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Abstract
This paper proposes SAT-based techniques to calculate a spe-
cific normal form of a given finite mathematical structure
(model). The normal form is obtained by permuting the do-
main elements so that the representation of the structure is
lexicographically smallest possible. Such a normal form is
of interest to mathematicians as it enables easy cataloging of
algebraic structures. In particular, two structures are isomor-
phic precisely when their normal forms are the same. This
form is also natural to inspect as mathematicians have been
using it routinely for many decades.
We develop a novel approach where a SAT solver is used in a
black-box fashion to compute the smallest representative. The
approach constructs the representative gradually and searches
the space of possible isomorphisms, requiring a small num-
ber of variables. However, the approach may lead to a large
number of SAT calls and therefore we devise propagation
techniques to reduce this number. The paper focuses on fi-
nite structures with a single binary operation (encompassing
groups, semigroups, etc.). However, the approach is general-
izable to arbitrary finite structures. We provide an implemen-
tation of the proposed algorithm and evaluate it on a variety
of algebraic structures.

Introduction
Finite model finding of first-order or higher-order logic has
a long-standing tradition in automated reasoning. A num-
ber of techniques have been researched in SAT (Claessen
and Sörensson 2003), constraint programming (Audemard,
Benhamou, and Henocque 2006; Zhang 1996; Zhang and
Zhang 1995), or SMT (Reynolds et al. 2013a,b). In theo-
rem proving and software verification, finite models are typ-
ically used to identify incorrectly stated theorems. In com-
putational algebra, mathematicians use finite model finding
to study fundamental algebraic structures.

This paper does not focus on calculating specific models
but on providing a normal form for a given model. This is
one of the most prevalent problems in mathematics, i.e., as-
signing a canonical representative to an equivalence class.
For example, the canonical form of a rational fraction is the
quotient with the common prime factors removed (reduced
fraction); Jordan’s canonical form for matrices assigns a ma-
trix to an equivalence class of similar matrices; there are
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ways of assigning a canonical form to a graph so that any
two are isomorphic if and only if their canonical forms are
the same, etc. But helping with decision problems is just
one of the applications of canonical forms. When we want
to enumerate all structures of a given type (e.g., all triangu-
lated 3-manifolds) up to some size (e.g., on 11 vertices (Lutz
2008, 2009)), it suffices to generate the canonical forms and
ignore all the rest. These are just a few examples as the ap-
plications of canonical forms are countless, including appli-
cations to topics as far as chemistry (Weininger, Weininger,
and Weininger 1989; Schneider, Sayle, and Landrum 2015).
The key feature of canonical systems of representatives is
that two objects belong to the same equivalence class if and
only if their canonical forms are equal.

A largely widespread technique to assign canonical forms
to mathematical objects is to associate each object in the
class with a vector and then order all the vectors lexico-
graphically: the canonical object will be the object with
the smallest vector. We will call this the lexicographically
smallest representative, lexmin for short. In constraint pro-
gramming literature, a related term lex-leader is defined,
cf. Walsh (2012); Peter et al. (2014). Lexmin for graphs is
also extensively studied in the literature, cf. Babai and Luks
(1983); Crawford et al. (1996).

In computational algebra, this idea naturally translates to
concatenating the rows of a multiplication table into a sin-
gle vector. This canonical form was used as early as 1955
to calculate all the distinct1 semigroups of order 4. More re-
cently, Jipsen maintains an online database of a variety of
mathematical structures stored as lexmin (Jipsen 2016), the
GAP package Smallsemi enables calculating lexmin semi-
groups (Distler and Mitchell 2022).

Figure 1 shows a motivating example of a possible mul-
tiplication table for an operation ∗ together with its lexico-
graphically smallest representative ⋄. It is relatively easy for
a human to detect that ∗ is a quasigroup (aka Latin square),
however, further properties are harder to see. In contrast, the
multiplication table of ⋄ is much easier to comprehend—
we see that the operation corresponds to addition modulo 7,
which is in fact the unique group of order 7 (the cyclic group
Z7).

1Two semigroups are distinct if they cannot be mapped to one
another by an isomorphism or by an anti-isomorphism.
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∗ 1 2 3 4 5 6 7
1 7 5 6 1 4 2 3
2 5 3 1 2 6 7 4
3 6 1 5 3 7 4 2
4 1 2 3 4 5 6 7
5 4 6 7 5 2 3 1
6 2 7 4 6 3 1 5
7 3 4 2 7 1 5 6

⋄ 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 2 3 4 5 6 7 1
3 3 4 5 6 7 1 2
4 4 5 6 7 1 2 3
5 5 6 7 1 2 3 4
6 6 7 1 2 3 4 5
7 7 1 2 3 4 5 6

Figure 1: (D, ∗) and its lexmin (D, ⋄) for D = {1..7}.

Developing efficient algorithms for calculating the lexmin
form is paramount in the field of computational algebra:

• It enables presenting a concrete algebra in a familiar way
to researchers.

