
Approximation Scheme for Weighted Metric Clustering via Sherali-Adams

Dmitrii Avdiukhin1, Vaggos Chatziafratis2, Konstantin Makarychev1, Grigory Yaroslavtsev3

1Northwestern University, Illinois
2University of California at Santa Cruz, California

3George Mason University, Virginia
dmitrii.avdiukhin@northwestern.edu, vaggos@ucsc.edu, konstantin@northwestern.edu, grigory@gmu.edu

Abstract
Motivated by applications to classification problems on met-
ric data, we study Weighted Metric Clustering problem: given
a metric d over n points, the goal is to find a k-partition
of these points into clusters C1, . . . , Ck, while minimizing∑k

i=1

∑k
j=1

∑
u∈Ci

∑
v∈Cj

Aij duv , where A is a k × k

symmetric matrix with non-negative entries. Specific choices
of A lead to Weighted Metric Clustering capturing well-
studied graph partitioning problems in metric spaces, such as
Min-Uncut, Min-k-Sum, Min-k-Cut, and more.
Our main result is that Weighted Metric Clustering admits
a polynomial-time approximation scheme (PTAS). Our al-
gorithm handles all the above problems using the Sherali-
Adams linear programming relaxation. This subsumes sev-
eral prior works, unifies many of the techniques for various
metric clustering objectives, and yields a PTAS for several
new problems, including metric clustering on manifolds and
a new family of hierarchical clustering objectives. Our exper-
iments on the hierarchical clustering objective show that it
better captures the ground-truth structural information com-
pared to the popular Dasgupta’s objective.

1 Introduction
We introduce and study Weighted Metric Clustering prob-
lem: given n points from an arbitrary metric space (V, d),
we want to find a k-partition of V , i.e. a partition into k
clusters C1, . . . , Ck, where k is assumed to be a fixed con-
stant. Because the quality of clustering may depend on the
application at hand, we allow for a user-defined k × k sym-
metric matrix A with non-negative entries to be part of the
input. Matrix A determines the “cost penalty” for how the k
different clusters interact: if u is assigned to cluster Ci and
v is assigned to cluster Cj , then the pair (u, v) pays Aijduv ,
where the distance between elements u, v is denoted as duv .
Hence, our goal is to minimize the following objective:

COST(C1, . . . , Ck) =
k∑

i=1

k∑
j=1

∑
u∈Ci

∑
v∈Cj

Aijduv. (⋆)

In Weighted Metric Clustering, n is the number of input vari-
ables and k is assumed to be a fixed constant independent of
n. Observe that

∑
u∈Ci

∑
v∈Cj

duv can be thought of as an

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

overall measure of dissimilarity between clusters Ci and Cj ,
which is weighted with Aij in the objective (⋆).

Note that we can interpret our objective (⋆) as a minimiza-
tion valued Constraint Satisfaction Problem (MIN-CSP) on
variables in V and domain D = {1, . . . , k}. In this CSP,
we have a constraint for all pairs of variables. The weight
of the constraint between variables u and v equals the dis-
tance duv . The payoff function for each constraint is defined
by matrix A: namely, the cost of assigning labels i and j to
variables u and v equals Aij . The goal is to find an assign-
ment, i.e. a mapping ℓ : V → D minimizing the total payoff:∑k

i=1

∑k
j=1

∑
u∈V

∑
v∈V Aijduv ·1{ℓ(u) = i; ℓ(v) = j}.

The strength of objective (⋆) lies in the flexibility of
choice of matrix A, allowing it to cover many important
problems.

Metric Min-Uncut (Indyk 1999) This is the complement
of Max-Cut where we want to split into two clusters so as
to minimize the sum of pairwise distances within clusters. If

in (⋆) we set k = 2, A =

[
1 0
0 1

]
, then we pay duv only for

elements u, v that end up in the same cluster.

Metric Min-k-Sum (Bartal, Charikar, and Raz 2001)
Also termed Min-k-Uncut, this is the natural extension of
the previous problem to k clusters, where we want to mini-
mize the sum of distances between pairs of points assigned
to the same cluster. Fixing A = Ik×k to be the k×k identity
matrix yields the problem.

Metric Multiway Cut (Dahlhaus, Johnson, Papadim-
itriou, Seymour, and Yannakakis 1994) We can also
model problems where the cost is based on the separated
u, v pairs. For example, taking A = Jk×k−Ik×k, where J is
the all-ones matrix, yields the Min-k-Cut objective, with the
goal of minimizing the sum of distances among all pairs of
separated points. Min-k-Cut problem additionally requires
that all clusters are non-empty, and one possible approach
is to fix one point per cluster; this variant of the problem,
known as a multiway cut, is MAX SNP-hard (Dahlhaus et al.
1994) even for k = 3. Our algorithms are robust to such
modifications of the objective and provide a PTAS for the
metric case for fixed k.

A related problem is a multicut problem (see e.g. Costa,
Létocart, and Roupin (2005)), where, given a set of k pairs

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

7926

{(si, ti)}ki=1, we need to remove the edges with the smallest
possible weight so that si and ti are disconnected for all i.
For fixed k, similarly to the multiway cut problem, we can
guess clusters for all si and ti.

Metric Clustering on Manifolds Our formulation can
also capture problems where data points reside on a man-
ifold. In this case, the clusters are related (they can form a
chain, a ring, or a grid) and we would like to find a clustering
by grouping adjacent data points. As an example, the chain
topology on four clusters, i.e. C1 − C2 − C3 − C4, can be
represent by matrix

A =

2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2

 ,

indicating that pairs of points in the same cluster pay 2,
pairs in the neighboring clusters pay 1, and pairs in non-
neighboring clusters pay 0. Understanding such problems
on manifolds served as motivation for the original work
by Song, Smola, Gretton, and Borgwardt (2007) that in-
troduced the maximization variant of a special case of (⋆)
called Kernel Clustering. For such problems, to the best of
our knowledge, no approximation was known for the mini-
mization versions and our results provide the first PTAS.

New Application to Metric Hierarchical Clustering To
highlight the versatility of objective (⋆), we present an
application to hierarchical clustering motivated by graph
compression and graph reordering problems in social net-
works (Dhulipala, Kabiljo, Karrer, Ottaviano, Pupyrev, and
Shalita 2016). We introduce a novel family of minimization
objectives over hierarchies which depend on the depth of
the Lowest Common Ancestors (LCA) for pairs of leaves.
In contrast, almost all prior works considered hierarchical
clustering objectives based on the size of the LCA (Dasgupta
2016).

