributed to the difficulty of the network in
matching the correct VQ codebook features, which resulted
in the inability of VQGAN under high-quality image train-
ing to recover from low illumination and blur. Therefore, we
design an adaptive illumination enhancement module and a
deformable bi-directional cross-attention for the mentioned
low light and blur problems respectively.

Adaptive Illumination Enhancement
Based on the previous observations and analysis, we design
an Adaptive Illumination Enhancement Module (AIEM) to
solve the problem of illumination inconsistency between the
quantized features and the latent features obtained from the
encoder, as shown in Figure 2. This module consists of two
parts: Hierarchical Information Extraction (HIE) and Illumi-
nation Mutual Attention Enhancement (IMAE).
Hierarchical Information Extraction: Local lighting, such
as light sources, is often observed in night-time environ-
ments. However global operation often over- or under-
enhances these local regions. Thus, we employ channel at-
tention and large kernel convolution attention to extract spa-
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Figure 4: The architecture of Illumination Mutual Attention
Convolution (IMAConv).

tial information at different hierarchies. Specifically, HIE
first employs layer normalization to stabilize the training and
then performs spatial information fusion of different recep-
tive fields. A residual shortcut is used to facilitate training
convergence. Following the normalization layer, the point-
wise convolution and the 3 × 3 depth-wise convolution are
used to capture spatially invariant features. Then, three par-
allel operators are used to aggregate channel and spatial in-
formation. The first operator uses SimpleGate (2022b) to ap-
ply non-linear activation on spatially invariant features. The
second operator is channel attention (2018b) to modulate the
feature channels. The third one is the large kernel convolu-
tion attention (2022) to handle spatial features. The three
branches output feature maps of the same size. Point-wise
multiplication is used to fuse the diverse feature from the
three branches directly. Finally, the output features are ad-
justed by point-wise convolution.
Illumination Mutual Attention Enhancement: According
to the hierarchical information of different receptive fields
obtained from the HIE, IMAE first utilize layer normaliza-
tion to stabilize the training, and then illumination enhance-
ment was applied to the features. Specifically, we design the
novel illumination mutual attention convolution (IMAConv)
that uses the dependencies between feature channels to esti-
mate the curve parameters and thus adjust the illumination of
the features. Two point-wise convolutions are used to adjust
the input and output features of IMAConv. Residual connec-
tions are used to facilitate training convergence.
Illumination Mutual Attention Convolution: Considering
that the illumination variation is similar between feature
channels, we inspired by Zero-DCE (2020) introduce curve
estimation and channel mutual mapping to propose an illu-
mination mutual attention convolution that adjusts the pixel
range of the feature to enhance the illumination, as shown in
Figure 4. Specifically, given the input features of IMAConv
as xf ∈ RCin×Hf×Wf . we first divide x into S parts at a
time along the channel as follows:

x1
f , x

2
f , ..., x

S
f = split(xf ), (3)

where split(·) denotes the split operation. For each part xi
f ∈
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R
Cin
S ×Hf×Wf , we concatenate the channel features exclud-

ing xi
f together as the complimentary to xi, denoted as

x̄i
f . Both xi

f and x̄i
f are passed into the illumination mu-

tual enhanced, which estimates multiple curve parameters
A = {Ai}Ni=1 through the curve estimation network F . Ai

is used to adjust the range of pixel values from the features.
The whole process is formulated as:

A1, A2, ..., An = split(F(x̄i)), (4)

yif = Cn(x
i
f , A1, A2, · · ·An), (5)

where F(·) and Cn(·) denote the curve estimation network
and the high-order curve mapping function. The curve es-
timation network F consists of three convolutional layers
with kernel sizes of 5, 3, and 1, respectively, two activation
functions, and a sigmoid function. For the high-order curve
mapping function Cn, it can be formulated as follows:

Cn(x
i
f ) =

{
A1x

i
f (1− xi

f ) + xi
f , n = 1

An−1Cn−1(x
i
f )(1− Cn−1(x

i
f )) + Cn−1(x

i
f ), n > 1

(6)
After illumination enhancement, for all y1f , y

2
f , ..., y

S
f , we

use a 3 × 3 convolution layer to generate feature zif =

Convi(y
i
f ). Finally, the different features z1f , z

2
f , ..., z

S
f are

concatenated to form the output of IMAConv.

zf = Concat(z1f , z
2
f , ..., z

S
f ), (7)

Deformable Bi-directional Cross-Attention
As previously described and analyzed, the high-quality
quantized features obtained from the codebook are not flaw-
less. The structural warping and textural distortion leads to a
more severe misalignment between high-quality VQ code-
book features and original degraded features. Therefore,
we propose the Deformable Bi-directional Cross-Attention
(DBCA) to fuse high-quality VQ codebook features and de-
graded features.

Unlike the conventional cross-attention method (2021),
our DBCA aims to integrate two different features using a

bi-directional cross-attention mechanism and employs de-
formable convolutions to effectively correct the blurring
degradation in the degraded feature. As shown in Figure
5, given the input decoder D and G features FD and FG,
they are first mapped to corresponding QD = W p

DLN(FD)
and QG = W p

GLN(FG) via normalization and linear lay-
ers. We further utilize linear layers to map these fea-
tures to corresponding values VD and VG. We reshape the
aforementioned QD, QG, VD, and VG into the shape of
(B,C,H ∗W ) and fuse the two features using the following
bi-directional cross-attention formula:

AD = Softmax(QDQT
G/

√
C)VD, (8)

AG = Softmax(QDQT
G/

√
C)VG, (9)

F o
D = γDAG + FD, (10)

F o
G = γGAD + FG, (11)

where Softmax(·) denotes the softmax function. AD and AG

respectively represent the attention maps for feature D and
feature G. γD and γG are trainable channel-wise scales and
initialized with zeros for stabilizing training.

To better fuse the high-quality codebook prior feature into
the degraded feature, we first generate an offset by concate-
nating the two output features. Then, we use the generated
offset in the deformable convolution to distort the texture
feature and effectively remove the blurry degradation, which
can be formalized as follows:

offset = LKConv(Concat(F o
D, F o

G)), (12)
Fout = DeformConv(F o

D, offset), (13)
where LKConv(·) and DeformConv(·) denote the 7×7 con-
volution and the deformable convolution, respectively.

Training Objectives of VQCNIR
The training objective of VQCNIR comprises four compo-
nents: (1) pixel reconstruction loss Lpix that minimizes the
distance between the outputs and the ground truth; (2) code
alignment loss Lca enforces the codes of the night images to
be aligned with the corresponding ground truth; (3) percep-
tual loss Lper which operates in the feature space, aims to
enhance the perceptual quality of the restored images; and
(4) adversarial loss Ladv for restoring realistic textures.

Specifically, we adopt the commonly-used L1 loss in the
pixel domain as the reconstruction loss, represented by:

Lpix = ||xh − V QCNIR(xn)||1, (14)
where the xh and xn denote high-quality ground truth and
night image, respectively. To improve the matching perfor-
mance of codes for night images with codes for high-quality
images. We adopt the L2 loss to measure the distance, which
can be formulated as:

Lca = ||ze − zeq ||22, (15)
where ze and zeq are the night image code and the ground
truth code, respectively. The total training objective is the
combination of the above losses:
LV QCNIR = λpixLpix + λcaLca + λperLper + λadvLadv,

(16)
where λpix, λca, λper, and λadv denote the scale factors of
each loss function, respectively.
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Method PSNR↑ SSIM↑ LPIPS↓
Zero-DCE → MIMO 17.68 0.542 0.510
LLFlow → Restormer 21.50 0.746 0.357
LLFlow → Uformer 21.51 0.750 0.350
MIMO → Zero-DCE 17.52 0.570 0.498
Restormer → LLFlow 21.89 0.772 0.347
Uformer → LLFlow 21.63 0.758 0.342
KinD++∗ 21.26 0.753 0.359
DeblurGAN-v2∗ 22.30 0.745 0.356
DMPHN∗ 22.20 0.817 0.301
MIMO∗ 22.41 0.835 0.262
Restormer∗ 23.63 0.841 0.247
LLFlow∗ 24.48 0.846 0.235
LEDNet∗ 25.74 0.850 0.224
Ours 27.79 0.875 0.096

Table 1: Quantitative evaluation on the LOL-Blur dataset.
The symbol ∗ indicates the network is retrained on the LOL-
Blur dataset. The best and second-best values are indicated
with Bold text and Underlined text respectively.

