
Theoretical and Empirical Analysis of Cost-Function Merging for Implicit Hitting
Set WCSP Solving

Javier Larrosa, Conrado Martı́nez, Emma Rollon
Computer Science Department, Universitat Politècnica de Catalunya

{larrosa, conrado, erollon}@cs.upc.edu

Abstract

The Implicit Hitting Set (HS) approach has shown very effec-
tive for MaxSAT solving. However, only preliminary promis-
ing results have been obtained for the very similar Weighted
CSP framework. In this paper we contribute towards both a
better theoretical understanding of the HS approach and a
more effective HS-based solvers for WCSP. First, we bound
the minimum number of iterations of HS thanks to what we
call distinguished cores. Then, we show a source of ineffi-
ciency by introducing two simple problems where HS is un-
feasible. Next, we propose two reformulation methods that
merge cost-functions to overcome the problem. We provide a
theoretical analysis that quantifies the magnitude of the im-
provement of each method with respect to the number of it-
erations of the algorithm. In particular, we show that the re-
formulations can bring an exponential number of iterations
down to a constant number in our working examples. Finally,
we complement our theoretical analysis with two sets of ex-
periments. First, we show that our results are aligned with real
executions. Second, and most importantly, we conduct exper-
iments on typical benchmark problems and show that cost-
function merging may be heuristically applied and it may
accelerate HS algorithms by several orders of magnitude. In
some cases, it even outperforms state-of-the-art solvers.

Introduction
In the Weighted Constraint Satisfaction Problem (WCSP)
framework the goal is to optimize the combined cost of local
cost functions. It includes important problems such as Most
Probable Explanation in probabilistic networks (Dechter
2003; Koller and Friedman 2009) and it has many applica-
tions in resource allocation (Cabon et al. 1999), bioinfor-
matics (Viricel et al. 2018), scheduling (Bensana, Lemaı̂tre,
and Verfaillie 1999), etc. State-of-the-art WCSP solvers in
the last two decades follow a branch-and-bound strategy en-
forcing at each expanded node local consistency properties
that prune unfeasible nodes and provide effective bounds
(Cooper et al. 2010; Larrosa and Schiex 2004; Allouche
et al. 2015).

The MaxSAT problem has much in common with the
WCSP framework. A surprisingly very effective technique
for MaxSAT solving is the so called Implicit Hitting Set

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(HS) approach (Davies and Bacchus 2013; Berg, Bacchus,
and Poole 2020; Bacchus et al. 2018). The HS approach was
adapted from MaxSAT to WCSP in (Delisle and Bacchus
2013) and a simple algorithm, HS-WCSP, showed some
promising preliminary results. Given the similarity between
MaxSAT and WCSP, we believe that it is worth advancing
further towards efficient HS-based WCSP solvers. In partic-
ular, we believe that efficient HS algorithms for WCSP must
take advantage of the more structured language of WCSP
(using cost functions) in contrast to the flatter language of
MaxSAT (using clauses).

What makes WCSPs difficult in practice is that differ-
ent cost functions often disagree on which assignments are
likely to be good. For example, there are many optimization
problems where the objective function is made of two con-
flicting components (e.g: risk vs benefit in finances, perfor-
mance vs robustness in design,...) so optimal solutions cor-
responds to the best trade-off. Thus, one can think of WCSP
solutions in general as those assignments that make complex
trade-offs among many conflicting cost-functions. In HS al-
gorithms, this phenomenon causes the discovery of many
cores that are identical except for a portion that is differ-
ent but represents (roughly) a different version of the same
trade-off. When this happens, it translates to a large number
of iterations. In this paper, and for the sake of a theoretical
analysis, we consider the extreme case of this phenomenon
that we call core interchangeability. We define core inter-
changeability at two levels: symbolic and numeric; and show
that both types can cause HS-WCSP to iterate an exponen-
tial number of times.

Motivated by that observation, we propose a method to
overcome the problem. Our approach is to reformulate the
problem by conveniently merging cost functions aiming at
making the space of cores more compact. We propose two
different types of merging: i) symbolic merging, which treats
weights as symbols without being aware of their numeri-
cal semantics, and ii) numeric merging, that treats weights
as numbers. We show that symbolic merging is sufficient
for dealing with symbolic interchangeability, but insufficient
for dealing with numeric interchangeability, where only nu-
meric merging renders HS-WCSP feasible. These results
are summarized in Table 1. We complement our theoretical
work empirically. First, we confirm the asymptotic bounds
obtained for our two case study problems and evaluate how

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8057

GreaterThan problem AllDiff problem
Orig. Ω(4n√

n
) Ω(2n)

Symb. Ω
(

c
√

n

n

)
Ω(n)

c = 13.0019 . . .
Num. Ω(1) Ω(1)

Table 1: Number of iterations required by HS-WCSP for
the GreaterThan and AllDiff problems with three different
encodings (original (Orig.), symbolic (Symb.) and numeric
(Num.)). n denotes the number of variables. The bound is
tight (there are actual implementations of HS-WCSP for
which the Ω(·) can be replaced by Θ(·)).

reasonable was to restrict our attention to the number of it-
erations as the main performance measure. Second, we ex-
plore how useful our theoretical analysis on our two artificial
case study problems may be in practice. For that purpose, we
propose a heuristic method to automatically identify pieces
of real WCSPs which are likely to have core interchange-
ability (up to a certain level) and show that both symbolic
and numeric merging are useful techniques in practice.