2 Previous Work and Our Results
While there were important works on obtaining PTAS’s for
minimization problems (Indyk 1999; de la Vega, Karpinski,
and Kenyon 2004; de la Vega, Karpinski, Kenyon, and Ra-
bani 2003), it was not a priori clear whether a PTAS for these
problems could exist. This is mainly due to pessimistic hard-
ness results that hold for related minimization problems: for
example, for every k > 2 and ε > 0, the Min-k-Sum prob-
lem cannot be approximated within n2−ε, even for dense
graphs (Kann, Khanna, Lagergren, and Panconesi 1996).
For more background on maximization and MIN-CSPs (Ap-
pendix A).

Surprisingly, we show that every problem within our
Weighted Metric Clustering (⋆) framework admits a PTAS.
As a consequence, this gives alternative PTAS for various
problems, e.g., it subsumes known PTAS results for Met-
ric Min-Uncut (Indyk 1999) and Metric Min-k-Sum (Bartal,
Charikar, and Raz 2001). Furthermore, we give new PTAS’s
for various other problems, since any matrix A gives rise to
a new clustering problem. In particular, our framework gives

the first PTAS for metric minimization version of clustering
on manifolds mentioned above (Song et al. 2007), multiway
cut (Dahlhaus et al. 1994), and multicut (Costa, Létocart,
and Roupin 2005) problems. Furthermore, we give PTAS for
a new family of hierarchical clustering objectives motivated
by graph compression and graph relabeling.

An interesting aspect of our result is that a single algorith-
mic technique based on the Sherali–Adams LP relaxation
can accommodate all problems. Notice that just Min-k-Sum
required a variety of tools (and often ad hoc ideas) to get a
PTAS: for example, the PTAS of Indyk (1999) for k = 2
relied on the already known PTAS for metric Max-Cut, the
first non-trivial approximation of Min-k-Sum (for general
k) relied on metric embeddings into hierarchically separated
trees combined with dynamic programming, and finally, the
PTAS of de la Vega, Karpinski, Kenyon, and Rabani (2003)
used sampling and exhaustive search combined with careful
reassignment of nodes to the k clusters. Our main result can
be seen as a unified method that provides PTAS not only for
Min-k-Sum, but all other metric problems in our framework.

Sherali–Adams. The Sherali-Adams lift-and-project
method (Sherali and Adams 1990) is a powerful technique
for strengthening linear programming relaxations. This
as well as other lift-and-project methods (e.g., by Lovász
and Schrijver (1991)) have been extensively studied in
Computer Science and Operations Research.1 They asked
if Sherali-Adams can be used to improve approximation
guarantees for constraint satisfaction and combinatorial
optimization problems. It turns out, that in many cases,
the answer to this question is negative. Yannakakis (1988)
proved the Traveling Salesman Problem (TSP) cannot be
solved exactly using a symmetric “extended formulation”
of polynomial size and, in particular, by a Sherali-Adams
relaxation of polynomial size. De la Vega and Kenyon-
Mathieu (2007) and Charikar, Makarychev, and Makarychev
(2009a) showed that Sherali-Adams relaxation can not be
used to improve approximation guarantees for many con-
straint satisfaction problems if we do not make additional
assumptions about the structure of the CSP instances (see
also Alekhnovich, Arora, and Tourlakis (2011)).

However, in some cases, Sherali-Adams can be used to
obtain better approximations for MAX-CSPs. In particular,
Yoshida and Zhou (2014) gave a PTAS for dense instances
of MAX-CSPs (but not MIN-CSPs!). For additional ex-
amples of MAX-CSP approximations using Sherali-Adams,
we refer the reader to recent papers by Thapper and Zivny
(2017); Hopkins, Schramm, and Trevisan (2020); Romero,
Wrochna, and Živnỳ (2021); Cohen-Addad, Lee, and New-
man (2022); Mezei, Wrochna, and Živnỳ (2023).

Kernel Clustering Motivated by applications in machine
learning and statistics, Kernel Clustering was proposed
by Song, Smola, Gretton, and Borgwardt (2007) as a broad
family of clustering methods based on the maximization of
dependence between the input variables and their cluster la-
bels. It is a unified framework for various clustering methods

1See the survey by Chlamtac and Tulsiani (2012) for an
overview of results.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

7927

arising from geometric, spectral or statistical considerations,
and it has connections to k-means, clustering under topolog-
ical constraints, and hierarchical clustering. Formally, their
goal is to maximize objective (⋆) under the assumption that
both the distance matrix d and the cost matrix A are positive
semidefinite. On the other hand, while we require d to be a
metric, we don’t require d and A to be positive semidefinite.

Kernel Clustering is a generalization of the positive
semidefinite Grothendieck problem (Nesterov 1998) that
has found many algorithmic applications (Alon and Naor
2004; Charikar and Wirth 2004; Charikar, Makarychev, and
Makarychev 2009b), and has further connections to semidef-
inite programming, non-convex optimization and the Unique
Games Conjecture (Khot and Naor 2008, 2013). Khot and
Naor (2008, 2013) studied Kernel Clustering, presenting
constant factor approximations and hardness results. In our
paper, we show a PTAS for the minimization version of the
problem under metric assumption.

2.1 Main Result
The main question we address here is the following:

What is the best approximation for the Weighted Metric
Clustering objective (⋆)?

Our main result shows that we can get an arbitrary good ap-
proximation.

Theorem 2.1. (Informal) There is a PTAS2 for the Weighted
Metric Clustering objective (⋆).

As a corollary, we get a PTAS not only for all the above-
mentioned problems, but also many more, since any choice
of the matrix A generates a new, different clustering ob-
jective. In particular, with careful choice of A, we provide
PTAS’s for problems where the PTAS’s were not previously
known, such as clustering on manifolds and a family of hier-
archical clustering objectives (Section 3), where each pair of
elements is penalized depending on the depth of their least
common ancestors. We describe the depth-based hierarchi-
cal clustering objectives in Section 3, with additional mo-
tivation based on the Minimum Logarithmic Arrangement
presented in Appendix F, and we empirically demonstrate
the advantage of these objectives in Section 6.

Note that without metric assumption, we cannot have a
PTAS even when k = 3 (Khot and Naor 2013) under
the Unique Games Conjecture, hence it’s remarkable that a
PTAS for the metric minimization version is possible. More-
over, we handle Weighted Metric Clustering using a sin-
gle algorithmic technique via the Sherali–Adams linear pro-
gramming (Sherali and Adams 1990). This subsumes sev-
eral prior works, unifies many of the techniques on various
clustering objectives, and yields PTAS’s for new problems,
including a new family of hierarchical clustering objectives.

Our Techniques While it is already known that the
Sherali–Adams hierarchy can be used to get PTAS’s for

2For a minimization problem, a PTAS is an algorithm that,
given ε > 0 as a parameter, returns a (1 + ε)-approximation to
the optimal value and runs in polynomial time for any constant ε.
For maximization, we seek a (1− ε)-approximation.

