
Automatic Core-Guided Reformulation via Constraint Explanation and Condition
Learning

Kevin Leo1, Graeme Gange1, Maria Garcia de la Banda1,2, Mark Wallace1

1 Department of Data Science & AI (DSAI), Monash University, Australia
2 ARC Training Centre in Optimisation Technologies, Integrated Methodologies, and Applications (OPTIMA), Australia
kevin.leo@monash.edu, grame.gange@monash.edu, maria.garciadelabanda@monash.edu, mark.wallace@monash.edu

Abstract

SAT and propagation solvers often underperform for opti-
misation models whose objective sums many single-variable
terms. MaxSAT solvers avoid this by detecting and exploit-
ing cores: subsets of these terms that cannot jointly take
their lower bounds. Previous work demonstrated that man-
ual analysis of cores can help define model reformulations
likely to speed up solving for many model instances. This
paper presents a method to automate this process. For each
selected core the method identifies the instance constraints
that caused it; infers the model constraints and parameters
that explain how these instance constraints were formed; and
learns the conditions that made those model constraints gen-
erate cores, while others did not. It then uses this information
to reformulate the objective. The empirical evaluation shows
this method can produce useful reformulations. Importantly,
the method can be useful in other situations that require ex-
plaining a set of constraints.

1 Introduction
Combinatorial problems are often tackled using a mod-
elling+solving approach, whose first step is to model the
problem’s parameters, variables, constraints and objective
function (if any) using a modelling language such as
AMPL (Fourer, Gay, and Kernighan 1987), OPL (Van Hen-
tenryck 1999), Essence (Frisch et al. 2007) or MINIZ-
INC (Nethercote et al. 2007). Each instantiation of the model
parameters with input data yields a model instance, which is
then compiled to the format required by the selected solver
to find its solutions. This compilation step uses sophisti-
cated methods to generate a flattened instance (often writ-
ten in a leaner formalism such as Essence’ (Rendl 2010) and
FLATZINC (Nethercote et al. 2007)) that is no longer intu-
itive for humans but is efficient for the selected solver. This
approach gives users expressive and intuitive languages to
model their problems, and frees them from knowing how to
best map models onto solving algorithms. Further, model-
to-model transformation methods exist to improve a model
for many/all its instances, rather than just the one being flat-
tened (e.g., (Hentenryck et al. 2005; Charnley, Colton, and
Miguel 2006; Mears et al. 2015; Leo et al. 2013)).

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A promising model-to-model transformation method is
that of (Leo et al. 2020), which takes advantage of advances
made by Lazy Clause Generation (Ohrimenko, Stuckey, and
Codish 2007) and MaxSAT core-guided solvers (Andres
et al. 2012; Morgado, Dodaro, and Marques-Silva 2014) to
improve a common class of models: those with an additive
(or separable) objective function, i.e. a sum of terms, each
with a single variable. Constraint Programming (CP) and
SAT solvers often underperform for models of this class be-
cause sums do not yield much propagation. MaxSAT solvers
can avoid this by detecting and exploiting cores: subsets of
terms that cannot collectively take their lower bounds. (Leo
et al. 2020)’s method uses information from these detected
cores to identify terms that can yield better bounds when
grouped. It then adds new variables that group those terms,
and reformulates the objective to use those variables.

While the above method automatically identifies sets of
objective terms that cannot collectively take their lower
bounds, all remaining (and very challenging) steps were
manual. These include identifying which instance con-
straints blocked the lower bounds from being assigned to
those terms, and what properties of the instance data caused
those constraints to be posted. Further, this knowledge needs
to be lifted from the instance level to the model level. All
these manual steps require a significant degree of knowledge
of both the model and the underlying domain.

This paper closes the gap by showing how to automate
each of these challenging stages, building up to a fully-
automatic method that constructs reformulated models sim-
ilar to those manually developed in (Leo et al. 2020).