Preliminaries
CSP. A Constraint Satisfaction Problem (CSP) is a tuple
(X,D,C) where X is a set of variables, D is a set of finite
domains (dp ∈ D is the domain of variable xp ∈ X) and C
is a set of constraints. Each constraint ci ∈ C depends on a
subset of variables Yi ⊆ X , called the scope. The set DYi

denotes the Cartesian product of the domains of the variables
in Yi. Thus, t ∈ DYi

is a tuple over Yi and t[S] with S ⊆ Yi

denotes the projection of t over the variables of S. Con-
straints are boolean functions ci : DYi

−→ {true, false}.
A solution to the CSP is a tuple t ∈ DX that satisfies all
the constraints (ci(t[Y1]) = true for all ci ∈ C). A CSP is
satisfiable if it has at least one solution.

WCSP. A Weighted CSP (WCSP) is a CSP augmented
with a set of cost functions F (i.e., (X,D,C, F)). A cost
function fi ∈ F is a mapping fi : DYi −→ N. A solution is
a tuple t ∈ DX that satisfies all the constraints in C and we
will assume that there is at least one such tuple. The cost of
a solution t is

∑
i fi(t[Yi]). The WCSP problem consists of

computing a minimum-cost solution opt(P).

The following two WCSPs will be used in our analysis.

GreaterThan Problem. The GreaterThan problem (noted
PGT (n)) is a WCSP with n variables X = {x1, . . . , xn}
with di = {0, 1, . . . , n− 1}. It has a cost function fi(xi) =
xi for each 1 ≤ i ≤ n and a single constraint

∑n
i=1 xi ≥

n. Clearly, an optimal solution is any assignment such that∑n
i=1 xi = n and the optimal cost is opt(PGT) = n.

AllDiff Problem. The AllDiff problem (noted PAD(n)) is
a WCSP with n variables X = {x1, . . . , xn} with di =
{0, 1, . . . , n−1}. It has a cost function fi(xi) = xi for each
1 ≤ i ≤ n and one constraint xi ̸= xj for every pair of
variables. Clearly, all solutions are optimal and correspond

to assignments that assign a different value to each variable
(e.g., (x1 ← 0, x2 ← 1, . . . , xn ← n− 1)), and the optimal
cost is opt(PAD) = n(n−1)

2 .

HS for Weighted CSPs
Next we review (and largely rephrase in an arguably simpli-
fied way) the HS approach for WCSP introduced in (Delisle
and Bacchus 2013). The following definitions assume an
arbitrary WCSP P = (X,D,C, F) with m cost functions
F = {f1, f2, . . . , fm}.

Weight Vector. A weight vector (or, simply, a vector) is
v⃗ = (v1, v2, . . . , vm) with each component vi being associ-
ated to cost function fi. The value of vi must be a weight
occurring in fi (i.e, vi ∈ {fi(t) | t ∈ DYi}). The cost of a
vector v⃗ is cost(v⃗) =

∑m
i=1 vi.

Partial Order. Recall that the usual (partial) order among
vectors, v⃗ ≤ u⃗, holds if for each component i we have that
vi ≤ ui. When v⃗ ≤ u⃗ we say that u⃗ dominates v⃗. When
v⃗ ̸≤ u⃗ we say that v⃗ hits u⃗.

Induced CSP. A vector v⃗ induces a CSP P (v⃗) where ev-
ery cost function fi is replaced by constraint (fi ≤ vi).

Core. A vector k⃗ is a core if its induced CSP P (k⃗) is un-
satisfiable. C will denote the set of cores. A core is maximal
if it is not dominated by any other core or, in other words,
if increasing any of its non-maximal components produces
a satisfiable induced CSP. MC will denote the set of max-
imal cores. Note that this definition of core is similar but
not equivalent to the usual concept of core in constraint pro-
gramming and SAT (Gupta, Genc, and O’Sullivan 2021),
since in our definition a core requires an underlying WCSP.

Minimum Cost Hitting Vector (MHV). A vector h⃗ hits a
set of coresK if h⃗ hits each vector k⃗ ∈ K (or, in other words,
h⃗ is not dominated by any k⃗ ∈ K). The minimum cost hitting
vector MHV ofK, noted MHV(K), is a hitting vector h⃗ with
minimum cost. The MHV problem is a generalization of the
Hitting Set Problem, so it is easy to see that it is NP-hard.

Core Extracting Solver (CES). A core-extracting Solver,
noted CES, is a function that receives as input a WCSP P

and a vector h⃗. If h⃗ is a core, it returns a core k⃗ such that
h⃗ ≤ k⃗. Otherwise (i.e., if h⃗ is not a core), it returns NULL.
Since a CES needs to solve a CSP and there is no special
requirement about the core (so h⃗ itself could do the job), it
is easy to see that core-extraction is no easier (and can be
made no harder) than solving an NP-complete problem.

Algorithm HS-WCSP. The HS approach for WCSPs is
based on the following. Let K be a set of cores of a WCSP
P . Let vector h⃗ be a MHV of K. Then,

• cost(⃗h) is a lower bound of opt(P).