CSPs, the naı̈ve approach would result in additive error
terms, which can be acceptable for maximization objectives
but are intolerable for minimization objectives, such as (⋆).
Our algorithm makes Sherali–Adams relaxations applica-
ble to a wide class of minimization objectives and has two
stages: Stage I assigns most of the elements via indepen-
dent rounding and Stage II carefully handles the rest of the
points, which we refer to as outliers. To handle the outliers,
we rely on the second objective LPII, which is optimized si-
multaneously with the Sherali–Adams relaxation LPI; for-
mally, we minimize max(LPI,LPII) and ensure that it is
upper-bounded by OPT. On the other hand, a solution to
LPII simplifies the process of assigning the outliers to the
clusters. See Section 4 for the details.

Practical Algorithm and Experiments In Section 6, we
introduce a practical version of our algorithm based on LPII,
which provides a constant-factor approximation to objec-
tive (⋆). We run our experiments on 104 data points and show
that our hierarchical clustering objective recovers a ground-
truth clustering better compared to the popular Dasgupta’s
objective (Dasgupta 2016).

3 Application to Hierarchical Clustering
We showcase how our general Weighted Metric Clustering
framework (⋆) can be applied to the problem of finding a
hierarchy over clusters rather than a partition. In Hierar-
chical Clustering (HC), given a set of points V , the goal
is to bijectively map the points on the leaves of a tree T .
HC is a very popular method with a wide range of appli-
cations (Leskovec, Rajaraman, and Ullman 2020). Recent
literature (Dasgupta 2016; Moseley and Wang 2017; Cohen-
Addad, Kanade, Mallmann-Trenn, and Mathieu 2019) intro-
duces a number of HC objectives where, for the hierarchical
tree T , each pair of elements (u, v) is penalized based on
the number of leaves under the Lowest Common Ancestor
(LCA) of u and v in T , denoted as LCAT (u, v) (for liter-
ature review, see Appendix F). Instead of using the number
of leaves under the LCA, here we propose an optimization
objective for HC where the penalty term is defined based on
the depth of the LCA. For a node v ∈ T , let h(v) denote
the depth of v in the tree, defined as the number of edges on
the shortest path from the root to v (e.g. h(r) = 0 if r is the
root node). Our goal is to minimize the following over all
possible binary trees T :

H(T) =
∑

u,v∈V

duv h(LCAT (u, v)) (Depth-HC)

Here d is a metric, and we shall note that HC has been exten-
sively studied for metric spaces (Agarwala, Bafna, Farach,
Paterson, and Thorup 1998; Ailon and Charikar 2005; Das-
gupta and Long 2005). Objective Depth-HC captures the fact
that it is better to separate the distant points early in the hier-
archical structure, i.e. h(LCAT (u, v)) should be small when
duv is large. For HC, we show the following result (proof in
Appendix F).

Theorem 3.1. For any metric d, there exists a PTAS for min-
imizing the objective Depth-HC.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

7928

In order to map the HC objective to Weighted Metric
Clustering (⋆), we must appropriately choose matrix A. The
main idea is to show that it suffices to recover the tree up to
the depth log(1/ε) and build random trees on deeper levels.
Let T◦ be a full binary tree T◦ of depth log(1/ε), and we as-
sociate the k = 1/ε leaves ℓ1, . . . , ℓk of T◦ with correspond-
ing clusters C1, . . . , Ck. For different clusters Ci and Cj , we
define Aij as the depth of their LCA, i.e. h(LCAT◦(ℓi, ℓj)).

Depth-based objectives are useful in Graph Compression
and Vertex Reordering problems (Raghavan and Garcia-
Molina 2003; Boldi and Vigna 2004; Chierichetti et al.
2009; Dhulipala et al. 2016), where the goal is to find
space-efficient labeling schemes for the nodes in the graph.
Roughly speaking, the depth h(LCAT (i, j)) corresponds to
the bits needed to represent a vertex in the graph, and, ex-
ploiting the fact that similar nodes tend to have similar sets
of neighbors, one can significantly reduce the bit-complexity
of the graph representation. A more in-depth discussion and
the proof of Theorem 3.1 are deferred to Appendix F.

Extensions. We note that our result for objective Depth-
HC in Theorem 3.1 also holds for more general cost
functions than the hierarchical clustering objective Depth-
HC specified above. For example, instead of the depth
of the lowest-common ancestor, h(LCAT (i, j)), we could
also penalize according to the logarithm of the depth,
i.e. log h(LCAT (i, j)), or the square of the depth, i.e.
h2(LCAT (i, j)); our algorithms and proofs would still guar-
antee a PTAS in these cases. In fact, any function which de-
pends on the depth subexponentially works. For the formal
statement regarding the more general hierarchical clustering
objectives, see Appendix F.

4 Sherali–Adams and Local Probability
Distributions

Our (1 + ε)-approximation algorithm for Weighted Met-
ric Clustering uses a Sherali–Adams relaxation for the
problem. Sherali–Adams (Sherali and Adams 1990) is a
lift-and-project method for strengthening linear program-
ming (LP) relaxations. In this paper, we will use a “local
probability distribution” approach to Sherali–Adams (de la
Vega and Kenyon-Mathieu 2007; Charikar, Makarychev,
and Makarychev 2009a). We also use a method for remov-
ing dependencies between random variables in local dis-
tributions, which was developed by Raghavendra and Tan
(2012) (see also Barak, Raghavendra, and Steurer (2011)
and Yoshida and Zhou (2014)).

We now describe the Sherali–Adams LP relaxation. For
every tuple of points v ∈ V r, where r ≥ 2 is a fixed
integer parameter, we have a set of LP variables that de-
fines a probability distribution of “labels” on v1, . . . , vr. For
every ℓ ∈ {1, . . . , k}r, we introduce a variable Pv

[
v1 ∈

Cℓ1 , . . . , vr ∈ Cℓr

]
. Each of these kr variables (sometimes

called pseudo-probabilities) lies in [0, 1] and represents the
probability that point vi is assigned to cluster Cℓi for all i.3
For every v ∈ V k, the linear programming relaxation has

3Formally, one should think about assigning point vi to Cℓi as
of assigning label ℓi to point vi

the constraint
∑

ℓ∈{1,...,k}r Pv

[
v1 ∈ Cℓ1 , . . . , vr ∈ Cℓr

]
=

1. This constraint ensures that in a feasible LP solution,
every Pv indeed defines a local probability distribution on
points v1, . . . , vr.

