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Abstract

Reconstructing 3D objects from extremely sparse views is a
long-standing and challenging problem. While recent tech-
niques employ image diffusion models for generating plausi-
ble images at novel viewpoints or for distilling pre-trained
diffusion priors into 3D representations using score distil-
lation sampling (SDS), these methods often struggle to si-
multaneously achieve high-quality, consistent, and detailed
results for both novel-view synthesis (NVS) and geometry.
In this work, we present Sparse3D, a novel 3D reconstruc-
tion method tailored for sparse view inputs. Our approach
distills robust priors from a multiview-consistent diffusion
model to refine a neural radiance field. Specifically, we em-
ploy a controller that harnesses epipolar features from input
views, guiding a pre-trained diffusion model, such as Stable
Diffusion, to produce novel-view images that maintain 3D
consistency with the input. By tapping into 2D priors from
powerful image diffusion models, our integrated model con-
sistently delivers high-quality results, even when faced with
open-world objects. To address the blurriness introduced by
conventional SDS, we introduce category-score distillation
sampling (C-SDS) to enhance detail. We conduct experiments
on CO3DV2 which is a multi-view dataset of real-world ob-
jects. Both quantitative and qualitative evaluations demon-
strate that our approach outperforms previous state-of-the-art
works on the metrics regarding NVS and geometry recon-
struction.

Introduction
Reconstructing 3D objects from sparse-view images re-
mains a pivotal challenge in the realms of computer graphics
and computer vision. This technique has a wide range of ap-
plications such as Augmented and Virtual Reality (AR/VR).
The advent of the Neural Radiance Field (NeRF) and its sub-
sequent variants has catalyzed significant strides in geome-
try reconstruction and novel-view synthesis, as delineated
in recent studies (Mildenhall et al. 2020; Wang et al. 2021a;
Yariv et al. 2021). However, NeRFs exhibit limitations when
operating on extremely sparse views, specifically with as
few as 2 or 3 images. In these scenarios, the synthesized
novel views often suffer in quality due to the limited input
observations.
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Figure 1: Novel-view synthesis from two input views us-
ing our Sparse3D and SparseFusion. Our approach can
achieve higher-quality images with more details for unseen
instances, especially for the unobserved regions of them
(e.g., the left face of the teddybear). Furthermore, our ap-
proach can generalize to some unseen categories without any
further finetuning, while SparseFusion fails.

Existing methods for sparse-view reconstruction typically
leverage a generalizable NeRF model, pre-trained on multi-
view datasets, to infer 3D representations from projected
image features (Yu et al. 2021; Chibane et al. 2021). How-
ever, these approaches tend to regress to the mean, failing
to produce perceptually sharp outputs, especially in intri-
cate details. To produce plausible results, either in terms
of geometry or appearance, from limited observations, sev-
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eral studies have turned to image generation models, such
as the diffusion model (Rombach et al. 2022), to “imag-
ine” unseen views based on provided images (Chan et al.
2023; Zhou and Tulsiani 2023). For example, Zero123 (Liu
et al. 2023) trains a view-conditioned diffusion model on
a large synthetic dataset and achieves impressive results.
However, their generated images across different views may
not be consistent. Thus, while these view-conditioned dif-
fusion models can produce satisfactory images, their qual-
ity and generalization ability are often constrained by the
scarcity of posed image datasets. Large-scale image dif-
fusion models (Ramesh et al. 2021; Saharia et al. 2022;
Rombach et al. 2022), which are pre-trained on billions of
2D images (Schuhmann et al. 2022), excel in generating
high-quality and diverse images. However, despite the di-
verse, general capability of such models, in 3D reconstruc-
tion tasks, users need to synthesize specific instances that
are coherent with user-provided input images. Even with re-
cent model customization methods (Kumari et al. 2023; Ruiz
et al. 2023; Gal et al. 2022), they prove unwieldy and often
fail to produce the specific concept with sufficient fidelity.
Consequently, the potential of merging the capabilities of
pre-trained large image diffusion models with the viewpoint
and appearance perception of specific instances remains an
open avenue of exploration.