• If the induced CSP P (⃗h) is satisfiable, then any solution
of P (⃗h) is an optimal solution of P with optimal cost
cost(⃗h).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8058

Algorithm 1: HS-WCSP receives as input a WCSP P and
returns its optimal cost.
Input: WCSP P
Output:

1: K := ∅; h⃗ := 0⃗;
2: while true do
3: k⃗ :=CES(P, h⃗)
4: if k⃗ = NULL then
5: return cost(⃗h)
6: else
7: K := K ∪ {k⃗}
8: h⃗ :=MHV(K)
9: end if

10: end while

• If the induced CSP P (⃗h) is unsatisfiable, then there is at
least one core k⃗ ̸∈ K such that h⃗ ≤ k⃗.

Algorithm 1 shows HS-WCSP, a simple HS algorithm
for WCSPs. It maintains a growing set of cores K and a
minimum hitting vector h⃗ of K. At each iteration, a core-
extraction solver is invoked with the induced CSP P (⃗h)

(line 3). If it is satisfiable, the cost of h⃗ is the optimal so-
lution of the WCSP (line 5). Otherwise, core k⃗ is added toK
(line 7), the MHV vector h⃗ is updated (line 8) and the algo-
rithm continues. Note that the cost of h⃗ is a non-decreasing
lower bound of the optimum solution.

In (Delisle and Bacchus 2013) the MHV problem is mod-
eled as an Integer Program and CES is modeled as a SAT
formula with assumptions, so both problems are solved with
off-the-shelf solvers. They also propose some practical im-
provements of HS-WCSP. For the sake of simplicity in our
analysis, we will not consider them until the empirical eval-
uation in Section .

Bounding Below the Number of Iterations
In this Section we study the performance of HS-WCSP in
terms of the number of iterations. Note that iterations corre-
spond to the number of cores that have to be extracted before
obtaining the optimal value.

The number of iterations of an arbitrary implementation
of HS-WCSP is non-deterministic since it depends on the
cores computed by the CES function and the minimum hit-
ting vectors computed by MHV and they may vary from
implementation to implementation. Thus, we give a lower
bound on that number which is independent from the par-
ticular implementation. For that purpose, we first identify
a subset of maximal cores that are associated to necessary
cores for obtaining the optimum cost. Consider a maximal
core k⃗ ∈MC and let U(k⃗) be the set containing those cores
dominated by k⃗ and not dominated by any other maximal
core. That is,

U(k⃗) = {k⃗′ ∈ C | k⃗′ ≤ k⃗, ∀k⃗′′∈MC,s.t. k⃗′ ̸=k⃗′′ k⃗′ ̸≤ k⃗′′}

Definition 1 (distinguished core). A maximal core k⃗ ∈MC

is distinguished if there is some k⃗′ ∈ U(k⃗) such that
cost(k⃗′) < opt(P).

Lemma 1. Let k⃗ ∈ MC be a distinguished maximal core,
and let h⃗ be the MHV(C−U(k⃗))). Then, cost(⃗h) < opt(P).

The following theorem follows directly from the lemma.

Theorem 1 (lower bound). Let DC be the set of distin-
guished maximal cores. Then, HS-WCSP(P) iterates at least
|DC| times.

Definition 2 (HS-WCSP-max). HS-WCSP-max is the spe-
cific version of HS-WCSP such that the CES function always
returns a maximal core when the induced CSP is unsatisfi-
able (i.e., k⃗ ∈MC in line3 of Algorithm 1).

The following theorem gives an upper bound on the num-
ber of iterations of HS-WCSP-max. This bound is useful be-
cause it shows that the previous lower bound is sometimes
tight, that is, it is not an underestimation since there are ac-
tual implementations of HS-WCSP for which it is attained.

Theorem 2 (upper bound). LetMC be the set of maximal
cores. Then, HS-WCSP-max(P) iterates at most |MC| times.

Now, we use the previous two results to show that HS-
WCSP is unfeasible for the GreaterThan (PGT (n)) and
AllDiff (PAD(n)) problems. Note that both of them have the
same set of cost functions. Therefore, their set of vectors is
{(v1, v2, . . . vn) | 0 ≤ vi < n}.

We start showing that GreaterThan requires at least an ex-
ponential number of iterations. Besides, this best-case bound
is tight in the sense that HS-WCSP-max requires exactly that
number of iterations.

Lemma 2. Consider PGT (n):

• MC is the set of vectors with cost n− 1.
• |MC| =

(
2n−2
n−1

)
∼ 4(n−1)

√
πn

.
• All maximal cores are distinguished.

Theorem 3.
• HS-WCSP(PGT (n)) iterates Ω(4

(n−1)
√
πn

) times.

• HS-WCSP-max(PGT (n)) iterates Θ(4
(n−1)
√
πn

) times.

Proof. Follows directly from Theorem 1, Theorem 2 and
Lemma 2.

Next we do a similar analysis for the AllDiff problem.

Lemma 3. Consider PAD(n):

• MC is the set of permutations of

{(0, 0, (n− 1), (n− 1), . . . , (n− 1)),

(1, 1, 1, (n− 1), (n− 1), . . . , (n− 1)),

(2, 2, 2, 2, (n− 1), (n− 1), . . . , (n− 1)),

. . . ,

((n− 2), . . . , (n− 2))}

• |MC| = 2n − n.
• All maximal cores are distinguished.