We also add a constraint that guarantees that this proba-
bility does not depend on the order of points v1, . . . , vr. For
example, for r = 2, we impose constraint P[a ∈ C1, b ∈
C2] = P[b ∈ C2, a ∈ C1], where a and b are arbitrary points
from V . Specifically, for every permutation σ of {1, . . . , k}:

Pv

[
v1 ∈ Cℓ1 , . . . , vr ∈ Cℓr

]
= Pv

[
vσ(1) ∈ Cℓσ1

, . . . , vσk
∈ Cℓσk

]
.

LP variables Pv

[
v1 ∈ Cℓ1 , . . . , vr ∈ Cℓr

]
prescribe proba-

bilities to elementary events
{
v1 ∈ Cℓ1 , . . . , vr ∈ Cℓr

}
and

thus define probabilities for all events: for E ⊆ {1, . . . , k}r,
we let Pv[v ∈ E] =

∑
ℓ∈E Pv

[
v1 ∈ Cℓ1 , . . . , vr ∈ Cℓr

]
.

In other words, Pv[v ∈ E] is the probability that labels for
v1, . . . , vr drawn from local distribution P are Cℓ1 , . . . , Cℓr
(respectively) with ℓ ∈ E . To avoid ambiguity, we will use a
different notation to denote probabilities associated with our
algorithm. We shall write Pr[v1 ∈ X1, . . . , vr ∈ Xr] to de-
note the probability that points v1, . . . , vr belong to random
sets X1, . . . , Xr chosen by the algorithm.

An important constraint of the Sherali–Adams relaxation
is that all local distributions are locally consistent, as we ex-
plain next. Consider two tuples u and v. Let z be the set of
common points in u and v. Both u and v define marginal
probability distributions on cluster labels for points in z. We
require that these marginal distributions be the same. Specif-
ically, we add a constraint to the linear program that enforces
that label distributions on u and v agree on the intersection
z = u ∩ v. We denote the marginal probability distribution
on every set z of size at most r by Pz. If z consists of one
point u or two points u,v, we write Pu and Puv , respectively.

We stress that even though all local distributions P are
locally consistent, generally speaking, there is no global dis-
tribution of cluster labels that is consistent with all local dis-
tributions. We also note that the size of the Sherali–Adams is
exponential in r, since the number of variables equals nr ·kr.
Thus, if we want to solve a Sherali–Adams relaxation in
polynomial time, the parameter r must be a constant.

When each variable in a solution to the Sherali–Adams
relaxation is equal to 0 or 1, we call the solution integral.
An integral solution corresponds to an actual clustering in
which u belongs to Ci if and only if Pu[u ∈ Ci] = 1. More-
over, Pv

[
v1 ∈ Cℓ1 , . . . , vr ∈ Cℓr

]
= 1 if and only if v1 ∈

Cℓ1 ,. . . , vr ∈ Cℓr . That is, Pv [v1 ∈ Cℓ1 , . . . , vr ∈ Cℓr] =
1{v1 ∈ Cℓr , . . . , vr ∈ Cℓr}, where 1{E} is the indica-
tor of the event E . We now define the objective function
for our Sherali–Adams relaxation and introduce some addi-
tional constraints. We assume that we know the sizes of the
optimal clusters n1 = |C∗

1 |,. . . , nk = |C∗
k |. We additionally

assume that we know their centers c1 ∈ C∗
1 , . . . , ck ∈ C∗

k
which guarantee 3-approximation (see Lemma B.2). Note
that there are at most O(n2k) combinations of different ci’s
and nj’s, and hence we can try all possibilities. We use Π to
denote the particular choice of ci’s and nj’s and call it the
clustering profile.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

7929

The objective of our linear programming relaxation is the
maximum of LPI and LPII under the constraints above:

minimize LP = max(LPI,LPII), (1)

LPI =
1

2

k∑
i=1

k∑
j=1

∑
u,v∈V

Aij duv Puv

[
u ∈ Ci, v ∈ Cj

]
LPII =

1

3

k∑
i=1

∑
u∈V

FΠ(u, i)Pu

[
u ∈ Ci

]
,

FΠ(u, i) =
k∑

j=1

nj aij duci∧j
, (2)

where i ∧ j is defined as min(i, j). The first objective LPI

is a direct relaxation of the objective function of Weighted
Metric Clustering: in an integral LP solution – when each
Puv

[
u ∈ Ci, v ∈ Cj

]
is 0 or 1 – the value of LPI

equals the cost of the corresponding combinatorial solution
to Weighted Metric Clustering. Consequently, in the opti-
mal integral solution to the problem, LPI = OPT, where
OPT = COST(C∗

1 , . . . , C
∗
k) is the value of the optimal so-

lution.
The second objective LPII is upper bounded by OPT in

the optimal integral solution by Lemma B.2 when ci’s and
nj’s are guessed correctly. This is due to the fact that for any
u ∈ V , i ∈ [k], and the correct guess of ni and ci, ni duci is a
good approximation of

∑
v∈Cj

duv (de la Vega, Karpinski,
Kenyon, and Rabani 2003). Therefore, OPTLPI

≤ OPT
and OPTLPII

≤ OPT, where OPTLPI
and OPTLPII

are
the values of LPI and LPII in the optimal solution to our
linear program.

Intuitively, LPII is used for bounding the error terms in
the analysis and, compared to LPII, has the following ad-
vantages. First, every term involves a single point u (note
that other variables in each term are either guessed or fixed),
and hence it’s easy to optimize. Second, LPII refers to clus-
ter centers instead of clusters themselves, which is impor-
tant for the case when there are multiple equivalent solu-
tions to the original problem, e.g. in the case of Min-Uncut.
In the analysis, we often use triangle inequality to bound
duv ≤ duc + dcv , with the choice of c being crucial. LPII

forces the center for each cluster, which makes the choice of
c clear in each particular case.

Finally, we add capacity constraints to our relaxation,
which are satisfied in the integral solution to Weighted Met-
ric Clustering. For all i ∈ {1, . . . , k}:

∑
u∈V Pu[u ∈ Ci] ≤

ni. These constraints are important since LPII is a good ap-
proximation of (⋆) only if cardinalities are guessed and en-
forced correctly.