• Computational algebra systems, such as GAP (GAP4),
contain a large number of packages for handling alge-
bras for specific forms and lexmin provides a uniform
exchange format between these packages.

• Lexmin provides a uniform way of storing and recall-
ing algebras. The form is especially interesting for prefix
trees (tries) since inherently, many algebras will share the
same prefix in the lexmin form.

This paper presents the following contributions.

• We develop a SAT-based algorithm that enables calculat-
ing the normal form on the fly, rather than working with
explicit representation of the target normal form.

• We design a variety of propagation techniques that enable
avoiding SAT calls in a large number of cases, which has
proven indispensable in many real-world problems.

• We provide a prototype implementation of the proposed
algorithm, using state-of-the-art SAT solvers in a black
box fashion. This prototype is evaluated on a number of
algebras that mathematicians deal with on daily basis.

Preliminaries
Throughout the paper we focus on finite mathematical struc-
tures with a single binary operation, hereafter referred to as
magmas (the term groupoid is also used in the literature). For
instance, any finite group or semigroup is a magma. Magmas
are denoted by a pair (D, ◦) where D is the domain and ◦ a
binary operation on D. We rely on the well-established term
of isomorphism.

Definition 1 (isomorphism). A bijection f : D1 → D2 is an
isomorphism from a magma (D1, ∗) to (D2, ⋄) if f(a∗ b) =
f(a) ⋄ f(b), for all a, b ∈ D1. Two magmas are isomorphic
iff there exists at least one isomorphism between them.

Throughout the paper, we consider a finite domain D =
{1, . . . , n} for n ∈ N+. The goal is to obtain the lexico-
graphically smallest (D, ⋄) isomorphic to the given (D, ∗).
Definition 2 (⪯). Define a total order ⪯ on magmas on
domain D as follows. For magmas A = (D, ∗) and B =
(D, ⋄), we have A ⪯ B iff 1∗1, 1∗2, . . . , 1∗n, 2∗1, . . . , n∗n
is lexicographically smaller or equal to 1 ⋄ 1, 1 ⋄ 2, . . . , 1 ⋄
n, 2 ⋄ 1, . . . , n ⋄ n.

Definition 3 (LEXMIN). For magma A = (D, ∗), magma
B = (D, ⋄) is the lexicographically smallest representative
(lexmin) of A iff B is the⪯-least element among all magmas
(D, ⋄′) isomorphic to A. The LEXMIN problem is finding
the lexicographically smallest representative of A.

In several cases we rely on the notion of an idempotent,
which is invariant under isomorphism.

Definition 4 (idempotent). For a magma (D, ∗), an element
a ∈ D is an idempotent iff a ∗ a = a.

Observation 5. Let A = (D1, ∗) and B = (D2, ⋄) be iso-
morphic magmas under some isomorphism f , and let a be
an idempotent of A, then f(a) is an idempotent of B.

Example 6. This example shows a multiplication table for
a small magma (D, ∗) with D = {1, 2} together with an ex-
tensive representation as a set of assignments. On the right-
hand side, we see its lexicographically smallest representa-
tive ⋄. The corresponding isomorphism swaps 1 and 2, i.e.,
f(1) = 2, f(2) = 1, alternatively represented as a permuta-
tion in the cyclic notation (1 2).

∗ 1 2
1 1 2
2 2 2

1 ∗ 1 = 1
1 ∗ 2 = 2
2 ∗ 1 = 2
2 ∗ 2 = 2

2 ⋄ 2 = 2
2 ⋄ 1 = 1
1 ⋄ 2 = 1
1 ⋄ 1 = 1

⋄ 1 2
1 1 1
2 1 2

Note that the isomorphism not only changes the contents
of the table but also permutes rows and columns. In this ex-
ample, to obtain ⋄ from ∗ means swapping rows 1 and 2,
columns 1 and 2, and values 1 and 2 in the table.

Example 6 also illustrates that properties based on equal-
ity are preserved: both tables contain a row with all elements
distinct, have 2 idempotents, etc. This is a more general
property, which we state here informally.2

Observation 7. Any property of A = (D, ⋄) that does not
rely on the names of elements of D is preserved in all iso-
morphic copies of A.

Note that in the small Example 6, there is a unique iso-
morphism from the input magma to its lexmin but in gen-
eral, there may be many—despite the fact that the lexmin is
unique. We conclude the preliminaries by relating isomor-
phism to lexicographic representatives.

Observation 8. Magmas A = (D, ∗) and B = (D, ⋄) are
isomorphic iff their lexicographically smallest representa-
tives are equal.

The isomorphism problem for finite magmas is graph-
isomorphism-hard (GI-hard) even if we consider only semi-
groups (Zemljachenko, Korneenko, and Tyshkevich 1982).
Further, deciding whether an incidence matrix of a graph is
lexmin is NP-hard (Babai and Luks 1983), despite the fact
that GI is believed to be easier than NP. Therefore, we do
not expect the LEXMIN problem for general magmas to be
computationally easy.