Theorem 4.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8059

• HS-WCSP(PAD(n)) iterates Ω(2n) times.
• HS-WCSP-max(PAD(n)) iterates exactly 2n − n times.

Proof. Follows directly from Theorem 1, Theorem 2 and
Lemma 3.

Core Interchangeability
The PGT (n) and PAD(n) problems are unfeasible for HS-
WCSP because both of them have a symmetrical structure
that produces an exponentially large number of necessary
cores. In the following, we characterize the two forms of
symmetry exhibited by these two problems.

Consider two m-vectors v⃗ and u⃗ and a subset of its com-
ponents I ⊆ {1, 2, . . . ,m}. Then,
• v⃗ and u⃗ are symbolic-equivalent in I iff they are a per-

mutation of each other in components in I and identical
in components not in I .

• v⃗ and u⃗ are numerical-equivalent in I iff cost(u⃗) =
cost(v⃗) and they are identical in components not in I .

For example, consider vectors v⃗ = (3, 7, 4), u⃗ = (3, 4, 7)
and w⃗ = (3, 8, 3), and I = {2, 3}. They are all numeric-
equivalent in I , because they are identical out of I and their
cost in I is 11. Further, only v⃗ and u⃗ are symbolic-equivalent
because (7, 4) is a permutation of (4, 7).
Definition 3 (symbolic core interchangeability). A WCSP
P is s-interchangeable in I if for every pair of symbolic-
equivalent vectors {v⃗, u⃗} in I , v⃗ is a core iff u⃗ is a core.
Definition 4 (numerical core interchangeability). A WCSP
P is n-interchangeable in I if for every pair of numeric-
equivalent vectors {v⃗, u⃗} in I , v⃗ is a core iff u⃗ is a core.
For example, the set of cores of PGT (n) is the set of vec-
tors with cost less than n. Since this condition only de-
pends on the cost, PGT (n) is both s-interchangeable and
n-interchangeable in its full set of cost functions I =
{1, . . . , n}. On the other hand, the set of cores of PAD(n)
is a set of permutations of n − 2 canonical vectors. Since
this condition is preserved under any permutation, PAD(n)
is s-interchangeable but it is not n-interchangeable in I =
{1, . . . , n} (for instance, v⃗ = (0, 1, 2, 3, 4, . . . , n− 1) is not
a core but u⃗ = (0, 0, 3, 3, 4, . . . , n − 1) has the same cost
and is a core).

Note that n-interchangeability is stronger than s-
interchangeability. Consequently, it causes a larger number
of core redundancy and therefore requires a more complex
solving approach.

Cost Function Merging
s-interchangeability and n-interchangeability are well-
defined examples of cost-functions disagreeing to each other
as we discussed in the Introduction. They may be too strong
to happen in practice, but we will use them to motivate and
quantify the theoretical advantage of our approaches.

In the following, we present two methods aiming at re-
ducing interchangeable cores. The first method, called sym-
bolic merging, may be enough for problems with symbolic
interchangeability. However, problems with numeric inter-
changeability need a stronger form of merging, that we call
numeric merging.

Symbolic Merging
The idea behind symbolic merging is the following. Let
k⃗ = (3, 2, 7, 5) be a core of some problem P . If the set of
cores of P is symbolic-equivalent in I = {1, 2, 3}, it means
that vectors (2, 3, 7, 5), (2, 7, 3, 5), ... are also cores. These
permutations of cores can be more compactly represented
by just counting the number of times each value appears in
indexes in I . That is, vectors having a 2, a 3 and a 7 in com-
ponents in I are cores.

Formally, let P = (X,D,C, F) be a WCSP and G ⊆ F
a subset of its functions. The symbolic merging of G is a
new WCSP PS = (X ∪ Y,D ∪ DY , C ∪ CY , F ∪ HY −
G) where Y is a set of auxiliary variables taking values in
{0, . . . , |G|}. There is a variable yw ∈ Y for every weight
w > 0 appearing in any of the functions in G. Variable yw
counts the number of cost functions in G assigning weight w
which is enforced by constraint yw =

∑
fi∈G[fi(Yi) = w]

in CY . Finally, the set of functions G is replaced by a cost
function fw(yw) = w · yw for every auxiliary variable yw.
It is easy to see that the reformulation preserves the optimal
cost.

Let us now analyse the effect of symbolic merging on our
two case studies. Let G = F . Since PGT (n) and PAD(n)
have the same set of cost functions F , their reformulation
will be identical (except for their original set of constraints
C). For every weight 0 < w < n there is one auxiliary
variable yw, one constraint yw =

∑n
i=1[xi = w] and one

cost function fw(yw) = w · yw. Original cost functions are
removed. With this new encoding, the set of vectors in both
problems is {v⃗ = (v1, v2, . . . vn−1) | vi = i · αi, 0 ≤ αi ≤
n}.

Let PS
GT (n) denote the symbolic merging reformulation

of PGT (n). We show next that symbolic merging reduces
the number of iterations of HS-WCSP from exponential to
subexponential (albeit superpolynomial). Although the re-
duction is significant, the algorithm remains unfeasible in
practice for this problem because the minimum number of
iterations cannot be bounded by any polynomial.