4.1 Making Point Distributions Nearly
Independent

We now define nearly independent local distributions and
then describe a procedure MAKEINDEPENDENT that trans-
forms local distributions P obtained by solving the Sherali–
Adams LP relaxation into a nearly independent local distri-
butions P∗. This procedure uses the conditional probability

technique for Sherali–Adams (Raghavendra and Tan 2012).
The main difference between our result and theirs is that
we require that local distributions P∗ (see below) are simul-
taneously nearly independent for k sets D1, . . . , Dk, while
Raghavendra and Tan (2012) obtain a globally uncorrelated
solution which corresponds to the case when we have only
one set A = V . For us, it is crucial to have sets D1, . . . , Dk

in the definition because some sets Di may have size o(n)
(e.g.,

√
n). In that case, the guarantees of the algorithm by

Raghavendra and Tan (2012) are not sufficient for us.
First, we introduce some notation. Denote the distribution

of pairs u and v in which u and v are sampled independently
with distributions Pu and Pv by Pu ⊗ Pv:

(Pu ⊗ Pv)[u ∈ Ci, v ∈ Cj] = Pu[u ∈ Ci] · Pv[v ∈ Cj].

Definition 4.1. Let D1, . . . , Dk be subsets of V . We say
that a family of local probability distributions {P} are (γ, δ)-
nearly independent for sets D1, . . . , Dk if the following con-
dition holds: for every u ∈ V and every j ∈ {1, . . . , k}, for
all but γ fraction of v in Dj , we have ∥Pu⊗Pv−Pu,v∥TV ≤
δ. Equivalently, for all u ∈ V and i ∈ [k], the number of el-
ements v ∈ Dj such that ∥Pu ⊗ Pv − Pu,v∥TV > δ must be
at most γ|Di|. If ∥Pu ⊗ Pv − Pu,v∥TV ≤ δ, we say that u
and v are δ-nearly independent according to Pu,v .

Theorem 4.2. For every δ, γ, η ∈ (0, 1) and integer k > 1,
there exists a randomized polynomial-time procedure that
given a solution P to the Sherali–Adams relaxation with
r ≥ 2+ k log2 k

2δ2γη rounds, outputs a family of local probability
distributions {P∗

u}u and {P∗
uv}uv and exit status (“success”

or “failure”) such that
1. If the algorithm succeeds, then P∗ is (γ, δ)-nearly inde-

pendent.
2. For all u, v ∈ V and i, j ∈ {1, . . . , k},

E [P∗
u[u ∈ Ci]] = Pu[u ∈ Ci]

E [P∗
uv[u ∈ Ci, v ∈ Cj]] = Puv[u ∈ Ci, v ∈ Cj].

3. The algorithm fails with probability at most η.
The goal of algorithm MAKEINDEPENDENT is to build a

(γ, δ)-nearly independent family {P∗} while preserving the
expectation of the LP value. The algorithm builds a sequence
of distributions {P(0)} = {P}, {P(1)}, At iteration t, it
finds a point u violating the (γ, δ)-nearly independence con-
dition, and then conditions local distributions on the event
P(t)[u ∈ Ci] for i drawn from distribution P(t)

u . Loosely
speaking, every time we do the conditioning step, we make
more pairs (u, v) nearly independent. We show that a cer-
tain measure – entropy – decreases with each iteration by
at least a fixed amount, and hence in approximately r steps,
we get nearly independence with the desired parameters. We
provide more details and prove this theorem in Appendix C.

5 Main Algorithm
In this section, we outline our (1 + ε)-approximation algo-
rithm or PTAS (polynomial-time approximation scheme) for
the Weighted Metric Clustering problem. We provide full
details in Appendices D and E. The pseudocode is provided
in Algorithm 1.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

7930

Algorithm 1: PTAS for Weighted Metric Clustering
input : V – set of points, {duv}u,v∈V – pairwise

distances, {Aij}ki,j=1 – inter-cluster costs
1 parameters: r – number of rounds of SA relaxation,

η – outlier probability threshold, δ – fraction of
dependent points, γ – independence threshold

2 Guess cluster centers c1, . . . , ck and sizes n1, . . . , nk

3 Let {P} be the r-round solution to SA relaxation for
Problem (1)

4 Di = {u ∈ V : Pu[u ∈ Ci] ≥ η} for all i
5 {P∗} = MAKEINDEPENDENT({P}, {Di}, δ, γ)
6 // Tentative assignment via
independent rounding

7 for all u ∈ V do
8 Assign u to Ci with probability P∗[u ∈ Ci]

9 // Stage I: Assigning non-outliers
10 if P∗ is (γ, δ)-nearly independent for D1, . . . , Dk

then
11 Xi = Ci ∩Di, O =

⋃
i(Ci \Di)

12 else
13 O = V // Every point is outlier

14 // Stage II: Assigning outliers
15 for all u ∈ O do
16 Assign u to Yi with probability P[u ∈ Ci].
17 return (X1 ∪ Y1, . . . , Xk ∪ Yk)

Algorithm 2:
MAKEINDEPENDENT({P}, {Di}, δ, γ)
input : {P} – r-round solution to SA relaxation,

{Di}ki=1 – candidate sets for each cluster,
δ – fraction of dependent points, γ –
independence threshold

1 Let {P(0)} be {P}
2 for t = 0, 1, . . . , r − 3 do
3 if {P(t)} is (γ, δ)-nearly independent for sets

D1, . . . , Dk (Def. 4.1) then
4 return {P(t)}
5 Let u be a point violating the (γ, δ)-nearly

independence condition.
6 Assign u to Ci with probability P(t)[u ∈ Ci].
7 Let {P(t+1)} be {P(t)} conditioned on u ∈ Ci.

8 return {P(r−2)}

Algorithm Outline In the first step, the algorithm guesses
the cluster centers {ci} and sizes {nj}, which we call the
clustering profile and denote by Π. Note that all choices of
{ci} and {nj} can be enumerated in polynomial time, and
our analysis assumes the correct choice. Then, the algorithm
solves the r-round Sherali–Adams relaxation for Weighted
Metric Clustering (see Section 4) and obtains local distribu-
tions P. For constant r, the size of the relaxation is polyno-
mial in n, and thus it can be solved in polynomial time. We

then assign points to clusters using a two-stage algorithm.
At Stage I, we assign most points to clusters X1, . . . , Xk

and place the remaining points, which we call “outliers”,
in set O. We guarantee that the cost of the partial cluster-
ing X1, . . . , Xk is at most (1 + ε)OPT in expectation and
each point is an outlier with probability at most ηk (see
Lemma D.2 for the formal statement), where η is a small
parameter depending on ε.

At Stage II, we cluster the outliers from set O. For this
purpose, we use a variant of the 3-approximation algorithm,
which we provide in Section B. Since the number of out-
liers is very small, the cost of clustering them is also small
despite the fact that we use a constant factor approximation
for outliers. Finally, we combine the clusterings obtained at
Stage I and Stage II and get a clustering of cost at most
(1 + ε)OPT. The algorithm for clustering outliers is dis-
cussed in Appendix E.