In contrast to directly generating images at novel views,
some recent works explore distilling the priors of pre-trained
diffusion models into a NeRF (neural radiance field) frame-
work. This approach facilitates 3D-consistent novel-view
synthesis and allows for mesh extraction from the NeRF.
Notable works such as DreamFusion (Poole et al. 2023) and
SJC (Wang et al. 2023a) employ score distillation sampling
(SDS) to harness off-the-shelf diffusion models for text-to-
3D generation. However, a persistent challenge with SDS
is the production of blurry and oversaturated outputs, at-
tributed to noisy gradients, which in turn compromises the
quality of NeRF reconstructions.

In this work, we present Sparse3D, a novel 3D recon-
struction approach designed to reconstruct high-fidelity 3D
objects from sparse and posed input views. Our method
hinges on two pivotal components: (1) a diffusion model
that ensures both multiview consistency and fidelity to user-
provided input images while retaining the powerful gener-
alization capabilities of Stable Diffusion (Rombach et al.
2022), and (2) a category-score distillation sampling (C-
SDS) strategy. At its core, we distill the priors from our
fidelity-preserving, multiview-consistent diffusion model
into the NeRF reconstruction using an enhanced category-
score distillation sampling. Specifically, for the multiview-
consistent diffusion model, we propose to utilize an epipolar
controller to guide the off-the-shelf Stable Diffusion model
to generate novel-view images that are 3D consistent with
the content of input images. Notably, by fully harnessing the
2D priors present in Stable Diffusion, our model exhibits ro-
bust generalization capabilities, producing high-quality im-
ages even when confronted with open-world, unseen ob-
jects. To overcome the problem of blurry, oversaturated,
and non-detailed results caused by SDS during NeRF re-
construction, we draw inspiration from VSD (Wang et al.

2023b) and propose a category-score distillation sampling
strategy (C-SDS).

We evaluate Sparse3D on the Common Object in 3D
(CO3DV2) dataset and benchmark it against existing ap-
proaches. The results show that our approach outperforms
state-of-the-art techniques in terms of the quality of both
synthesized novel views and reconstructed geometry. Im-
portantly, Sparse3D exhibits superior generalization capa-
bilities, particularly for object categories not present in the
training domain.

Related Works
Multi-view 3D Reconstruction
Multi-view 3D reconstruction is a long-standing problem
with impressive works such as traditional Structure-from-
Motion (Sf M) (Schönberger and Frahm 2016) or Multi-
view-Stereo (MVS) (Schönberger et al. 2016), and recent
learning based approaches (Yao et al. 2018; Yu and Gao
2020). The success of NeRF (Mildenhall et al. 2020; Müller
et al. 2022) has led to impressive outcomes in novel-view
synthesis and geometric reconstruction. However, these
methods still struggle to produce satisfactory results for ex-
tremely sparse view scenarios. Subsequent works proposed
to use regularization (semantic (Jain, Tancik, and Abbeel
2021), frequency (Yang, Pavone, and Wang 2023), geom-
etry and appearance (Niemeyer et al. 2022)) and geometric
priors (e.g. depth (Deng et al. 2022; Roessle et al. 2022)
or normal (Yu et al. 2022)) but remain to be inadequate for
view generation in unobserved regions, due to the essential
lack of scene priors.

Generalizable Novel-view Synthesis
For generalizable novel-view synthesis using NeRF, some
approaches utilize projected features of the sampling points
in volumetric rendering (Yu et al. 2021; Wang et al. 2021b;
Chibane et al. 2021), or new neural scene representations,
such as Light Field Network (Suhail et al. 2022b,a) or
Scene Representation Transformer (Sajjadi et al. 2022) for
better generalizable novel-view synthesis. Subsequent re-
searches (Kulhánek et al. 2022; Chan et al. 2023; Yoo et al.
2023) propose to further utilize generative models (e.g. VQ-
VAE (van den Oord, Vinyals, and Kavukcuoglu 2017) and
diffusion model (Rombach et al. 2022)) to generate unseen
images. However, these methods didn’t have any 3D-aware
scene priors, which limits their potential applications. In this
paper, we leverage the feature map from a generalizable
renderer to guide a pre-trained diffusion model to generate
multiview-consistent images, and then distill the diffusion
prior into NeRF reconstruction for both novel-view synthe-
sis and geometry reconstruction.