Lemma 4. Consider PS
GT (n),

• MC is the set of vectors with cost n− 1.

• |MC| ∼ 1
4n

√
3
exp

(
π
√

2n
3

)
= Θ

(
(13.0019...)

√
n

n

)
• All maximal cores are distinguished.

Theorem 5.

• HS-WCSP(PS
GT (n)) iterates Ω

(
(13.0019...)

√
n

n

)
times.

• HS-WCSP-max(PS
GT (n)) iterates Θ

(
(13.0019...)

√
n

n

)
times.

Proof. Follows directly from Theorem 1, Theorem 2 and
Lemma 4.

Let PS
AD(n) denote the symbolic merging reformulation

of PAD(n). We show next that symbolic merging reduces
the number of iterations of HS-WCSP from exponential to
linear. Consequently, symbolic merging is enough for this
problem.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8060

Lemma 5. Consider PS
AD(n),

• MC is

{(0, 2n, 3n, . . . , (n− 2)n, (n− 1)n),

(n, 0, 3n, . . . , (n− 2)n, (n− 1)n),

. . . ,

(n, 2n, 3n, . . . , 0, (n− 1)n),

(n, 2n, 3n, . . . , (n− 2)n, 0)}

• |MC| = n.
• All maximal cores are distinguished.

Theorem 6.
• HS-WCSP(PS

AD(n)) iterates Ω(n) times.
• HS-WCSP-max(PS

AD(n)) iterates n times.

Proof. Follows directly from Theorem 1, Theorem 2 and
Lemma 5.

Numeric Merging
Numeric merging is the strongest form of merging. The
idea is as follows. Let k⃗ = (3, 2, 7, 5) be a core of
some problem P . If the set of cores of P is numerical-
equivalent on indexes I = {1, 2, 3}, it means that vectors
(2, 2, 8, 5), (2, 3, 7, 5), (2, 7, 3, 5), ... are also cores. This set
of cores can be more compactly represented by just record-
ing the sum of the components in I . That is, vectors having
a total cost of 12 in components in I are cores.

Formally, let P = (X,D,C, F) be a WCSP and G ⊆
F be a subset of its functions. The numeric merging of G
is a new WCSP PN = (X,D,C, F ∪ {g} − G) where G
is replaced by cost function g(X) =

∑
fi∈G fi(Yi). The

reformulation preserves the optimal cost.
Let us now analyse the effect of numerical merging on our

two case studies. Let G = F . Since PGT (n) and PAD(n)
have the same set of cost functions F , their reformulation
will be identical (except for their original set of constraints
C). All their unary cost-funcitons are replaced by a single n-
ary cost function g(X) =

∑n
i=1 xi. Consequently, with this

new encoding, vectors become 1-dimensional and the set of
vectors corresponds to v⃗ = (v1) with 0 ≤ v1 ≤ (n− 1)2.

Let PN
GT (n) and PN

AD(n) denote the numerical merging
reformulation of PGT (n) and PAD(n), respectively. Then,
Lemma 6. Consider PN

GT (n),
• MC is {(n− 1)}.
• Vector (n− 1) is distinguished.

Theorem 7.
• HS-WCSP(PN

GT (n)) iterates at least once.
• HS-WCSP-max(PN

GT (n)) iterates once.

Proof. Follows directly from Theorem 1, Theorem 2 and
Lemma 6.

The numerical merging of all functions in the
GreaterThan problem reduces the number of iterations
from exponential to a constant. Of course, it begs the
question of whether the single call to the CES function with
the reformulated problem pays off in practice.

Although symbolic merging was already a feasible ap-
proach for the AllDiff problem, for completeness, we also
report the effect of numeric merging on this problem.

Lemma 7. Consider PN
AD(n),

• MC is {((n(n− 1)/2)− 1)}.
• Vector ((n(n− 1)/2)− 1) is distinguished.

Theorem 8. HS-WCSP(PN
AD(n)) iterates 1 time.

Proof. Follows directly from Theorem 1, Theorem 2 and
Lemma 7.

Experimental Results
We implemented the HS-WCSP in C++ as follows1. The
core-extraction solver (CES, line 3 in Algorithm 1) uses
the assumption-based SAT solver CaDiCal (Biere et al.
2020), and the minimum hitting vector solver (MHV, line 8
in Algorithm 1) is implemented as a 0-1 integer program
solved to optimality with CPLEX. Our encodings are similar
to (Delisle and Bacchus 2013)). The merged cost-functions
for both symbolic and numeric merging are encoded into
SAT using the totalizer encoding (Joshi, Martins, and Man-
quinho 2015). All experiments were run on a Linux machine
with 2.90 GHz CPU, 128GB RAM memory and 16 cores.

GreaterThan and AllDiff Problems
We have provided tight bounds on the number of iterations
for two combinatorial problems with three different encod-
ings when the CES function computes maximal cores (i.e,
HS-WCSP-max). However, our theoretical analysis only
gives partial information about the cost of executing HS-
WCSP-max on them. In particular, some limitations of our
analysis are: i) It is asymptotic, so it may not capture what
happens with small instances. ii) It focus on the number of
iterations but disregards the cost of each iteration which may
change significantly with the different encodings.