2More precisely, a set S defined by an FOL formula in a magma
A corresponds to the set f(A) in B for an isomorphism f from A
to B, cf. Theorem 1.1.10 in (Marker 2002).
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Explicit Encoding
A straightforward approach to the lexmin problem is to en-
code to SAT that a target (unknown) magma (D, ⋄) is iso-
morphic to a given magma (D, ∗). Then, we can apply stan-
dard algorithms for finding the lexicographically smallest
magma (D, ⋄), cf. (Nadel and Ryvchin 2016; Trentin 2019;
Petkovska et al. 2016; Marques-Silva et al. 2011).

Effectively, (D, ⋄) is represented in 1-hot encoding. First
represent an isomorphism f : D → D by introducing
Boolean variables xi→j meaning that f(i) = j for i, j ∈ D.
Second, introduce additional Boolean variables xi,j:v mean-
ing that i ⋄ j = v.

To ensure that the xi→j variables represent a bijection,
generate cardinality constraints (converted to CNF by stan-
dard means (Roussel and Manquinho 2021)).

X(D) :={∑
j∈D

xj→i =
∑

j∈D
xi→j = 1 | i ∈ D

} (1)

To ensure that xi,j:v represent an isomorphic (D, ⋄),
generate implications covering possible mappings between
rows, columns, and values.

(xr→r′ ∧ xc→c′ ∧ xr∗c→v′)⇒ xr′,c′:v′ ,
for r, r′, c, c′, v′ ∈ D

(2)

Note that for row r and column c, the value r ∗ c is given.
An advantage is that we can easily apply any bitlevel lex-

icographic optimization algorithms over the vector of vari-
ables representing the magma (D, ⋄), in the following or-
der x1,1:n, x1,1:n−1, . . . , x1,1:1, x1,2:n, . . . , xn,n:1. A signif-
icant disadvantage is the sheer size of the encoding, which
involves Θ(|D|5) clauses. Therefore we propose a solution
where the explicit representation of (D, ⋄) is not necessary.

Gradual Construction
Instead of introducing variables for the unknown (D, ⋄), we
construct it gradually starting from its top-left corner, con-
tinuing by filling the first row and then the second, and so
on. Here we avail of the concept of isomorphic copy, which
is a magma induced by an isomorphism.
Definition 9 (isomorphic copy). Consider a magma (D1, ∗)
and a bijection f : D1 → D2 then the isomorphic copy
(D2, ⋄)f is defined as a⋄b = f(f−1(a)∗f−1(b)). In the re-
mainder of the paper, we omit the subscript f from (D2, ⋄)f ,
whenever it is clear from the context that f is present.

The intuition behind an isomorphic copy is that to obtain
the value a⋄b, we first obtain the pre-images of a and b, then
apply the (known) operation ∗ to the pre-images in the con-
text of (D1, ∗), and finally map the result back to (D2, ⋄).
This is well-defined because f is a bijection.
Observation 10. Magmas A = (D1, ∗) and B = (D2, ⋄)
are isomorphic iff there exists a bijection f : D1 → D2 such
that B is an isomorphic copy of A by f : D1 → D2.

To construct (D2, ⋄), we will need to encode the con-
straints of the shape r ⋄ c = v, e.g., 1 ⋄ 1 = 1 means plac-
ing 1 in the top left corner of the multiplication table. Since

Algorithm 1: Calculate lexmin (D, ⋄) for given
(D, ∗) by gradual construction.
A← ∅ // empty set of assignments
for r, c ∈ 1..|D|, 1..|D| do

v ← 1
while ¬SAT(X(D) ∪ enc(A ∪ {r ⋄ c = v})) do

v ← v + 1
A← A ∪ {r ⋄ c = v} // extend A

(D, ⋄) must be an isomorphic copy of (D, ∗), the constraint
r ⋄ c = v can be written as follows:

f(f−1(r) ∗ f−1(c)) = v, (3)

where f is an unknown permutation of D. As in the previous
encoding, we encode f as Boolean variables xi→j coupled
with the appropriate cardinality constraints (see (1)). The
equality (3) yields a set of implications covering all possi-
ble values of f .3

enc(r ⋄ c = v) :=

{(xi→r ∧ xj→c)⇒ xi∗j→v | i, j ∈ D} (4)

Algorithm 1 shows how the lexmin representative is cal-
culated by maintaining a set of equalities A of the form
r ⋄ c = v for which we already know that they must hold
in the multiplication table of (D, ⋄) (this is a loop invariant
of the outer loop). The inner loop attempts to extend the set
of assignments A for the next cell of the multiplication table
going from 1 to higher values. The call to the function enc
conjoins the encoding of the assignments according to the
equation (4) along with the bijection constraints (1).