Stage I We now examine the first stage of the algorithm in
more detail. It is inspired by Yoshida and Zhou (2014) and
Raghavendra and Tan (2012). The general idea is to trans-
form the solution for the Sherali–Adams relaxation to a fam-
ily of local distributions {P∗} such that

P∗
uv[u ∈ Ci; v ∈ Cj] ≈ P∗

u[u ∈ Ci] · P∗
v[v ∈ Cj] (3)

for most pairs of points. This can be done using the method
discussed in the previous section. Next, we want to inde-
pendently assign every point u to cluster i with probabil-
ity Pu[u ∈ Ci]. If condition (3) holds for some pair (u, v)
and all i, j, then the expected cost this algorithm pays for
clustering pair (u, v),

∑
ij duv Aij Pu

[
u ∈ Ci] · Pv

[
v ∈

Cj

]
, is approximately equal to the LP cost of this pair,∑

ij duv Aij Puv

[
u ∈ Ci, v ∈ Cj

]
. The problem, however,

is that condition (3) does not hold for all pairs (u, v). Fur-
thermore, it may happen that the algorithm creates a very
expensive small cluster Xi such that for all pairs u, v ∈ Xi

we do not have approximate equality (3). Consequently, the
cost of such a cluster cannot be charged to the LP relaxation.

The discussion above leads to the following idea: let us
make local distributions not only nearly independent for
most pairs (u, v) but nearly independent for each point u
and most v’s in each cluster the algorithm creates. This is
formally stated in Definition 4.1. However, the problem is
that the algorithm does not know in advance what clusters it
is going to produce. So, it uses a proxy for these clusters –
sets of candidate points D1, . . . , Dk. Set Di contains points
that are somewhat likely to be assigned to cluster i.

We now summarize Stage I. First, the algorithm solves
the Sherali–Adams relaxation. Then, it defines sets of can-
didates D1, . . . , Dk, where each Di contains points u for
which P[u ∈ Ci] ≥ η (where η is a small constant depending
on ε). It calls algorithm MAKEINDEPENDENT (described
Section 4.1) with sets D1, . . . , Dk and obtains (γ, δ)-nearly
independent local distributions P∗. Next, it randomly assigns
points to clusters using distribution P∗. To make sure that we
can pay for each created cluster Xi, this cluster needs to be a
subset of the corresponding candidate set Di. Thus, if point
u is assigned to Xi but u is not in Di, we remove u from
Xi and mark u as an outlier. Stage I returns sets X1, . . . , Xk

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

7931

Figure 1: Comparison of the depth-based objec-
tive (Depth-HC) and the Dasgupta’s objective. Data
points correspond to averages over 10 runs, and error bars
correspond to the 10% and 90% quantiles. The experiments
are performed on a single-core Intel Xeon 2.2GHz CPU.

along with the set of outliers O, which are assigned to clus-
ters at Stage II. We can now charge the cost of all pairs (u, v)
that are nearly independent to the LP objective. Using trian-
gle inequalities, we can also bound the cost of all other pairs
(u, v) in V \O. We provide all details in Appendix D.

Stage II At Stage II, we assign outliers to clusters. Our ap-
proach to dealing with outliers is somewhat similar to the ap-
proach introduced by Makarychev, Makarychev, and Razen-
shteyn (2019). As discussed above, the number of outliers
is small, which is one of the main reasons why their assign-
ment does not significantly change the objective. The out-
liers are assigned using independent rounding based on P
(instead of P∗ for non-outliers). In Theorem E.3, we analyze
the cost of assigning outliers to clusters. Putting everything
together, we prove that our algorithm provides a PTAS.

Theorem 5.1. For δ = γ = η2ε
9 and r = 2 + k log2 k

2δ2γη , Al-
gorithm 1 finds clustering with the expected objective value
within (1+ ε)-factor of OPT with probability at least 1− η

for any η ≤ ε2

90k2 .

6 Experiments
In this section, we perform experiments on the hierarchical
clustering objective (Depth-HC) defined in Section 3:

H(T) =
∑

u,v∈V

duv h(LCAT (u, v))

For our experiments, we use a simplified version of the algo-
rithm, based on the LPII relaxation from Section 4, which
achieves 3-approximation (Appendix B):

k∑
i=1

k∑
j=1

∑
u∈V

nj Aij duci∧j
Pu

[
u ∈ Ci

]
,

where n1, . . . , nk are cluster cardinalities and c1, . . . , ck are
cluster centers. This objective can be optimized efficiently
as an instance of a minimum-cost flow problem, while pre-
cisely satisfying the imposed cardinality constraints. We run
the algorithm multiple times with different guesses of {ni}
and {ci}, and, since the guesses might be not precise, we
improve the resulting solution using local search.

Datasets We perform evaluation on various hierarchical
datasets. In this section, we present experiments on random
subsamples (of sizes 102, 103, and 104) of a well-known
20 NEWSGROUPS dataset (Lang 1995), and in Appendix G
we present additional experiments on ZEBRAFISH (Wagner
et al. 2018), CIFAR-10 (Krizhevsky and Hinton 2009), and
other datasets. The inputs in 20 NEWSGROUPS are text doc-
uments, which we transform to the Euclidean vectors using
a pre-trained language model (see Appendix G for details).
Finally, we use the ground-truth hierarchical structure to ob-
tain a flat clustering based on the top-level split.

Objectives We compare the following objectives:
• Depth-based objective (Depth-HC). Based on the algo-

rithm from Section 3, we approximate the objective by
building a hierarchical tree up to a certain level and build-
ing random trees on the resulting clusters. We select the
level ℓ so that the number of clusters 2ℓ is close to the
number of ground-truth clusters.

• Dasgupta’s objective (Dasgupta 2016), defined as∑
u<v w(u, v) |LCAT (u, v)|, where w is the similarity

between items. We convert distances to similarities using
the standard RBF kernel: w(x, y) = exp

(
−∥x−y∥2

2

)
.

We optimize Dasgupta’s objective using recursive Min-
Cut (Chatziafratis et al. 2020), for which we use
METIS (Karypis and Kumar 1995).

Evaluation and Results We evaluate how well the above
objectives recover the ground-truth clustering information
using the dendrogram purity objective:

DP (T) =
1∑m

i=1 |Ci|2
m∑
i=1

∑
u,v∈Ci

|Ci ∩ LCAT (u, v)|
|LCAT (u, v)|

,

where C1, . . . , Cm are the ground-truth clusters. Intuitively,
this objective measures how well-separated are the ground-
truth clusters in the tree.

Figure 1 shows that (Depth-HC) objective achieves signif-
icantly better dendrogram purity compared with Dasgupta’s
objective. Moreover, the complexity of our algorithm is no-
ticeably slower, and, with the increase in the number of data
points, the gap in quality increases, exceeding the factor of
two for 104 points. To conclude, these experiments demon-
strate the usefulness of our hierarchical objective as well as
the existence of efficient approaches for its optimization.