2 Background
Constraints: A constraint optimisation model M [∆] is a tu-
ple (X[∆], C[∆], D[∆], f [∆]), where for every element δ
of the model’s parameter space ∆ mapping each parameter
to its value, X[δ] is a set of variables, C[δ] a set of con-
straints over X[δ], D[δ] a domain mapping each variable
x ∈ X[δ] to set of values D[δ](x), and f [δ] an objective
function over X[δ]. C[δ] is logically interpreted as the con-
junction of its elements, and D[δ](x) as the conjunction of
unary constraints on x ∈ X[δ]. Thus, M [δ] denotes instance
(X[δ], C[δ], D[δ], f [δ]). A literal of M [δ] is a unary con-
straint whose variable is in X[δ]. To solve instance M [δ], CP
solvers first apply constraint propagation to reduce domain

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8065

D[δ] to D′[δ] by executing the propagators associated with
the constraints in C[δ] until fixpoint. If D′[δ] is equivalent to
false (D′[δ](x) is empty for some x ∈ X[δ]), we say M [δ]
fails. If D′[δ] is not equivalent to false and fixes all variables,
we found a solution to M [δ]. Otherwise, M [δ] is split into
n sub-instances M [δ]i ≡ (X[δ], C[δ] ∧ ci, D

′[δ], f [δ]), 1 ≤
i ≤ n, where C[δ] ∧ D′[δ] ⇒ (c1 ∨ c2 ∨ . . . ∨ cn) and
ci are literals (the decisions). These sub-instances are then
iteratively searched using traditional branch-and-bound.

Lazy Clause Generation (LCG): LCG solvers extend
CP solvers by modifying their propagators to explain do-
main changes via literals of the form x = d, x ̸= d, x ≥ d,
and x ≤ d for d ∈ D[δ](x). An inferred literal ℓ is ex-
plained as S → ℓ, where S is a set of literals (interpreted
as a conjunction). For example, literal y ̸= 5 inferred by the
propagator of constraint x ̸= y given literal x = 5, is ex-
plained by {x = 5} → y ̸= 5. Each literal inferred when
solving instance M [δ] is stored with its explanation, forming
an implication graph. If failure is detected for sub-instance
M [δ]i, LCG solvers use this graph to compute a clause L (or
nogood): a disjunction of literals that holds under any solu-
tion of M [δ] but is inconsistent under M [δ]i. L is then added
to C[δ] to avoid failing for the same reasons.

Core-Guided Optimisation: CP solvers underperform
for additive objectives because the lower bound of any ob-
jective term, say oti of variable xi for minimising function
f [δ] ≡ ot1 + · · · + otn, can often be achieved by increas-
ing the value of others, and f [δ]’s lower bound is inferred
from those of its terms. Core-guided solvers avoid this by
first fixing all terms to their lower bounds and then searching
for a solution. If this succeeds, an optimum has been found.
Otherwise, they return a core: a (hopefully small) subset of
terms that cannot collectively take their lower bounds. They
then update f [δ]’s bound and adjust the lower bounds of the
core terms. Finally they re-solve, iterating until a solution is
found. Core-guided solvers differ in their handling of cores,
term bounds, and f [δ]. We assume they all return a set S that
is empty if the current sub-instance M [δ]i is satisfiable; and
otherwise contains literals of the form x ≥ k where variable
x appears in f [δ] and at least one literal holds. Extending
LCG solvers to support this interface is straightforward.

The LCG core-guided solver GEAS (Gange et al. 2020) is
used herein. It is based on OLL (Andres et al. 2012), which
progressively reformulates f [δ] to use the cores: upon find-
ing core S, OLL adds a new variable p =

∑
((x≥k)∈S) x to

M [δ] (with lower bound up by at least 1) and rewrites f [δ]
in terms of p. GEAS improves the basic OLL with stratifi-
cation (Marques-Silva et al. 2011; Ansótegui et al. 2012),
extracting cores on high-coefficient terms first; weight-
aware core extraction (Berg and Järvisalo 2017), delaying
adding new variables until no cores are found; and hard-
ening (Ansótegui et al. 2012), upper-bound propagation on
new variables. Since the value of k in ∀(x ≥ k) ∈ S is irrel-
evant to our method, we will refer to S as the raw core and
instead use the set {x|(x ≥ k) ∈ S} as our core.