3D Generation with 2D Diffusion Model
Diffusion-denoising probabilistic models have brought a
boom of generation tasks for 2D images and 3D contents in
recent years. Inspired by early works which use CLIP em-
bedding (Jain, Tancik, and Abbeel 2021; Wang et al. 2022;
Jain et al. 2022) or GAN (Pan et al. 2021) to regularize
the NeRF, DreamFusion (Poole et al. 2023) and SJC (Wang
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Figure 2: Overview of Sparse3D. Our approach consists of two key components: a multiview-consistent diffusion model and a
category-score distillation sampling. We utilize epipolar feature map to control the Stable Diffusion model to generate images
consistent with the content of input images, serving as a multiview-consistent diffusion model. Based on such a model, we
propose a category-score distillation sampling (C-SDS) strategy to achieve more detailed results during NeRF reconstruction.

et al. 2023a) propose a score distillation sampling (SDS)
strategy to guide the NeRF optimization for impressive text-
to-3D generation. ProlificDreamer (Wang et al. 2023b) pro-
poses variational score distillation (VSD) for more high-
fidelity and diverse text-to-3D generation. Magic3D (Lin
et al. 2023) improves the 3D generation quality by a two-
stage coarse-to-fine strategy. To generate 3D results con-
sistent with the input image observation, subsequent works
leverage textual-inversion (Melas-Kyriazi et al. 2023) or
denoised-CLIP loss with depth prior (Tang et al. 2023).
When additional geometry prior are available (e.g. point
clouds from Point-E (Nichol et al. 2022)), some works (Seo
et al. 2023; Yu et al. 2023) can produce more 3D consistent
creation. In addition to lifting a pre-trained diffusion model,
Zero123 (Liu et al. 2023), SparseFusion (Zhou and Tul-
siani 2023) and NerfDiff (Gu et al. 2023) train a viewpoint-
conditioned diffusion model and achieve impressive results.
Instead of training a diffusion model or directly lifting a pre-
trained diffusion model, our approach leverages both the ad-
vantages of them to train a multiview-consistent diffusion
model, with a category-score distillation sampling to im-
prove the results of SDS for more details.

Method
Given N input images {In} of an object with corresponding
camera poses {Tn}, where N can be as few as 2, our goal
is to reconstruct a neural radiance field (NeRF), enabling
generalizable novel view synthesis and high-quality surface
reconstruction. To realize this goal, we propose Sparse3D,
which distills a multiview-consistent diffusion model prior
into the NeRF representation of an object, using a category-
score distillation sampling (C-SDS) strategy. Figure 2 shows
the overview of our approach. The multiview-consistent dif-
fusion model extracts epipolar features from sparse input
views and uses a control network to guide the Stable Dif-
fusion model to generate novel-view images that are faithful
to the object shown in the images. A NeRF is then recon-

structed with the guidance of the diffusion model. To over-
come the blurry problem that occurred in SDS, we propose
C-SDS. Benefiting from it, the gradients conditioned on the
category prior maintain the optimization with a tightened re-
gion of the search space, leading to more detailed results. Fi-
nally, our method achieves more consistent and high-quality
results of novel-view synthesis and geometry reconstruction.

Multiview-Consistent Diffusion Model
Our diffusion model consists of a feature renderer, an epipo-
lar controller, and a Stable Diffusion model, where the
epipolar controller and the Stable Diffusion model together
constitute the noise predictor ϵβ , as shown in Figure 3. The
feature renderer gψ takes a set of posed images and view-
point π as input, subsequently outputting an epipolar feature
map fc = gψ(π, I1, ..., In, T1, ..., Tn), which serves as the
input for the epipolar controller. To unify the pre-trained
diffusion model and multiview-consistent perception abil-
ity for a specific object, we draw inspiration from Control-
Net (Zhang and Agrawala 2023). ControlNet enables image
generation controlled by conditional inputs (such as depth
maps). Instead, we use the epipolar feature map to guide
a pre-trained diffusion model to generate images consistent
with the content of input images from various viewpoints.

Feature Renderer. Previous works acquire the feature
map fc through rendering from Triplane (Gu et al. 2023),
3D Volume (Chan et al. 2023) or epipolar feature trans-
former (Zhou and Tulsiani 2023). In this paper, we adapt
epipolar feature transformer (EFT) following (Zhou and
Tulsiani 2023). The EFT, derived from GPNR (Suhail et al.
2022a), learns a network gψ to predict color of given ray r
from input images. The rendering process primarily involves
three transformers, which output attention weights used to
blend colors over input views and epipolar lines for the final
prediction. We implement two modifications to the EFT for
improved results: (1) a mask embedding and a relative cam-
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Figure 3: Multiview-consistent diffusion model. Our
multiview-consistent diffusion model comprises a feature
renderer, an epipolar controller, and a Stable Diffusion
model.

era transformation embedding are concatenated with other
transformer token features. (2) To enhance generalizability
and achieve better geometry awareness, we also obtain the
aggregated color Iagg and depth images Dagg by attention
weights of transformers to compute loss.