Experiments
Dataset and Training Details
We train our VQCNIR network on the LOL-Blur dataset
(2022), which consists of 170 sequences (10,200 pairs) of
training data and 30 sequences (1,800 pairs) of test data. We
use random rotations of 90, 180, 270, random flips, and ran-
dom cropping to 256 × 256 size for the augmented train-
ing data. We train our network using Adam (2014) opti-
mizer with β1=0.9, β2=0.99 for a total of 500k iterations.
The mini-batch size is set to 8. The initial learning rate is set
to 1× 10−4 and adopts the MultiStepLR to adjust the learn-
ing rate progressively. We empirically set λpix, λca, λper,
and λadv to {1, 1, 1, 0.1}. All experiments are performed on
a PC equipped with Intel Core i7-13700K CPU, 32G RAM,
and the Nvidia RTX 3090 GPU with CUDA 11.2.

Results on LOL-Blur Dataset
In this section, we compare our proposed VQCNIR quanti-
tatively and qualitatively with all the above methods on the
LOL-Blur test set (2022). We use the two most widely eval-
uated metrics: PSNR and SSIM for a fair evaluation of all
methods. In addition, we employ the LPIPS metric to evalu-
ate the perceptual quality of the restored images.
Quantitative Evaluations. Table 1 shows the quantitative
results of our method and other methods on the LOL-Blur
dataset. As shown, our method outperforms state-of-the-art
LEDNet by 2.05 dB and 0.025 in PSNR and SSIM, respec-
tively. Also, our method demonstrates clear advantages over
existing methods when evaluated by perceptual quality met-
rics. The effectiveness of our method is well evidenced.
Qualitative Evaluations. Figure 6 shows the visual effect of
all the compared methods. As the figure shows, most meth-
ods are ineffective in removing the blurring effect in severely
blurred regions, inevitably introducing artifacts into the re-
stored image. In contrast, our method can effectively recover

Method MUSIQ↑ NRQM ↑ NIQE ↓
RUAS →MIMO 34.39 3.322 6.812
LLFlow → Restormer 34.45 5.341 4.803
LLFlow → Uformer 34.32 5.403 4.941
MIMO → Zero-DCE 28.36 3.697 6.892
Restormer → LLFlow 35.42 5.011 4.982
Uformer → LLFlow 34.89 4.933 5.238
KinD++∗ 31.74 3.854 7.299
DMPHN∗ 35.08 4.470 5.910
MIMO∗ 35.37 5.140 5.910
Restormer∗ 36.65 5.497 5.093
LLFlow∗ 34.87 5.312 5.202
LEDNet 39.11 5.643 4.764
Ours 51.04 7.064 4.599

Table 2: Quantitative evaluation on the Real-LOL-Blur
dataset. The symbol ∗ indicates the network is retrained on
the LOL-Blur dataset. The best and second-best values are
indicated with Bold text and Underlined text respectively.

the correct texture features by using high-quality prior infor-
mation. Therefore, these results provide sufficient evidence
that the codebook prior proposed by our method is particu-
larly suitable for the task of night image restoration.