Paths: Variable and constraint paths (Leo and Tack 2017)
assign a unique identifier to each variable and constraint in a
flattened instance that connects them to the model’s source
code. They describe the path the compiler took when flatten-

ing those variable and instance constraints.
Minimum Unsatisfiable Subset (MUS): Given instance

M [δ] ≡ (X[δ], C[δ], D[δ], f [δ]) where C[δ] is unsatisfiable,
the subset C ′[δ] ⊆ C[δ] is a MUS of C[δ] iff C ′[δ] is un-
satisfiable and removing any constraint from C ′[δ] makes
it satisfiable. Our method uses FINDMUS (Leo and Tack
2017) – a MUS enumeration tool available for MINIZINC–
to find the MUSes associated to a core (or rather, to the no-
good obtained by negating its raw core).

Running example: We use the running example of (Leo
et al. 2020): the Resource-Constrained Project Scheduling
Problem with Weighted Earliness and Tardiness cost, which
schedules tasks of a given duration and desired start time,
subject to precedence and cumulative resource constraints.
Its aim is to find a schedule that minimises the weighted
earliness and tardiness costs of tasks not completed by their
desired times. The model M [∆] used (rcpsp-wet in the
MINIZINC benchmarks) has the following objective f [∆]:
objective = sum (i in Tasks) |Original

% earliness cost
deadline[i,2]*max(0,deadline[i,1]-s[i]) +
% tardiness cost
deadline[i,3]*max(0,s[i]-deadline[i,1]));

i.e., the sum of earliness and tardiness costs for every task
i in input set Tasks where parameter deadline[i,1]
is the desired start time for i, parameter deadline[i,2]
(deadline[i,3]) is the cost per time unit for i to start
before (after) its desired time, and variable s[i] represents
i’s start time. For reasons of space, we will denote the
terms deadline[i,2]*max(0,deadline[i,1]-s[i])
and deadline[i,3]*max(0,s[i]-deadline[i,1]) by
e(i) and t(i), respectively. Note that |Original is used
to mark the code as part of the original model.

3 Method Overview
Our automated method follows the three main steps of (Leo
et al. 2020) shown in Figure 1. While Step 1 was mostly
automated in (Leo et al. 2020), the other two were man-
ual. This section illustrates the main issues found when au-
tomating these two steps and how we tackled them, using as
example the rcpsp-wet model M [∆] instantiated with in-
put data δ1 ∈ ∆ from file j30_1_3-wet.dzn and δ2 ∈ ∆
from j30_43_10-wet.dzn. Consider the four cores found
by Step 1 shown in Figure 2: {e(16),t(25)},
{e(8),t(14)}, {e(17),t(27)}, and {e(21),t(8)};
the first three from instance M [δ1], the last from M [δ2].

Step 2 selects candidate cores by determining their cause.
(Leo et al. 2020) do this by first grouping cores that follow
identical-up-to-renaming patterns. It is easy to see (and auto-
matically infer; see Step 2.1) that our four cores follow pat-
tern {e(A),t(B)}, shown in the “Patterns” column in Fig-
ure 2. Automatically identifying the cause for the cores (and
thus for the pattern) is more complex. We do this by using
FINDMUS to find the instance constraints that generate the
nogood associated to each core (see Step 2.2). As shown
by the “Explanations” column labeled 1⃝ in Figure 2, this
yields one instance constraint for each of the first two cores
and two instance constraints for each of the last two cores.
We then use constraint paths to automatically trace back all