The algorithm first tries placing 1 in the top left corner and
if that is possible it moves onto the next column. Otherwise,
it tries placing 2 in the top left corner, and so forth. Once it
succeeds in placing a value in a cell, the value is fixed. The
algorithm leads to O(|D|3) SAT calls. The permutation f ,
represented by the Boolean variables xi→j , spans all permu-
tations and therefore enables the creation of any isomorphic
copy of (D, ∗) on the domain D. This also justifies termina-
tion of the inner loop because one of the SAT calls is bound
to succeed since the set of isomorphic copies is always
nonempty—it, for instance, contains the input magma itself.
Since |A| ∈ O(|D|2) and (4) requires O(|D|2) clauses, Al-
gorithm 1 requires space for O(|D|4) clauses.

Efficiency Improvements
Algorithm 1 faces two major pitfalls: a high number of SAT
calls, and hard individual SAT calls. The upper bound of
O(|D|3) on SAT calls in Algorithm 1 is tight. For instance,
for quasigroups (aka Latin squares) it is also Ω(|D|3).4 The
second issue, where an individual SAT call might be too
hard, is potentially even more worrisome.

3The implementation avoids repeated and tautologous clauses.
4Each row of a quasigroup contains all the elements of D, there-

fore each row requires n(n−1)
2

SAT calls as v calls are needed for
a cell containing the value v.
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Indeed, we have a reason to believe that some SAT calls
will be hard due to an underlying pigeonhole principle. For
instance, if the original magma (D, ∗) does not contain any
element more than k-times on any given row, the same must
hold for the target magma (D, ⋄). Then, for the SAT solver
to prove that it cannot place an element for the k+1-th time
on the same row is indeed reminiscent of the pigeonhole
principle formulas, which are well known to be difficult for
SAT (and resolution in general) (Haken 1985; de Rezende
et al. 2020). Such hard SAT calls could get the Algorithm 1
simply stuck on a single cell.

Here we focus on designing new propagation techniques
that let us bypass calls to the SAT solver in specific sce-
narios. We focus mainly on techniques that rely on count-
ing because that is a famous Achilles’ heel for modern SAT
solvers. We begin with a technique that enables in some
cases identifying the first row.

Identification of the First Row
Recall that any row r of the original magma (D, ∗) must be
projected to some row r′ = f(r) in the target magma. Here
we show that in certain cases it is possible to identify pos-
sible candidates that might be mapped to the first row, i.e.,
we construct a set C1 ⊆ D, s.t. f(a) = 1 only if a ∈ C1.
This is encoded into the SAT solver as a set of unit clauses:
{{¬xa→1} | a /∈ C1} before Algorithm 1 starts.

Suppose that 4 ∗ x = 4, for all x ∈ D, i.e., the 4th row
is entirely filled with 4’s. If 4 is renamed to 1, i.e., pick an
isomorphic copy with f(4) = 1, the first row of ⋄ becomes
all 1’s, i.e., lexicographically smallest first row possible. We
generalize this idea to find candidates for the first row of ⋄.
Definition 11. Let A = (D, ∗) be a magma with some
idempotents. The idempotent apex of A is the largest value
of |{x ∈ D | e ∗ x = e}|, for e ∈ D idempotent of A.

Possible rows that can be mapped to the first row are ob-
tained by calculating for each row r of ∗ that contains an
idempotent, how many times r appears in it, i.e., or := |{c ∈
D | r ∗ c = r}|, if r ∗ r = r. We claim that only a row
that maximizes this number can become the first row in the
smallest representative ⋄, i.e., f(r) = 1 implies or is the
apex of the input magma. If the input magma does not con-
tain any idempotents, this technique is not applied. Note that
in the example of Figure 1 only row 4 contains an idempo-
tent and therefore it necessarily must become the first one.

We proceed with the correctness proof of this statement.
For succinctness we introduce the following notation. We
write [(D, ∗)] for the set of isomorphic copies (D, ⋄) iso-
morphic to (D, ∗). We write ↓ (D, ∗) for the lexicograph-
ically smallest representative according to the ordering ≺r

(by-rows). We write 1 ⋄ {1, . . . , k} = {1} as a shorthand for
1 ⋄ i = i, for i ∈ 1..k, which effectively means that the first
k columns of the first row of ⋄ are equal to 1.

Proposition 12. Let A = (D, ∗) be a magma with idem-
potents and idempotent apex k. Let Mk := {(M, ⋄) ∈
[(D, ∗)] | 1 ⋄ {1, . . . , k} = {1}}. Then

1. Mk ̸= ∅;
2. ↓(D, ∗) ∈Mk.

Proof. Let e ∈ D such that e ∗ e = e and D0 := {x ∈
D | e ∗ x = e} has size k. Pick g, a permutation of D, such
that g(D0) = {1, . . . , k} and g(e) = 1. Define on D the
following operation: x ⋄ y := g(g−1(x) ∗ g−1(y)), for all
x, y ∈ D. For all x ∈ {1, . . . , k}, we have

1 ⋄ x = g(g−1(1) ∗ g−1(x)) = g(e ∗ g−1(x)) = g(e),

because g−1(x) ∈ D0 and e ∗ a = e, for all a ∈ D0. It
is proved that 1 ⋄ x = g(e) = 1, for all x ∈ {1, . . . , k}. In
addition, x⋄y := g(g−1(x)∗g−1(y)) implies that (replacing
x with g(x) and y with g(y)) g(x) ⋄ g(y) = g(g−1(g(x)) ∗
g−1(g(y))) = g(x∗y). It is proved that g is an isomorphism
of the magmas (D, ⋄) and (D, ∗). Therefore (D, ⋄) ∈ Mk.
The first claim follows.