Epipolar Controller. Given feature maps fc rendered at
arbitrary viewpoints, we propose to learn an epipolar con-
troller to guide a pre-trained diffusion model to generate
multiview-consistent images with high quality. Our epipolar
controller takes epipolar feature map fc and category text
prompt ct as input, subsequently outputting the latent fea-
tures that are fused with the latent features of Stable Diffu-
sion. Rather than training a new diffusion model, we hope
to retain the rich 2D priors from Stable Diffusion. Conse-
quently, we jointly train our epipolar controller and feature
renderer, while keeping the parameters of Stable Diffusion
fixed. On the one hand, by utilizing the feature map, which
contains implicit information about the appearance of the
specific object and perception of the observation viewpoint,
we can control a pre-trained diffusion model to generate im-
ages consistent with the content of input images from dif-
ferent viewpoints. On the other hand, our diffusion model
inherits the high-quality image generation capabilities from
Stable Diffusion, and the additional category prior in the text
domain can also enhance the multiview consistency. Further-
more, these priors also enable our model to generalize to
open-world unseen categories.

Training. Finally, we jointly train the feature renderer and
the epipolar controller by the following objective function:

L = Lfeat + Ldiff (1)
where Lfeat is the loss for feature renderer and Ldiff is the
loss for epipolar controller.

While the feature map primarily serves as input for the
controller in our pipeline, we also supervise it with color
images and depth images to enhance its perception of ap-
pearance, observation viewpoints, and geometry awareness.
For a query ray r from novel view when given input im-
ages, we decode the color If from the feature map and su-
pervise it using ground-truth color values. Additionally, to

improve generalizability and geometry awareness, we em-
ploy an MSE loss on aggregated color Iagg and depth Dagg.
We formulate the objective function as follows:

Lfeat =
∑
r

||If (r)− I(r)||2 + ||Iagg(r)− I(r)||2

+ ||Dagg(r)−D(r)||2
(2)

where I(r) and D(r) are ground-truth color and depth image
respectively.

The diffusion model learns a conditional noise predictor
to estimate the denoising score by adding Guassian-noise ϵ
to clean data in T timesteps. We minimize the noise predic-
tion error at randomly sampled timestep t. The objective of
the diffusion model conditioned on text prompt ct (we use
the category name as the conditioned text prompt, e.g. “hy-
drant”) and feature map fc is given by:

Ldiff = Eϵ∼N (0,1)||ϵ− ϵβ(zt, t, ct, fc)||2 (3)

where ϵβ is the conditional noise predictor of our diffusion
model.

NeRF Reconstruction with C-SDS
Building on our multiview-consistent diffusion model, we
aim to optimize a neural radiance field (NeRF) parameter-
ized with θ, from which more 3D-consistent novel-view syn-
thesis and underlying explicit geometry can be derived. Then
to overcome the problem of blurry and non-detailed results
in SDS, we propose a category-score distillation sampling
(C-SDS) strategy.

Category-Score Distillation Sampling. We draw inspira-
tion from VSD (Wang et al. 2023b) and propose a C-SDS
for more detailed outcomes as follows:

∇θLC−SDS(θ) ≈ Et,ϵ
[
ω(t) (ϵmc − ϵcat)

∂zt
∂x

∂x

∂θ

]
(4)

where ϵmc = ϵβ(zt, t, ct, fc) is the predicted noise by our
multiview-consistent diffusion model, ϵcat = ϵsd (zt; t, ct)
is the predicted noise by Stable Diffusion conditioned text
prompt of category ct. And ω(t) is a weighting function that
depends on the timestep t.