We provide additional experiments in Appendix G.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

7932

Acknowledgements
Konstantin Makarychev is supported by the NSF Awards
CCF-1955351, CCF-1934931, and EECS-2216970.

References
Agarwala, R.; Bafna, V.; Farach, M.; Paterson, M.; and Tho-
rup, M. 1998. On the approximability of numerical taxon-
omy (fitting distances by tree metrics). SIAM Journal on
Computing, 28(3): 1073–1085.
Ailon, N.; and Alon, N. 2007. Hardness of fully dense prob-
lems. Information and Computation, 205(8): 1117–1129.
Ailon, N.; and Charikar, M. 2005. Fitting tree metrics:
Hierarchical clustering and phylogeny. In 46th Annual
IEEE Symposium on Foundations of Computer Science
(FOCS’05), 73–82. IEEE.
Alekhnovich, M.; Arora, S.; and Tourlakis, I. 2011. Towards
strong nonapproximability results in the Lovász-Schrijver
hierarchy. computational complexity, 20: 615–648.
Alon, N.; Azar, Y.; and Vainstein, D. 2020. Hierarchical
clustering: A 0.585 revenue approximation. In Conference
on Learning Theory, 153–162. PMLR.
Alon, N.; de la Vega, W. F.; Kannan, R.; and Karpinski, M.
2002. Random sampling and approximation of MAX-CSP
problems. In Proceedings of the thiry-fourth annual ACM
symposium on Theory of computing, 232–239.
Alon, N.; and Naor, A. 2004. Approximating the cut-norm
via Grothendieck’s inequality. In Proceedings of the 36th
annual ACM symposium on Theory of computing, 72–80.
Arora, S.; Karger, D. R.; and Karpinski, M. 1999. Polyno-
mial Time Approximation Schemes for Dense Instances of
NP-Hard Problems. J. Comput. Syst. Sci., 58(1): 193–210.
Bansal, N.; Blum, A.; and Chawla, S. 2004. Correlation
clustering. Machine learning, 56(1): 89–113.
Barak, B.; Raghavendra, P.; and Steurer, D. 2011. Round-
ing semidefinite programming hierarchies via global corre-
lation. In 2011 IEEE 52nd Annual Symposium on Founda-
tions of Computer Science, 472–481. IEEE.
Bartal, Y.; Charikar, M.; and Raz, D. 2001. Approximating
min-sum k-clustering in metric spaces. In Proceedings of
the thirty-third annual ACM symposium on Theory of com-
puting, 11–20.
Bazgan, C.; de la Vega, W. F.; and Karpinski, M. 2003.
Polynomial time approximation schemes for dense instances
of minimum constraint satisfaction. Random Struct. Algo-
rithms, 23(1): 73–91.
Boldi, P.; and Vigna, S. 2004. The webgraph framework I:
compression techniques. In Proceedings of the 13th inter-
national conference on World Wide Web, 595–602.
Charikar, M.; and Chatziafratis, V. 2017. Approximate hier-
archical clustering via sparsest cut and spreading metrics. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, 841–854. SIAM.
Charikar, M.; Guruswami, V.; and Wirth, A. 2005. Cluster-
ing with qualitative information. Journal of Computer and
System Sciences, 71(3): 360–383.

Charikar, M.; Hajiaghayi, M. T.; Karloff, H.; and Rao, S.
2010. ℓ22 spreading metrics for vertex ordering problems.
Algorithmica, 56(4): 577–604.
Charikar, M.; Makarychev, K.; and Makarychev, Y. 2009a.
Integrality gaps for Sherali-Adams relaxations. In Proceed-
ings of the forty-first annual ACM symposium on Theory of
computing, 283–292.
Charikar, M.; Makarychev, K.; and Makarychev, Y. 2009b.
Near-optimal algorithms for maximum constraint satisfac-
tion problems. ACM Transactions on Algorithms (TALG),
5(3): 1–14.
Charikar, M.; and Wirth, A. 2004. Maximizing quadratic
programs: Extending Grothendieck’s inequality. In 45th An-
nual IEEE Symposium on Foundations of Computer Science,
54–60. IEEE.
Chatziafratis, V.; Yaroslavtsev, G.; Lee, E.; Makarychev, K.;
Ahmadian, S.; Epasto, A.; and Mahdian, M. 2020. Bisect
and Conquer: Hierarchical Clustering via Max-Uncut Bisec-
tion. In Proceedings of the 33rd International Conference on
Artificial Intelligence and Statistics, 3121–3132. PMLR.
Chierichetti, F.; Kumar, R.; Lattanzi, S.; Mitzenmacher, M.;
Panconesi, A.; and Raghavan, P. 2009. On compressing so-
cial networks. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data
mining, 219–228.
Chlamtac, E.; and Tulsiani, M. 2012. Convex relaxations
and integrality gaps. Handbook on semidefinite, conic and
polynomial optimization, 139–169.
Cohen-Addad, V.; Das, D.; Kipouridis, E.; Parotsidis, N.;
and Thorup, M. 2022. Fitting distances by tree metrics mini-
mizing the total error within a constant factor. In 2021 IEEE
62nd Annual Symposium on Foundations of Computer Sci-
ence (FOCS), 468–479. IEEE.
Cohen-Addad, V.; Kanade, V.; Mallmann-Trenn, F.; and
Mathieu, C. 2019. Hierarchical clustering: Objective func-
tions and algorithms. Journal of the ACM, 66(4): 1–42.
Cohen-Addad, V.; Lee, E.; and Newman, A. 2022. Corre-
lation clustering with sherali-adams. In 2022 IEEE 63rd
Annual Symposium on Foundations of Computer Science
(FOCS), 651–661. IEEE.
Costa, M.-C.; Létocart, L.; and Roupin, F. 2005. Minimal
Multicut and Maximal Integer Multiflow: A Survey. Euro-
pean Journal of Operational Research, 162(1): 55–69.
Dahlhaus, E.; Johnson, D. S.; Papadimitriou, C. H.; Sey-
mour, P. D.; and Yannakakis, M. 1994. The Complexity of
Multiterminal Cuts. SIAM Journal on Computing, 23(4):
864–894.
Dasgupta, S. 2016. A cost function for similarity-based hi-
erarchical clustering. In Proceedings of the forty-eighth an-
nual ACM symposium on Theory of Computing, 118–127.
Dasgupta, S.; and Long, P. M. 2005. Performance guaran-
tees for hierarchical clustering. Journal of Computer and
System Sciences, 70(4): 555–569.
de la Vega, W. F.; Karpinski, M.; and Kenyon, C. 2004. Ap-
proximation schemes for Metric Bisection and partitioning.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