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8066

Step 1
Finding core candidates

Minimize cores

Model Analysis & instrumentation

Scale scores

Step 1.4: Collect new var candidates

Step 1.3: Rename the cores

Step 1.2: Collect the cores

Step 1.1: Solver instrumentation

Step 3
Reformulating the model

Simple reformulation

Tuple enumeration & scoring

Collect features

Train scoring functions

Step 3.1: Reformulate the objective

Step 2
Selecting good candidates

Step 2.1: Find patterns among the cores

Acquire explanations

No

Detect simple reformulations

Find explanation patterns

Step 2.2: Interpret the patterns

Yes

Step 3.2: Add bounds for new variables

Figure 1: Method overview showing changes w.r.t. (Leo et al. 2020). Blue marks new, automated sub-steps; hatched yellow, old
ones that were already automated but executed separately by hand; yellow (red), old ones that are now (still not) automated.

six instance constraints (arrow labeled 2⃝) to the following
model constraint (shown at the top of Figure 2), which en-
sures each task i finishes before its successor task j starts:
forall (i in Tasks, j in suc[i]) |Original

(s[i]+d[i]<=s[j]);

where variable s[i] is as before, and parameters d[i] and
suc[i] give i’s duration and successor set, resp. With this
information, modellers should know that the first two cores
are caused by a task and its successor (16 and 25 in the first
core; 8 and 14 in the second), while the last two are caused
by a chain of three tasks that starts and ends with the tasks
in the cores (17 and 27 in the third core; 21 and 8 in the
fourth) and has a middle task (24 and 12, resp). To automat-
ically achieve this, our method first automatically annotates
the model (see extra sub-step “Model analysis and instru-
mentation”of Step 1) to connect the data in the instance con-
straints to the parameters in the model constraints. This is
used later (Step 2.2, shown here as an arrow labelled 3⃝) to
automatically generate explanations for each core (the col-
umn labelled “Generators”), and the associated explanation
patterns (the two boxes outlined in orange coming from the
arrows labeled 4⃝). Importantly, if the cores of a core pat-
tern are caused by different explanations (as is the case with
{e(A),t(B)}), they should be treated differently.

Once explanation patterns for all cores are found, Step 3
reformulates the model. Automating this is also complex; it
requires finding the conditions that make those explanations
constraining enough to generate cores for those tasks but
not for other tasks. Otherwise, we might group tasks in the

16 5 2

17 1 4

24 2 0

25 4 5

27 5 2

Figure 3: Part of a Gantt chart for instance M [δ1]

objective that do not generate cores. Consider the Gantt chart
in Figure 3, which shows some of the tasks in M [δ1], where
the y axis shows the task number i, the x axis represents
time, the lengths of the rectangles show the task durations
d[i], each task i appears at its desired start time deadline
[i,1], and arrows represent suc[i] dependencies.

The three grey tasks correspond to core {e(17),t(27)}
while the two orange ones correspond to {e(16),t(25)}.
However, many other tasks satisfy the same explanation pat-
terns and generate no cores; mostly chains of two or three
tasks. This is because the constraints posted by the instan-
tiation of those explanations are not “tight” enough to fail
and, thus, do not change the objective’s bound (in contrast
to those associated to cores). Modellers should be able to
see that the explanation pattern of a chain of three tasks is
constraining only if:
deadline[A,1] + d[A] + d[C] > deadline[B,1],
i.e., if the period of time between the ideal start times of
tasks A and B is shorter than the sum of durations of tasks

 constraint forall (i in Tasks, j in suc[i]) (s[i] + d[i] <= s[j])

Nogoods Patterns Explanations Generators Explanation Patterns

e(16), t(25) e(A), t(B) s[16] + 8 <= s[25] 16 in Tasks, 25 in suc[16] A in Tasks, B in suc[A]

 e(8), t(14) e(A), t(B) s[8] + 7 <= s[14] 8 in Tasks, 14 in suc[8] A in Tasks, B in suc[A]

e(17), t(27) e(A), t(B) s[17] + 2 <= s[24]
s[24] + 4 <= s[27]

17 in Tasks, 24 in suc[17]
24 in Tasks, 27 in suc[24]