Instead of employing a Gaussian noise as SDS does, we
replace it with an estimation ϵcat incorporating category
prior from Stable Diffusion. By providing an approximation
of the estimation of the score function of the distribution on
rendering images with category prior, our C-SDS can de-
liver a better gradient with a tightened region of the search
space, resulting in more detailed outputs. SDS relies on high
classifier-free guidance (CFG, i.e. 100) to achieve a better
convergence, but such high CFG may lead to over-saturation
and over-smooth problems (Poole et al. 2023). In our ex-
periment, when using a more multiview-consistent diffusion
model, it can work with a small CFG (i.e. 7.5). However, the
results still suffer from blurry and non-detailed outputs, as
the update gradient is not accurate enough. ProlificDreamer
utilizes a low-rank adaption (LoRA) of a pre-trained diffu-
sion model to estimate the score function of the distribution
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Figure 4: Qualitative comparison of novel-view synthesis when given 2 input views. Our approach achieves both high quality
and more details of novel-view images compared to the others (e.g., the face of the teddybear), whenever with unseen instances
and unseen categories.

on rendered images. We find that it is hard for LoRA to pro-
vide good estimation during our instance-specific optimiza-
tion. Therefore, our proposed C-SDS offers a simple yet ef-
fective way to estimate the score function of the distribution
on rendered images for more detailed results.

One-step Estimation from Diffusion Model. The pre-
dicted noise from the diffusion model can be used not only
in C-SDS but also to estimate its one-step denoising image
without requiring much extra computation:

z1step =
1√
ᾱt

(
zt −

√
1− ᾱtϵβ (zt, t, ct, fc)

)
,

x1step = D(z1step)

(5)

where D is the decoder of Stable Diffusion. We leverage its
one-step estimation to provide an additional regularization
term by using perceptual distance and find that perception
regularization improves the metrics of results. Specifically,
we employ two perceptual losses, which include LPIPS
loss (Zhang et al. 2018) and contextual loss (Mechrez,
Talmi, and Zelnik-Manor 2018) to formulate the perception
regularization from one-step estimation image:

Lperp = λpLlpips(I,x1step) + λcLcontextual(I,x1step) (6)

Reference Supervision. Additionally, we use the refer-
ence input images I with their masks M to encourage a con-
sistent appearance with the input images:

Lref = λr||(Î − I) ∗ M̂ ||22 + λm||M̂ −M ||22 (7)

where Î and M̂ are rendering image and mask, respectively.

Overall Training. We combine all of the losses, includ-
ing LC−SDS,Lperp,Lref, to formulate the objective function
of NeRF reconstruction for a specific object. Once NeRF re-
construction is complete, we can perform volume rendering
for novel-view synthesis, and the underlying mesh can be
extracted using Marching Cubes (Lorensen and Cline 1987).

Experiment
In this section, we conduct a qualitative and quantita-
tive evaluation of our approach on the 3D object dataset,
CO3Dv2 dataset (Reizenstein et al. 2021), to demonstrate its
effectiveness. CO3Dv2 dataset is a real-world dataset, which
contains 51 common object categories. We first show the su-
perior quality of novel-view synthesis and 3D reconstruc-
tion for unseen object instances in category-specific scenar-
ios with varying numbers of input and then out-of-domain
generalization ability for unseen categories.

Implementation details. For the feature renderer, we fol-
low SparseFusion (Zhou and Tulsiani 2023) to use three
groups of transformer encoders with four 256-dimensional
layers to aggregate epipolar features. For the multiview-
consistent model, we adopt the Stable Diffusion model v1.5
as our priors. For NeRF reconstruction, we adapt the three-
studio (Guo et al. 2023), which is a unified framework for
3D content creation from various inputs, to implement the
NeRF reconstruction for specific objects. We set the weights
of the losses with λp = 100, λc = 10, λr = 1000 and
λm = 50. NeRF optimization runs for 10,000 steps, which
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Unseen Instances - 2 views Unseen Instance - 3 views
PSNR SSIM LPIPS FID CLIP DISTS PSNR SSIM LPIPS FID CLIP DISTS

PN 15.33 0.29 0.59 371.23 0.83 0.44 15.50 0.31 0.58 363.68 0.83 0.43
EFT 21.28 0.69 0.34 293.36 0.87 0.33 22.62 0.74 0.29 242.87 0.89 0.30
VF 18.42 0.71 0.29 248.23 0.82 0.29 18.91 0.72 0.28 240.21 0.87 0.29
SF 21.28 0.76 0.23 187.22 0.91 0.26 22.31 0.78 0.22 175.02 0.92 0.24