7933

In Proceedings of the Fifteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2004, New Orleans,
Louisiana, USA, January 11-14, 2004, 506–515. SIAM.
de la Vega, W. F.; Karpinski, M.; Kenyon, C.; and Rabani,
Y. 2003. Approximation schemes for clustering problems.
In Proceedings of the thirty-fifth annual ACM symposium on
Theory of computing, 50–58.
de la Vega, W. F.; and Kenyon-Mathieu, C. 2007. Linear
programming relaxations of maxcut. In Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete algo-
rithms, 53–61.
Dhulipala, L.; Kabiljo, I.; Karrer, B.; Ottaviano, G.; Pupyrev,
S.; and Shalita, A. 2016. Compressing graphs and in-
dexes with recursive graph bisection. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, 1535–1544.
Fernandez de la Vega, W. 1996. MAX-CUT has a random-
ized approximation scheme in dense graphs. Random Struc-
tures & Algorithms, 8(3): 187–198.
Frieze, A. M.; and Kannan, R. 1996. The Regularity Lemma
and Approximation Schemes for Dense Problems. In 37th
Annual Symposium on Foundations of Computer Science,
FOCS ’96, Burlington, Vermont, USA, 14-16 October, 1996,
12–20. IEEE Computer Society.
Giotis, I.; and Guruswami, V. 2005. Correlation clustering
with a fixed number of clusters. arXiv preprint cs/0504023.
Håstad, J. 2001. Some optimal inapproximability results.
Journal of the ACM (JACM), 48(4): 798–859.
Hopkins, S. B.; Schramm, T.; and Trevisan, L. 2020. Subex-
ponential LPs approximate max-cut. In 2020 IEEE 61st
Annual Symposium on Foundations of Computer Science
(FOCS), 943–953. IEEE.
Indyk, P. 1999. A Sublinear Time Approximation Scheme
for Clustering in Metric Spaces. In 40th Annual Symposium
on Foundations of Computer Science, 154–159.
Kann, V.; Khanna, S.; Lagergren, J.; and Panconesi, A. 1996.
On the Hardness of Approximating Max k-Cut and Its Dual.
In Israeli Symposium on Theoretical Computer Science.
Karypis, G.; and Kumar, V. 1995. Metis-Unstructured Graph
Partitioning and Sparse Matrix Ordering System, Version
2.0. University of Minnesota.
Khot, S. 2002. On the power of unique 2-prover 1-round
games. In Proceedings of the thiry-fourth annual ACM sym-
posium on Theory of computing, 767–775.
Khot, S.; and Naor, A. 2008. Approximate Kernel Cluster-
ing. In 2008 49th Annual IEEE Symposium on Foundations
of Computer Science, 561–570. IEEE Computer Society.
Khot, S.; and Naor, A. 2013. Sharp kernel clustering algo-
rithms and their associated Grothendieck inequalities. Ran-
dom Structures & Algorithms, 42(3): 269–300.
Krizhevsky, A.; and Hinton, G. 2009. Learning Multiple
Layers of Features from Tiny Images.
Lang, K. 1995. NewsWeeder: Learning to Filter Netnews. In
Machine Learning Proceedings 1995, 331–339. San Fran-
cisco (CA): Morgan Kaufmann. ISBN 978-1-55860-377-6.

Leskovec, J.; Rajaraman, A.; and Ullman, J. D. 2020. Min-
ing of massive data sets. Cambridge university press.
Lovász, L.; and Schrijver, A. 1991. Cones of Matrices and
Set-Functions and 0–1 Optimization. SIAM Journal on Op-
timization, 1(2): 166–190.
Makarychev, K.; Makarychev, Y.; and Razenshteyn, I. 2019.
Performance of Johnson-Lindenstrauss Transform for k-
Means and k-Medians Clustering. In Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing,
1027–1038. Association for Computing Machinery.
Mezei, B. F.; Wrochna, M.; and Živnỳ, S. 2023. PTAS for
sparse general-valued CSPs. ACM Transactions on Algo-
rithms, 19(2): 1–31.
Moseley, B.; Vassilvtiskii, S.; and Wang, Y. 2021. Hierar-
chical clustering in general metric spaces using approximate
nearest neighbors. In International Conference on Artificial
Intelligence and Statistics, 2440–2448. PMLR.
Moseley, B.; and Wang, J. 2017. Approximation Bounds
for Hierarchical Clustering: Average Linkage, Bisecting K-
means, and Local Search. In Advances in Neural Informa-
tion Processing Systems, volume 30. Curran Associates, Inc.
Nesterov, Y. 1998. Semidefinite relaxation and nonconvex
quadratic optimization. Optimization methods and software,
9(1-3): 141–160.
Raghavan, S.; and Garcia-Molina, H. 2003. Representing
web graphs. In Proceedings 19th International Conference
on Data Engineering, 405–416. IEEE.
Raghavendra, P.; and Tan, N. 2012. Approximating CSPs
with global cardinality constraints using SDP hierarchies. In
Proceedings of the 33rd annual ACM-SIAM symposium on
Discrete Algorithms, 373–387. SIAM.
Romero, M.; Wrochna, M.; and Živnỳ, S. 2021. Treewidth-
pliability and PTAS for Max-CSPs. In Proceedings of
the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), 473–483. SIAM.
Sherali, H. D.; and Adams, W. P. 1990. A hierarchy of re-
laxations between the continuous and convex hull represen-
tations for zero-one programming problems. SIAM Journal
on Discrete Mathematics, 3(3): 411–430.
Song, L.; Smola, A.; Gretton, A.; and Borgwardt, K. M.
2007. A dependence maximization view of clustering. In
Proceedings of the 24th international conference on Ma-
chine learning, 815–822.
Thapper, J.; and Zivny, S. 2017. The power of Sherali–
Adams relaxations for general-valued CSPs. SIAM Journal
on Computing, 46(4): 1241–1279.
Wagner, D. E.; Weinreb, C.; Collins, Z. M.; Briggs, J. A.;
Megason, S. G.; and Klein, A. M. 2018. Single-Cell Map-
ping of Gene Expression Landscapes and Lineage in the Ze-
brafish Embryo. Science, 360(6392): 981–987.
Yannakakis, M. 1988. Expressing combinatorial optimiza-
tion problems by linear programs. In Proceedings of the 20th
annual ACM symposium on Theory of computing, 223–228.
Yoshida, Y.; and Zhou, Y. 2014. Approximation schemes
via Sherali-Adams hierarchy for dense constraint satisfac-
tion problems and assignment problems. In Innovations in
Theoretical Computer Science, 2014, 423–438. ACM.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

7934