Regarding the second claim, suppose that (D,×) is a
lexmin of (D, ∗). Since Mk is not empty, we must have
1 × j = 1 for all j in 1, . . . , i and some i ≥ k. Since
the idempotent apex is preserved by isomorphism (see Ob-
servation 7), we have i ≤ k. Hence i = k and (D,×) is
in Mk.

Budgeting
Next, we describe a technique that is invoked for every SAT
call of Algorithm 1. Roughly speaking, each element a ∈ D
is assigned a budget, which is decremented whenever a is
placed in the target table. SAT calls r ⋄ c = v with val-
ues v that have 0 budget are not invoked (and deemed un-
satisfiable). We consider budgets per row/column or for the
whole table. In the context of constraint programming, sim-
ilar propagation techniques are abundantly used for global
constraints (Peter et al. 2014, Chapter 3).

For intuition, consider a situation where each row of the
multiplication table of ∗ contains at most one occurrence of
any given element (as in the example Figure 1). Then the
same property will hold in the rows of ⋄ by Observation 7.
This means that if Algorithm 1 has placed an element a in
a certain row, it does not need to try placing it in the same
row again. This enables the algorithm to skip SAT calls on
values that are no longer possible (in that row).

This idea is readily generalized to an arbitrary number of
occurrences. Define o∗(r, a) = |{c | r ∗ c = a, c ∈ D}| and
calculate max{o∗(r, a) | r, a ∈ D} to give a budget for an
arbitrary element in an arbitrary row of (D, ⋄). The same can
be applied to columns and the total number of occurrences
in the table. This is especially useful for quasigroups, where
each element appears precisely once in each row/column.

The budget calculated as described above is an upper
bound, which can sometimes be improved. Consider the case
when the first row was uniquely identified by the technique
outlined in the previous section. Then we have established
that f(k) = 1 for some k ∈ D, for any f yielding the lexmin
copy. This enables splitting budgets for the element 1 and the
rest of the elements according to the following equalities.

max{o∗(r, k) | r ∈ D} = max{o⋄(r, 1) | r ∈ D} (5)
max{o∗(r, a) | a ̸= k ∧ r, a ∈ D} =

max{o⋄(r, 1) | a ̸= 1 ∧ r, a ∈ D} (6)
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Row Invariants
As shown above, the budgeting technique can benefit from
knowing which element has been mapped to the first row.
More generally, once it is established that f(k) = j, for
some k, j ∈ D, it must hold that the number of occurrences
of k in (D, ∗) will be equal to the number of occurrences of
j in the copy (D, ⋄). But how to establish such correspon-
dence? Note that the variables xi→j determine the permuta-
tion on the elements of D but this permutation may change
over the course of the algorithm.

From the definition of isomorphic copy (Definition 9), the
contents of a row of the original table of (D, ∗) must corre-
spond to the contents of some row of the table of (D, ⋄).
More precisely, the bag of elements [r ∗ c | c ∈ D] is equal
to the bag of elements [f(r) ⋄ c | c ∈ D]. In some cases,
this lets us unequivocally identify that a row r in the orig-
inal magma maps to a row r′ in the isomorphic copy. This
is done by calculating invariants (properties invariant under
isomorphism) and matching pairs of rows with unique in-
variants. Currently, we use the following invariants bundled
into a single one. Similar invariants have been used before
for isomorphism testing (Araújo, Chow, and Janota 2021,
2022; Nagy and Vojtěchovský 2018).

• |{r ◦ c = c | c ∈ D}|, for fixed r ∈ D and ◦ ∈ {∗, ⋄}
• |{r ◦ c = r | c ∈ D}|, for fixed r ∈ D and ◦ ∈ {∗, ⋄}
• |{r ◦ r = r}|, for fixed r ∈ D and ◦ ∈ {∗, ⋄}
• define gr(a) = r◦a and mr(a) as minimal k s.t. gk∗ (a) =
gj∗(a) for some j < k. Take the bag [mr(c) | c ∈ D] as
invariant, for fixed r and ◦ ∈ {∗, ⋄}.

For the example in Figure 1, only row 4 has 7 columns c
s.t. 4 ∗ c = c and m4(c) = 1. The invariants are used in
Algorithm 1 as follows. Each time a row r of (D, ⋄) is en-
tirely filled, its invariant is calculated and if there is a unique
row r′ in the input table (D, ∗) with the same invariant, set
f(r′) = r, add the corresponding unit clause {xr′→r} and
recalculate budgets.