Ours 20.95 0.77 0.22 147.65 0.93 0.23 22.06 0.79 0.20 134.22 0.94 0.21
Unseen Instances - 6 views Unseen Categories - 2 views

PSNR SSIM LPIPS FID CLIP DISTS PSNR SSIM LPIPS FID CLIP DISTS
PN 15.65 0.33 0.55 344.58 0.85 0.42 14.82 0.31 0.50 314.45 0.81 0.44

EFT 24.47 0.80 0.23 161.78 0.93 0.25 19.31 0.56 0.41 318.64 0.87 0.38
VF 19.77 0.74 0.27 232.30 0.89 0.28 15.43 0.63 0.34 301.19 0.85 0.36
SF 23.69 0.80 0.20 154.20 0.93 0.22 18.83 0.70 0.28 290.45 0.88 0.34

Ours 23.92 0.82 0.18 116.10 0.95 0.19 18.83 0.72 0.23 164.30 0.93 0.26

Table 1: Quantitative comparisons of novel-view synthesis. We evaluate methods on unseen instances with varying numbers of
input images, such as 2, 3, and 6, and on unseen categories with 2 input views. We report the average results across categories
for each block.

SparseFusion Ours GT

Figure 5: Geometry reconstruction using SparseFusion and
Ours. The last column shows the ground-truth point cloud.

takes about 45 minutes on a single 3090 GPU.

Experimental Settings
Dataset. We follow the fewview-train and fewview-dev
splits provided by CO3Dv2 dataset (Reizenstein et al. 2021)
for training and evaluation purposes, respectively. For the
evaluation of unseen object instances within the same cate-
gories, we use the core subset with 10 categories to train the
category-specific diffusion model for each category. To as-
sess the out-of-domain generalization ability on unseen cate-
gories, we select 10 categories for evaluation and use the re-
maining 41 categories together for training. Due to the hour-
long computation time required for our method, we evaluate
only the first 10 object instances of each test split.

Baselines. We compare our approach with previous state-
of-the-art baselines, including PixelNeRF (PN) (Yu et al.
2021), ViewFormer (VF) (Kulhánek et al. 2022), EFT and
SparseFusion (SF) (Zhou and Tulsiani 2023). PixelNeRF
and EFT are regression-based methods that deduce images
at novel view by projection feature, where EFT is adapted
from GPNR for sparse views settings by (Zhou and Tul-
siani 2023). ViewFormer is a generative model that employs
a VQ-VAE codebook and a transformer module for image
generation. SparseFusion is the most relevant baseline to our
approach, as it distills the diffusion model prior into NeRF

Unseen Instances Unseen Categories
CD ↓ F-score ↑ CD ↓ F-score ↑

SF 0.27 0.23 0.37 0.18
Ours 0.21 0.32 0.27 0.28

Table 2: Quantitative comparison of geometry reconstruc-
tion. Since other baselines only produce images at novel
views without 3D representation, we only report the results
of ours and SparseFusion.

reconstruction.

Metrics. We adopt several popular image quality assess-
ments (IQA) to evaluate the quality of novel-view synthe-
sis, including PSNR, SSIM, LPIPS (Zhang et al. 2018),
FID (Heusel et al. 2017) and DISTS (Ding et al. 2022).
Additionally, since our method can generate plausible re-
sults for unobserved regions, the evaluation between them
and GT images may not be fair. Thus, we also adopt CLIP
embedding similarity (Radford et al. 2021) of generated im-
ages with input images. Additionally, we evaluate the most
commonly used 3D reconstruction quality metrics, includ-
ing Chamfer Distance and F-score.

Qualitative and Quantitative Evaluation
Unseen Instances: 2 Views. We first evaluate our ap-
proach with extremely sparse views (i.e. 2 views) for un-
seen object instances within the same categories. Table 1
demonstrates the quantitative comparison of ours and other
baselines, with metrics averaged across 10 categories. Al-
though ours has a slightly lower PSNR compared to the oth-
ers, due to its formulation of pixel-wise MSE which favors
mean color rendering results (e.g., blurry images), our ap-
proach outperforms all of the others in perception metrics
(e.g. LPIPS, FID, etc.). As the qualitative results are shown
in Figure 4, benefiting from two proposed key components,
our approach achieves both high-quality and more detailed
results with 3D consistency. In addition to novel-view syn-
thesis, we evaluate the quality of geometry reconstruction
by extracting underlying mesh from NeRF. We only com-
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Unseen Instances Unseen Categories

(a)

(b)

Figure 6: Effect of Stable Diffusion priors. (a) diffusion
model from SparseFusion; (b) our diffusion model with Sta-
ble Diffusion priors.

pare ours with SparseFusion, while the others lack 3D rep-
resentation. Table 2 shows that our approach significantly
outperforms SparseFusion by a wide margin. Figure 5 also
illustrates the mesh extracted from NeRF, where our results
achieve sharper geometry with more details.