To assess the effect of these limitations, we report infor-
mation from real executions of HS-WCSP-max on the two
problems with the three different formulations. We report
the number of iterations to see the accuracy of our asymp-
totics; the number of calls to the SAT solver because the
CES implementation obtains maximal cores as a sequence
of non-maximal core extractions; the CPU time because the
encodings are increasingly more sophisticated and it may be
worth to see how it affects CPU time.

Figure 1 reports the results for the GreaterThan (top
row) and AllDiff (bottom row) problems. The first column
shows the actual number of iterations for the three encod-
ings. As expected, it follows an exponential, sub-exponential
(albeit super-polynomial) and constant growing pattern for
GreaterThan; and an exponential, linear and constant grow-
ing pattern for AllDiff. We also include the asymptotic
bounds of GreaterThan (dashed lines) which turn to be very
precise for the original encoding (the two lines overlap) and
quite accurate for the symbolic merging. The second column
shows the number of calls to the SAT solver. In both prob-
lems, the number of calls seems to be just a constant away

1https://github.com/erollon/MHS-WCSP

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8061

0 5 10 15 20 25
0

1,000

2,000

3,000

#
ite

rs

orig
symb
num

0 5 10 15 20 25
0

1

2

3

·104

#
sa

tc
al

ls

GreaterThan problem

0 5 10 15 20 25
0

200

400

600

800

C
PU

Ti
m

e
(s

ec
.)

0 2 4 6 8 10
0

200

400

600

800

1,000

nb. of vars

#
ite

rs

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

·104

nb. of vars

#
sa

tc
al

ls

AllDiff problem

0 2 4 6 8 10
0

200

400

600

800

nb. of vars

%
C

PU
Ti

m
e

(s
ec

.)

Figure 1: Number of iterations (first column), number of SAT calls (second column) and CPU time in seconds (third column)
as a function of the number of variables on the GreaterThan problem (top row) and AllDiff problem (bottom row) using the
original encoding (orig.) symbolic-merging (symb.) and numeric merging (num.). Time limit is 900 seconds.

from the number of iterations (around 10 times). Finally, the
third column shows the CPU time. It can be seen that merg-
ing clearly pays-off in both problems and, consistently with
the theoretical results, numeric merging is the best option
for GreaterThan and symbolic merging is the best option for
AllDiff. Moreover, we see that if we experiment across en-
codings, the number of iterations is not always a good mea-
sure, at least with the totalizer encoding for summations.

The experiments show that the cost of the CES component
(which corresponds to the aggregated cost of SAT solving)
seems to grow exponentially with the size of the instances.
There are two lessons to be taken from that: merging can
only be done in a limited way (i.e, with respect to small sub-
sets of cost functions), and the totalizer encoding has to be
replaced by a more sophisticated alternative to augment the
applicability of our approach.

Benchmark Instances
In the Introduction we argued that difficult real problems
have cost functions that disagree with each other and that
this disagreement turns into an approximation of our notions
of core interchangeability. To test our hypothesis, and con-
sidering what we have learned in the previous experiments,
we need a method to identify clusters of cost functions with
that pattern. We conjectured that such clusters would cor-
respond to groups of functions that share many variables
in their domain. Accordingly, we implemented a heuristic
to partition the set of cost functions of arbitrary WCSPs
into clusters. For that, we used the well-known concept of
tree-decomposition (Kask et al. 2005). Tree-decompositions
are frequently used in WCSP solvers to identify and exploit

structural properties. Intuitively, a tree-decomposition (TD)
of a WCSP is an arrangement of its cost functions into clus-
ters such that the cluster structure is acyclic. The width of
a TD is the size of the largest combined scope among its
clusters. There are many heuristics for obtaining a TD with
small width (Bodlaender and Koster 2010).

Therefore, we computed a TD and merged all the cost-
functions that are placed in the same cluster as a pre-process.
Table 2 reports the results on the Spot5 benchmark merging
functions according to a min-fill TD (Bodlaender and Koster
2010). All instances were made virtual arc consistent (VAC)
before the execution. For this experiment, we used a more
realistic HS-WCSP implementation that does not guaran-
tee that the CES function returns a maximal core. Instead,
the algorithm includes two of the improvements proposed
in (Delisle and Bacchus 2013): (i) the CES function com-
putes several disjoin cores at each iteration and, (ii) it im-
proves each of them by greedely increasing the lowest ki
value until the induced CSP becomes satisfiable. When it
happens it undoes the last increment and returns it as a core.
Our version of HS-WCSP produces results similar to what
was reported in (Delisle and Bacchus 2013). For reference
with respect to state-of-the-art WCSPs solvers, we also re-
port results obtained with Toulbar2 v.1.1.1 with its default
options (Hurley et al. 2016).