We also exploit invariants even if they do not give us a
unique correspondence of rows. In the case that an invari-
ant is shared by k rows in ∗ and it already appears k times
in the partially filled copy ⋄, subsequent rows will never be
mapped to the ones that gave rise to the invariant in ques-
tion. More concretely, if there is a set of rows R ⊆ D with
|R| = k that correspond to a certain invariant I and the in-
variant I already appears k times in the first r rows of ⋄ then
for f(r′) ̸= j for j ∈ R and r′ > r. In the implementa-
tion, corresponding unit clauses are inserted into the SAT
encoding once that takes place. We remark the same tech-
nique could be applied to columns but it would not be useful
since columns are never complete until the very end.

Mid-Row Budgeting Refinement
The techniques described in the previous section enable re-
fining budgets after a row of the target table is filled. Here we
also show that this can be done mid-row. We propose a cheap
technique that is easy to implement where we split the rows
of ∗ into rows containing an idempotent and into rows that
do not. Note that row r contains an idempotent iff r ∗ r = r.

This lets us calculate three types of budgets: (1) for all rows
of ∗; (2) for rows of ∗ containing an idempotent; (3) for rows
of ∗ not containing an idempotent.

When Algorithm 1 starts filling a row r, it does not know
in which group the row falls and therefore starts with the
global budget. Once the rth position is filled, the budget can
be refined accordingly. In the row-based traversal, in the first
row, the refinement happens once the top left corner has been
filled (the first column of the first row).

Upper Bound by Last Value
A simple improvement is obtained by inspecting the model
obtained from satisfiable SAT calls. Even though Algo-
rithm 1 only imposes assignments to the table ⋄ for those
cells that have been traversed so far, any SAT model repre-
sents a permutation for all the elements in the domain D,
from which one can infer the rest of the table of ⋄. The re-
mainder (untraversed) of the table does not necessarily guar-
antee that it is lexicographically smallest but it gives us an
upper bound. This means that for each cell (r, c) ∈ D ×D
there is always a tentative value vu for which we already
have a witnessing permutation. This lets us avoid the SAT
call for the query r⋄c = v for any v ≥ vu. This upper bound
is also used in different search strategies described in the up-
coming section. We remark that an analogous technique has
also been used for explicit representation-based calculation
of lexicographically smallest SAT assignment (Knuth 2015).

Search Strategies
Algorithm 1 performs |D| tests for a single cell of the table
⋄ in the worst case. It is tempting to apply standard tech-
niques for minimization, such as binary search. However,
these are not directly applicable because the behavior is not
monotone, e.g., it might be possible to place 3 and 7 in a
specific cell, but not 5. Nevertheless, monotone behavior can
be obtained by constructing SAT queries over a disjunction
of values. Hence, instead of querying r ⋄ c = v, we query∨

v∈V r⋄c = v over some set of V ⊆ D. In terms of the SAT
encoding, one could calculate a disjunction over the encod-
ing for a single value (equation (4)) but we are able to avail
of the common part and r ⋄ c ∈ V is encoded as follows.

{(xi→r ∧ xj→c)⇒
∨

v∈V
xi∗j→v, | i, j ∈ D} (7)

This approach has monotone behavior in the sense that if
r⋄c ∈ V is satisfiable then also r⋄c ∈ V ′ is satisfied for any
V ⊆ V ′. This enables us to use standard MaxSAT iterative
techniques, where the basic Algorithm 1 is in fact a linear
UNSAT-SAT strategy. Additionally, taking into account val-
ues obtained from satisfiability calls enables improving the
upper bound for linear SAT-UNSAT or binary search.

In our experiments, standard binary search did not per-
form well because it still requires Ω(log2 |D|) SAT calls to
prove an optimum. Therefore we apply a modified binary
search where first we test if the optimum has not already
been reached. In the case that the optimum has not been
reached, the upper bound is updated. If the upper bound re-
duced the search space by a factor of 2, we simply recur. If
the upper bound falls into the top half of the possible values,
another SAT call is issued.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8052



Structure Definition in FOL

Groups x ∗ (y ∗ z) = (x ∗ y) ∗ z, x ∗ e = x,
x ∗ e = x, x ∗ x′ = e, x′ ∗ x = e

Loops x∗y = x∗z → y = z, y ∗x = z ∗x→
y = z, e ∗ x = x, x ∗ e = x

Quasigroups x∗y = x∗z → y = z, y ∗x = z ∗x→
y = z

Semigroups x ∗ (y ∗ z) = (x ∗ y) ∗ z
Magmas no requirement

Table 1: FOL definitions of the used algebraic structures.

Experiments

The experiments are run on an Intel® Xeon®CPU E5-2630
v2 2.6 GHz ×24 computer, with 64 Gb RAM. We call our
tool mlex and it supports two SAT solvers, minisat (Eén
and Sörensson 2003) and cadical (Biere 2017). Unless
otherwise stated, minisat is used in our experiments. Both
SAT solvers are used incrementally and cadical is used
via the IPASIR interface (Balyo et al. 2016). We excluded
the Explicit Encoding from the evaluation since it led to un-
wieldy memory consumption (dozens of gigabytes even for
small problems). The GAP package Smallsemi (Distler and
Mitchell 2022) provides a function to calculate lexmin semi-
group, which is not included in the evaluation because the
ordering used traverses the table by the diagonal first and
the implementation suffers from timeouts and large memory
consumption even on small problem instances (order 20).
Hence, the evaluation is based on Algorithm 1 and its exten-
sions described in the Efficiency Improvements section.