Unseen Instances: Varying Views. It’s obvious that as
the number of input views increases, the results of novel-
view synthesis and geometry reconstruction improve. Ta-
ble 1 shows the comparison of novel-view synthesis on 3 and
6 input views, which demonstrates that our approach con-
sistently outperforms the others with varying input views.
More detailed evaluation results for each category and more
qualitative results of novel-view synthesis and explicit ge-
ometry can be found in supplementary materials.

Unseen Categories. We experiment to evaluate the gener-
alization ability to unseen categories. Table 1 and Table 2
show the quantitative results of novel-view synthesis and
geometry reconstruction. When confronted with the unseen
categories that are out of the training domain, the perfor-
mance of the other methods has a significant drop, while
ours still maintains good performance, achieving the best
results among them. The priors from Stable Diffusion en-
able our diffusion model to faithfully generate images of un-
seen categories. The last two columns of Figure 4 show the
novel-view synthesis of these methods. Our approach still
can achieve high-quality images with more details, while the
others are blurry and somewhat meaningless. More evalu-
ation of unseen categories can be found in supplementary
materials.

Ablation Studies
Stable Diffusion Priors. To evaluate the effect of Sta-
ble Diffusion priors, we compare ours and SparseFusion in
directly generating novel view images without performing
NeRF reconstruction, as shown in Figure 6. In unseen in-
stances scenario, the diffusion model of SparseFusion can
generate images at novel viewpoints consistent with the ap-
pearance of input images in a certain way (e.g. the blue hy-
drant with white head) but fails to achieve high-quality im-
age generation. When the feature map is not reliable in some
views, SparseFusion fails to generate a multiview-consistent

S
D

S
C

-S
D

S

Figure 7: Effect of C-SDS to the quality of NVS from NeRF
reconstruction. We can find the results of SDS are blurry and
non-detailed in unobserved regions, while ours can generate
more details with the same diffusion model.

image (e.g. the bench). However, our diffusion model can
achieve higher-quality image generation. In the unseen cate-
gories scenario, the diffusion model of SparseFusion fails to
generate meaningful images, while our method can be gen-
eralized to these objects (the last two columns in Figure 6).

C-SDS. We also investigate the effect of our distillation
strategy on the quality of NeRF reconstruction, by imple-
menting a version of using SDS. When using our multiview-
consistent diffusion model with SDS, which can provide a
more accurate gradient update direction, there is no need for
a large CFG, but it’s still not enough for detailed results.
In our experiment with setting the CFG value as 7.5, it can
achieve plausible results with successful convergence, but
the blur problem is still unsolved, as shown in the first row
of Figure 7. When applying our proposed C-SDS with the
same CFG, it’s evident that the results show more details,
which demonstrates the effectiveness of the method.

Limitations

The primary failure cases include (1) extremely partial ob-
servation of an object in input views; (2) the Janus problem
and (3) sometimes thin structures or self-occlusion parts.
Furthermore, our approach relies on accurate camera poses,
which can be challenging to estimate directly from ex-
tremely sparse views, resulting in noisy estimates.

Conclusion
In this paper, we introduce Sparse3D, a new approach to
reconstructing high-quality 3D objects from sparse input
views with camera poses. We utilize an epipolar controller
to guide a pre-trained diffusion model to generate high-
quality images that are 3D consistent with the content of
input images, leading to a multiview-consistent diffusion
model. Then, we distill the diffusion priors into NeRF op-
timization in a better way by using a category-score dis-
tillation sampling (C-SDS) strategy, resulting in more de-
tailed results. Experiments demonstrate that our approach
can achieve state-of-the-art results with higher quality and
more details, even when confronted with open-world, un-
seen objects.
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