A in Tasks, C in suc[A]
C in Tasks, B in suc[C]

e(21), t(8) e(A), t(B) s[21] + 8 <= s[12]
s[12] + 8 <= s[8]

21 in Tasks, 12 in suc[21]
12 in Tasks, 8 in suc[12]

A in Tasks, C in suc[A]
C in Tasks, B in suc[C]

1
4

3
2

Figure 2: Step 2 with cores {e(16),t(25)}, {e(8),t(14)}, {e(17),t(27)}, and {e(21),t(8)}.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8067

A and C, implying that A and/or B must be scheduled ear-
lier or later than their respective target times. To infer this
automatically we must identify the properties (e.g., duration
and desired start time) that might affect the tightness of the
posted constraints. We can then use standard machine learn-
ing techniques (such as regression) to train predictors of no-
good importance. Section 6 explains how we tackled this
and Section 7 shows the associated results.

4 Step 1: Finding Core Candidates
Step 1 in (Leo et al. 2020) starts by executing the already
instrumented GEAS solver (Step 1.1 in Figure 1) on each
instance M [δ] to find the cores (Step 1.2). It then renames
them to map the variables introduced by either the flatten-
ing process or the solver, back to those in the model M [∆]
(Step 1.3), and collects any core with more than one variable
(Step 1.4). We extend these four sub-steps to perform three
extra ones needed to automate later steps: core minimisation,
scoring, and model analysis & instrumentation.

Core minimisation: The order in which core variables are
introduced by solvers can yield cores with redundant terms,
i.e., terms that if removed, do not affect the core’s reduc-
tion in objective bound. This sub-step aims to find a minimal
subset of the core terms that yields the same bound, as this
can uncover patterns between cores with redundant terms
and those without them. We do this by first computing the
bound achieved by minimising the sum of the core’s terms,
and then using an adapted MUS enumeration strategy to find
a minimal cardinality subset that yields the same bound. As
this is expensive, our method can be asked to only analyse
cores with high scores and/or a small number of terms, and
can be terminated with a time-limit yielding the smallest
core found so far. Core minimisation was not in (Leo et al.
2020) because that work focused on small, easy to under-
stand cores that happened to be already minimal.

Scoring: Each core of M [δ] is assigned a score represent-
ing its effectiveness in solving M [δ]. It is computed as its
objective bound improvement divided by the sum of the im-
provements for all cores of M [δ]. Importantly, the division
allows us to compare the effectiveness of cores across in-
stances, which is needed in Step 2.1 for scoring core pat-
terns. Scoring was not part of (Leo et al. 2020) because that
work assumed the most effective cores are those found early
in the search, which is often the case for a single instance.

Model Analysis & Instrumentation: This sub-step mod-
ifies model M [∆] to generate information used by Step 2 to
find each core’s explanation, e.g., to find (17 in Tasks,24
in suc[17]),(27 in Tasks,27 in suc[24]) in the

upper right box of Figure 2 for core {e(17),t(27)}. This
requires linking the instance constraints that caused the core
(i.e., s[17]+2<=s[24], s[24]+4<=s[27]) with the gen-
erator conditions of the model constraint (i in Tasks,
j in suc[i]) that, when instantiated with (i=17,j=24)
and (i=24,j=17), produced the instance constraints.

Information about generator conditions is lost during flat-
tening due to, e.g., loop unrolling. To keep it, we automat-
ically add to each constraint in M [∆] annotations that de-

scribe the data dependencies used (and lost) when flatten-
ing its expressions. This is achieved by a depth-first traver-
sal of the MINIZINC Abstract Syntax Tree (AST) that tra-
verses conjunctions (forall, /\) and if constraints to col-
lect their generator variables (e.g., the i and j above), data
dependencies (Tasks, suc[i]), and any conditions in if
or where expressions of an AST node. Boolean expressions
are annotated with the collected data dependencies and ei-
ther recursed upon (if one of the above) or backtracked over.