Results on Real Dataset
To better illustrate the effectiveness of our method in the real
scene, we compare our proposed VQCNIR with the above
method quantitatively and qualitatively under the real Real-
LOL-Blur dataset (2022). Since the real scene lacks a corre-
sponding reference image to evaluate, three non-reference
evaluation metrics were used for the evaluation: MUSIQ
(2021), NRQM (2017), and NIQE (2012). The MUSIQ met-
ric assesses mainly color contrast and sharpness, which is
more appropriate for this task.
Quantitative Evaluations. Table 2 exhibits the quantitative
results of our method and other methods on the Real-LOL-
Blur test set. As shown in Table 2, our method achieves the
highest NIQE and NRQM scores, indicating that the restored
results of our method have better image quality and are con-
sistent with human perception. Moreover, we have the high-
est MUSIQ, which means that our results are the best in
terms of color contrast and sharpness.
Qualitative Evaluations. Figure 7 displays the visual com-
parison results for all evaluated methods. As evident from
the figure, simple cascade deblurring and low-light enhance-
ment techniques can cause issues such as overexposure and
blurring of saturated areas in the image. Even the end-to-end
method of retraining on the LOL-Blur dataset suffers from
undesired severe artifacts and blurring. In contrast, our pro-
posed VQCNIR outperforms these methods in terms of vi-
sual quality, demonstrating fewer artifacts and blurring. This
improvement can be attributed to the successful integration
of a high-quality codebook prior into the network, which as-
sists in generating high-quality textures. The comparison re-
sults of a real-world image further demonstrate the superior-
ity of our proposed method.
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Input LLFlow→Restormer Restormer→LLFlow Uformer→LLFlow MIMO*

Restormer* LLFlow* LEDNet VQCNIR (Ours) Ground Truth

Figure 6: Visual comparison results on the LOL-Blur dataset (2022). The symbol ∗ indicates the network is retrained on the
LOL-Blur dataset. The proposed method produces visually more pleasing results. (Zoom in for the best view)

Input LLFlow→Restormer Restormer→LLFlow Uformer→LLFlow DMPHN*

LEDNet VQCNIR (Ours)MIMO-Unet* LLFlow*Restormer*

Figure 7: Visual comparison on the Real-LOL-Blur dataset (2022). The symbol ∗ indicates the network is retrained on the
LOL-Blur dataset. The proposed method produces visually more pleasing results. (Zoom in for the best view)

Models Configuration LOL-Blur
Decoder D AIEM DBCA PSNR SSIM

VQGAN 10.79 0.3028
Setting 1 ✔ 26.58 0.8486
Setting 2 ✔ ✔ 26.89 0.8599
Setting 3 ✔ ✔ 27.48 0.8692
VQCNIR ✔ ✔ ✔ 27.79 0.8750

Table 3: Ablation studies of different components. We report
the PSNR and SSIM values on the LOL-Blur dataset.

Ablation Study

In this section, we have implemented a series of ablation ex-
periments to better validate the effectiveness of each of our
proposed modules. To verify the effectiveness of our pro-
posed operations, a series of ablation experiments are pre-
sented and the results are shown in Table 3. Initially, we use
the VQGAN as our baseline model. Table 3 shows that VQ-
GAN does not effectively address low light and blur degra-
dation, since VQGAN is a codebook prior learned from
high-quality natural images and is unable to correctly match
degraded features. By designing corresponding parallel de-
coders, the network can then effectively use high-quality pri-

ors to assist in the reconstruction of degraded features. How-
ever, the illumination inconsistency between the degraded
features and the codebook prior can prevent accurate match-
ing of the high-quality prior features, leading to the occur-
rence of artifacts. Furthermore, the degraded features are at
some distance from high-quality features. Therefore, AIEM
and DBCA can be used to effectively improve network per-
formance and image quality.

Conclusion
In this work, we introduce high-quality codebook priors
and propose a new paradigm for night image restoration
called VQCNIR. Through analysis, we discover that directly
applying codebook priors can result in improper match-
ing between degraded features and high-quality codebook
features. To address this, we propose an Adaptive Illumi-
nation Enhancement Module (AIEM) and a Deformable
Bi-directional Cross-Attention (DBCA) module, leverag-
ing estimated illumination curves and bi-directional cross-
attention. By fusing codebook priors and degraded fea-
tures, VQCNIR effectively restores normal illumination and
texture details from night images. Extensive experiments
demonstrate the state-of-the-art performance of our method.
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