The tool was evaluated on several popular algebraic struc-
tures (algebras) defined in Table 1. In this table, “e” is a
constant, “∗” is a binary operation, and “′” unary; all clauses
are implicitly universally quantified. Even though mlex cur-
rently supports only a single binary operation, it can handle
all these algebras. This is because in many finite algebraic
structures, such as those listed here, the constant and the
unary function are uniquely determined by the binary oper-
ation. Hence, they can be removed from the inputs to mlex.

The evaluation was performed on randomly generated
samples from five algebraic structures: groups, loops, gen-
eral magmas, quasigroups, and semigroups. For groups, we
randomly pick the groups given by the AllSmallGroups
function in GAP. For magmas and semigroups, we generate
them with the help of GAP functions such as Random. For
quasigroups and loops, we use the RandomQuasigroup
and RandomLoop functions in the LOOPS package in
GAP. We make sure the models in each structure do not be-
long to a sub-structure in the list above. For example, the
magmas we use are not semigroups or quasigroups. We con-
sider a total of 210 random samples of the five algebraic
structures listed in Table 1, of orders 16 to 128 in incre-
ments of 16. In addition, we include random samples of 5
magmas of each of the orders 192 and 256. Finally, a time-
out of 30 minutes is used for calculating the lexmin copy of
each model.
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Figure 2: Performance of mlex with different options.

Ablation Study of Techniques
We test the introduced techniques in an ablation study. We
consider basic Algorithm 1, a version with all improvements
turned on, and the effect of turning off each one of them indi-
vidually. For search strategies, we compare between linear-
unsat-sat (lus) and modified binary search (bin2).

Figure 2 shows a cactus plot for the ablation study. Al-
though all the techniques lead to an improvement in the
tool, the most significant is the use of budgeting, which con-
firms our suspicion that hard SAT calls might occur due to
counting arguments. Interestingly, the binary search tech-
nique also has a significant impact. Turning off the other
techniques does not have a significant impact on the number
of solved instances. However, there are specific classes of
problems that cannot be solved without using all the tech-
niques. Also, the “all enhancement” version of the solver
appears to be the fastest and the most robust version.

It is well-known that minisat is simple and fast and that
for more complex problems, cadical usually performs
much better (Dutertre 2020). This pattern is also observed
with mlex. As shown in the cactus diagram Figure 3, when
enhancement features are turned on, then for simpler prob-
lems that take a shorter time, minisat usually solves more
problems for the same time, but for more complex problems,
the opposite is true. However, as also shown in the same
diagram, the choice of other input options to mlex has a
much more pronounced impact on the speed of mlex than
the underlying SAT solver, as the curves corresponding to
both SAT-solvers are very close for the same set of input op-
tions. Surprisingly, cadical performs poorly compared to
minisat when all improvements are turned off.

Related Work
Finite model finding is ubiquitous to automated reason-
ing. Sometimes, users are interested in models rather than
in proving a theorem (McCune 1994). In theorem prov-
ing, models serve as counterexamples to invalid conjec-
tures (Blanchette 2010), which also appear in software veri-
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Figure 3: Comparison of minisat and cadical in mlex.

fication (Torlak and Jackson 2007). Finite models have also
been used as a semantic feature for lemma selection learn-
ing (Urban et al. 2008). In certain fragments, finite model
finding provides a complete decision procedure, e.g., the
Bernays-Schönfinkel fragment (EPR). Throughout the years,
CP, SAT, and SMT tools have been used in finite model find-
ers (Audemard, Benhamou, and Henocque 2006; Claessen
and Sörensson 2003; Reynolds et al. 2013a,b; Zhang 1996;
Zhang and Zhang 1995; Araújo, Chow, and Janota 2023).
SAT and CP are routinely used to solve algebraic prob-
lems (Heule 2018; Distler et al. 2012; Janota, Morgado, and
Vojtechovský 2023).

It is important to note that finite models are also con-
structed by dedicated approaches based on deep domain
knowledge. Notably, the algebraic system GAP (GAP4)
contains a number of packages for specific types of alge-
braic structures. The Small Groups library (Besche, Eick,
and O’Brien 2002) contains all (≈ 4× 108) non-isomorphic
groups up to order 2000 (except for order 1024). Similarly,
Smallsemi (Distler and Mitchell 2022) catalogues semi-
groups and LOOPS packages loops (Nagy and Vojtěchovský
2018). However, currently, these packages do not provide
the lexicographically smallest representative. Adding our
tool into GAP is a subject of future work.