As can be seen, both forms of cost-function merging
clearly outperform the original formulation solving more
instances and more efficiently. Moreover, in this particular
benchmark, both forms of cost-function merging also out-
perform Toulbar2 in all instances (except for 2 instances
solved in under a second by all formulations). These results

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8062

Original Symbolic Numerical Toulbar2
Inst. lb t #its lb t #its lb t #its lb t
54 37 0.43 35 37 0.03 6 37 0.04 9 37 0.03
29 8059 1.23 56 8059 0.31 29 8059 0.14 16 8059 0.03

404 114 2.87 77 114 0.36 28 114 0.25 24 114 30.97
503 11113 1.01 32 11113 0.12 15 11113 0.11 13 11079 -
408 6225 - 131 6228 8.04 83 6228 7.05 96 4165 -
412 29345 - 69 32381 46.15 148 32381 39.18 146 22185 -
414 35979 - 108 38478 170.95 228 38478 114.05 318 27687 -
42 147050 - 207 155050 38.28 590 155050 75.66 985 96049 -

505 21245 - 100 21253 6.19 74 21253 4.80 107 14128 -
507 25870 - 82 27390 72.62 160 27390 127.87 329 17246 -
509 33429 - 78 36446 298.09 265 36446 91.35 274 28184 -
28 206103 - 35 245107 - 197 247104 - 259 150558 -

Table 2: Results on Spot5 instances. All instances are pre-processed to be VAC. CPU time in seconds. Time limit 1800 seconds
(indicated as ”-”). When the time limit is not reached lb reports the optimum value. Otherwise, lb reports the obtained lower
bound. The best CPU time is highlighted. When all solvers reach the time limit, the best lower bound is highlighted.

suggest that partitioning the set of functions into clusters be-
ing guided by tree-decompositions may pay-off. Comparing
the two merging alternatives, we see that there is no clear
winner. Numerical merging outperforms symbolic merging
on almost all instances but the difference is not large. Note
that in instance 28, where both approaches timed out, nu-
merical merging also obtains a better lower bound.

Related Work
It is well-known that many combinatorial problems con-
tain different forms of symmetries and that not addressing
them may render solvers highly inefficient (Gent, Petrie, and
Puget 2006). To overcome this problem, several works pro-
pose methods to eliminate them. Clearly, our notion of core
interchangeability is just another form of problem symmetry
and our two merging approaches can be seen as methods to
eliminate them in the particular case of HS algorithms. How-
ever, it is worth emphasizing that our approach does not re-
quire interchangeability. As we showed in the experiments,
it is likely to be effective even on clusters of conflicting (i.e,
disagreeing) cost functions.

Our two merging methods are closely related to the so-
called abstract cores framework (Berg, Bacchus, and Poole
2020) proposed in the MaxSAT context. The idea behind ab-
stract cores is to group equally weighted soft clauses (the
so-called abstraction sets) and to extract cores over new
variables that correspond to sums over the original block-
ing variables (the so-called abstract cores). Each sum counts
how many of the original blocking variables are falsified
and, as a consequence, it is modelled as a cardinality con-
straint. Essentially, this is our symbolic merging. Our nu-
merical merging goes one step further and drops the re-
striction of only clustering equally weighted clauses. Now
each sum constraint counts the total sum of the coefficients
(weights) of the original blocking variables and, as a con-
sequence, it is modelled as a pseudo-Boolean constraint.
In this sense, our work advances in the theoretical under-
standing of the differences arising from the usage of pseudo-

Boolean constraints in contrast to cardinality constraints in
the abstract cores framework.

Many heuristics to determine how to cluster
clauses/functions may be appropriate. In (Berg, Bac-
chus, and Poole 2020), the heuristic dynamically finds
meaningful clusters based on the core structure (which is
not available up front). In contrast, we propose to use the
tree-decomposition structure (which is available a-priori).
Since the tree-decomposition does not change, our cluster-
ing is static and so our symbolic/numeric reformulation is
done as a pre-process.

Conclusion and Future Work
Our long-term research aims at making the Hitting Set
approach competitive with state-of-the-art alternatives for
WCSP solving, as it happens in the very similar MaxSAT
problem. In this paper we have shown that a naive appli-
cation may be unfeasible even for very simple problems.
We have characterized two forms of symmetry where HS-
WCSP fails and proposed a method based on cost-function
merging to overcome each one of them. Our theoretical anal-
ysis allowed to clearly identify the limitations of HS-WCSP
and quantify the potential advantage of our approach. We
claim that these forms of symmetry happen up to a certain
level in real problems. Thus, we have introduced a heuris-
tic method to identify those parts of a problem where cost-
function merging is likely to be useful. Our method, that uses
the notion of tree-decomposition, clearly improves over the
basic hitting set approach and, in some cases, may be even
competitive with state-of-the-art solvers.

Our work leaves many open lines of work. Just to name a
few, we need to explore better implementations of the CES
component and this can be done in different ways: improv-
ing the SAT encodings of the mergings or moving from SAT
to other solving languages. We also need to explore alterna-
tives to the use of tree-decomposition to identify appropriate
clusters of cost-functions and, of course, extend our experi-
ments to a wider set of benchmark instances.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8063

Acknowledgements
The work of Javier Larrosa and Emma Rollon was supported
by grant PID2021-122830OB-C43, funded by MCIN/AEI/
10.13039/501100011033 and by “ERDF: A way of making
Europe”. The work of Conrado Martı́nez was supported by
grant PID2020-112581GB-C21 (MOTION Project), funded
by MCIN/AEI/10.13039/501100011033.