Normal forms are ubiquitous in computer science and
mathematics. Here we highlight the canonical labeling al-
gorithms implemented in the nauty system (McKay and
Piperno 2014). The system has been developed since the
80’s and it is considered state-of-the-art for graph isomor-
phism (and more). It is possible to construct a canonical
form of a magma by using nauty: for a magma A, con-
struct a special graph G′

A and find its canonical graph GA,
cf. (Khan 2020). This form is canonical in the sense that two
isomorphic magmas will give the same canonical graph but
the resulting graph is opaque to the user. Hence, it cannot be
used for solving the problem tackled in this paper.

A large body of research exists on symmetry breaking
in SAT and CP (Peter et al. 2014; Sakallah 2021). In gen-
eral, however, the objective of symmetry breaking is differ-

ent from our objective: it is a means speeding up search
by avoiding symmetric parts of the search space. In con-
trast, in our case, the normal form is the objective. Typically,
symmetry breaking is meant to be fast, when used dynam-
ically, or should add a small number of constraints, when
used statically (Codish et al. 2018; Itzhakov and Codish
2020). Therefore, symmetry breaking is often incomplete.
Even though, Heule investigates optimal complete symme-
try breaking for small graphs (≈ 5 vertices) (Heule 2019).
Kirchweger and Szeider (2021) develop a specific symme-
try breaking, called SAT Modulo Symmetries, where a SAT
solver is enhanced to look for the lexicographically smallest
graph (similarly to lazy SMT). There, the objective is to enu-
merate non-isomorphic graphs with certain properties. More
broadly, this paper fits into the SAT+CAS paradigm, where
SAT is combined with computer algebra systems, cf. Bright,
Kotsireas, and Ganesh (2022).

Conclusions and Future Work
This paper tackles the problem of calculating the lexi-
cographically smallest representative of a given algebraic
structure. This is a fundamental problem in computational
algebra, where the user, a mathematician, requires a specific
canonical form. A prominent feature of this canonical form
is that it enables a “common language” between different
mathematical libraries and it enables the mathematicians to
identify familiar patterns and structures.

Our prototype of the proposed algorithms shows that the
SAT technology is up to the task. The proposed encoding
enables tackling large problem instances by avoiding ex-
plicitly representing the target structure. The SAT solver is
used in a black box fashion with repeated SAT calls, which
gradually construct the targeted structure (the lexicographi-
cally minimal representative). We further design a number
of dedicated techniques that enable simplifying, or com-
pletely avoiding, certain SAT calls. The experimental eval-
uation shows that the approach decidedly benefits from this
additional propagation (done outside of the SAT solver).

This work opens a number of avenues for further re-
search. More powerful propagation techniques still could be
considered—such as different invariants and more aggres-
sive and fine-grained propagation. A tighter integration with
the SAT solver and application to structures with several
multiplication tables is more of an engineering effort but
would further increase the practicality of the implemented
tool. Rather than invoking the approach on a given structure,
it would also be interesting to integrate it into the calculation
of non-isomorphic structures under constraints.
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October 8-12, 2012. Proceedings, volume 7514 of Lecture
Notes in Computer Science, 883–899. Springer.

Distler, A.; and Mitchell, J. 2022. Smallsemi - A library of
small semigroups Version 0.6.13. https://www.gap-system.
org/Packages/smallsemi.html. GAP package.

Dutertre, B. 2020. An Empirical Evaluation of SAT Solvers
on Bit-vector Problems. In Bobot, F.; and Weber, T., eds.,
Proceedings of the 18th International Workshop on Satis-
fiability Modulo Theories co-located with the 10th Inter-
national Joint Conference on Automated Reasoning, vol-
ume 2854 of CEUR Workshop Proceedings, 15–25. CEUR-
WS.org.
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P.; and Ziegler, G., eds., Discrete Differential Geometry, vol-
ume 38 of Oberwolfach Seminars. Birkhäuser Basel.
Lutz, F. H. 2009. Isomorphism-free lexicographic enumer-
ation of triangulated surfaces and 3-manifolds. European
Journal of Combinatorics, 30(8): 1965–1979.
Marker, D. 2002. Model Theory: An Introduction. New
York, NY: Springer.
Marques-Silva, J.; Argelich, J.; Graça, A.; and Lynce, I.
2011. Boolean lexicographic optimization: algorithms & ap-
plications. Ann. Math. Artif. Intell., 62(3-4): 317–343.
McCune, W. 1994. A Davis-Putnam program and its ap-
plication to finite first-order model search: Quasigroup exis-
tence problems. Technical report, Argonne National Labo-
ratory.
McKay, B. D.; and Piperno, A. 2014. Practical graph iso-
morphism, II. J. Symb. Comput., 60: 94–112.
Nadel, A.; and Ryvchin, V. 2016. Bit-Vector Optimization.
In Chechik, M.; and Raskin, J., eds., Tools and Algorithms
for the Construction and Analysis of Systems - 22nd Interna-
tional Conference, TACAS 2016, Held as Part of the Euro-
pean Joint Conferences on Theory and Practice of Software,
ETAPS, volume 9636 of Lecture Notes in Computer Science,
851–867. Springer.
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