References
Allouche, D.; de Givry, S.; Katsirelos, G.; Schiex, T.; and
Zytnicki, M. 2015. Anytime Hybrid Best-First Search with
Tree Decomposition for Weighted CSP. In Pesant, G., ed.,
Principles and Practice of Constraint Programming - 21st
International Conference, CP 2015, Cork, Ireland, August
31 - September 4, 2015, Proceedings, volume 9255 of Lec-
ture Notes in Computer Science, 12–29. Springer.
Bacchus, F.; Hyttinen, A.; Järvisalo, M.; and Saikko, P.
2018. Reduced Cost Fixing for Maximum Satisfiability.
In Lang, J., ed., Proceedings of the Twenty-Seventh Inter-
national Joint Conference on Artificial Intelligence, IJCAI
2018, July 13-19, 2018, Stockholm, Sweden, 5209–5213. ij-
cai.org.
Bensana, E.; Lemaı̂tre, M.; and Verfaillie, G. 1999. Earth
Observation Satellite Management. Constraints An Int. J.,
4(3): 293–299.
Berg, J.; Bacchus, F.; and Poole, A. 2020. Abstract Cores
in Implicit Hitting Set MaxSat Solving. In Pulina, L.; and
Seidl, M., eds., Theory and Applications of Satisfiability
Testing - SAT 2020 - 23rd International Conference, Al-
ghero, Italy, July 3-10, 2020, Proceedings, volume 12178
of Lecture Notes in Computer Science, 277–294. Springer.
Biere, A.; Fazekas, K.; Fleury, M.; and Heisinger, M. 2020.
CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling
Entering the SAT Competition 2020. In Balyo, T.; Froleyks,
N.; Heule, M.; Iser, M.; Järvisalo, M.; and Suda, M., eds.,
Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions, volume B-2020-1 of Department of Computer
Science Report Series B, 51–53. University of Helsinki.
Bodlaender, H. L.; and Koster, A. M. C. A. 2010. Treewidth
computations I. Upper bounds. Inf. Comput., 208(3): 259–
275.
Cabon, B.; de Givry, S.; Lobjois, L.; Schiex, T.; and Warn-
ers, J. P. 1999. Radio Link Frequency Assignment. Con-
straints An Int. J., 4(1): 79–89.
Cooper, M. C.; de Givry, S.; Sánchez-Fibla, M.; Schiex, T.;
Zytnicki, M.; and Werner, T. 2010. Soft arc consistency re-
visited. Artif. Intell., 174(7-8): 449–478.
Davies, J.; and Bacchus, F. 2013. Postponing Optimization
to Speed Up MAXSAT Solving. In Schulte, C., ed., Princi-
ples and Practice of Constraint Programming - 19th Inter-
national Conference, CP 2013, Uppsala, Sweden, Septem-
ber 16-20, 2013. Proceedings, volume 8124 of Lecture
Notes in Computer Science, 247–262. Springer.
Dechter, R. 2003. Constraint processing. Elsevier Morgan
Kaufmann. ISBN 978-1-55860-890-0.

Delisle, E.; and Bacchus, F. 2013. Solving Weighted CSPs
by Successive Relaxations. In Schulte, C., ed., Principles
and Practice of Constraint Programming - 19th Interna-
tional Conference, CP 2013, Uppsala, Sweden, September
16-20, 2013. Proceedings, volume 8124 of Lecture Notes in
Computer Science, 273–281. Springer.
Gent, I. P.; Petrie, K. E.; and Puget, J. 2006. Symmetry in
Constraint Programming. In Rossi, F.; van Beek, P.; and
Walsh, T., eds., Handbook of Constraint Programming, vol-
ume 2 of Foundations of Artificial Intelligence, 329–376. El-
sevier.
Gupta, S. D.; Genc, B.; and O’Sullivan, B. 2021. Explana-
tion in Constraint Satisfaction: A Survey. In Zhou, Z., ed.,
Proceedings of the Thirtieth International Joint Conference
on Artificial Intelligence, IJCAI 2021, Virtual Event / Mon-
treal, Canada, 19-27 August 2021, 4400–4407. ijcai.org.
Hurley, B.; O’Sullivan, B.; Allouche, D.; Katsirelos, G.;
Schiex, T.; Zytnicki, M.; and de Givry, S. 2016. Multi-
language evaluation of exact solvers in graphical model dis-
crete optimization. Constraints An Int. J., 21(3): 413–434.
Joshi, S.; Martins, R.; and Manquinho, V. M. 2015. General-
ized Totalizer Encoding for Pseudo-Boolean Constraints. In
Pesant, G., ed., Principles and Practice of Constraint Pro-
gramming - 21st International Conference, CP 2015, Cork,
Ireland, August 31 - September 4, 2015, Proceedings, vol-
ume 9255 of Lecture Notes in Computer Science, 200–209.
Springer.
Kask, K.; Dechter, R.; Larrosa, J.; and Dechter, A. 2005.
Unifying tree decompositions for reasoning in graphical
models. Artif. Intell., 166(1-2): 165–193.
Koller, D.; and Friedman, N. 2009. Probabilistic Graphical
Models - Principles and Techniques. MIT Press. ISBN 978-
0-262-01319-2.
Larrosa, J.; and Schiex, T. 2004. Solving weighted CSP by
maintaining arc consistency. Artif. Intell., 159(1-2): 1–26.
Viricel, C.; de Givry, S.; Schiex, T.; and Barbe, S. 2018.
Cost function network-based design of protein-protein inter-
actions: predicting changes in binding affinity. Bioinform.,
34(15): 2581–2589.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8064