The generated code below shows the result of this process
for the model constraint that yields core {e(17),t(27)}:
forall (i in Tasks) (|Generated
forall (j in suc[i]) (

(s[i]+d[i]<=s[j])
::data(3, 5, "in", "j", "suc[i]")
::data(3, 4, "assign", "j", show(j))

)::data(1, 2, "in", "i", "Tasks")
::data(1, 1, "assign", "i", show(i)));

where the forall expression has been split into two nested
foralls (for i and for j) to illustrate the depth-first traver-
sal. The first argument of each data annotation is the AST
depth, used to alias generator variables correctly. The second
is a counter used for ordering the annotations to simplify pat-
tern matching. The third is the annotation type, which cur-
rently only includes: in, the index set of a generator variable
(e.g., i in Tasks); assign, the value assigned to a gener-
ator variable (i=1); and if, the condition on which this con-
straint depends (none in this case). Note that |Generated
is used to mark the code as generated MINIZINC code.
During flattening, annotations are propagated down yield-
ing FLATZINC constraints with instantiated data annotations
that act as path conditions: the conjunction of constraints
that allowed us to reach this program point. For example, an-
notation data(1, 1, "assign", "i", show(i)) indi-
cates that generator variable i took the value given by func-
tion show(i) when the instance constraint was flattened.

5 Step 2: Selecting Good Candidates
The first new sub-step of Step 2 (see Figure 1) bypasses the
expensive parts of Steps 2 and 3 if it can detect cores that
lead to simple, pre-determined reformulations. This sub-step
is discussed in Appendix A; the remaining sub-steps here.

Step 2.1: Find Patterns Among the Cores
We automatically generate core patterns using the approach
of (Zeighami et al. 2018) to compute a most specific gen-
eralisation (MSG) per subset of cores with similar terms. In
doing this, we keep track of the mapping between each pat-
tern and its cores, and of each pattern’s score computed as
the sum of those of its cores. For example, the MSG of cores
{e(21),t(8)} and {e(17),t(27)} yields core pattern
{e(A),t(B)} and mapping {{A/21,B/8},{A/17,B/27
}}, stating they both contain terms of the form e(A) and
t(B), where pattern variables A and B take respectively val-
ues 21 and 8 in the first core, and 17 and 27 in the second.
If each of these cores improves the objective by 3%, their
pattern will have a score of 0.06. Currently, the MSG is ap-
proximated by first sorting the terms in every core and then
assuming an ordered match between terms. Even then, this

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8068

step can be expensive if there are many cores. Importantly,
when computing an MSG our system always checks whether
simple pre-defined relationships occur between the instanti-
ated pattern variables. In particular, it looks for =, ̸=, <, >,
and = ±1 relationships either between the variables them-
selves or when used as index into parameter arrays, such
as A=suc[B]+1. We refer to these relationships as facts if
they occur in all cores of a pattern, and use them in Step 3.

Step 2.2: Interpret the Patterns
As illustrated in Section 3, each identified core pattern needs
to be interpreted by first acquiring explanations for its cores
and then finding patterns among these explanations.

Acquire explanations: To acquire a core explanation, our
method must find the instance constraints that caused the
core, match them to the associated model constraints and use
the instrumented version of these constraints to generate the
explanation. Let c be the (raw) core we want to explain from
flattened instance M [δ]. Our method starts by negating c to
obtain nogood N = ¬c and construct the unsatisfiable in-
stance φ = M [δ]∧N . Then, it uses FINDMUS to identify a
MUS in φ, i.e., a minimal subset of instance constraints that
are incompatible with N and, thus, caused c. Currently, our
method stops after finding the first MUS, as finding and later
using more can be very time consuming (see next subsec-
tion). Consider, for example, the following output produced
by GEAS for the flattened instance of model M [∆] =rcspc
-wet with data δ ∈ ∆ from j30_1_3-wet.dzn:
NEW BOUND: 63 |Output
CORE: max(0, deadline[17,1]-s[17]) >= 3,

max(0, s[27]-deadline[27,1]) >= 1
VAR: x242 = max(0, deadline[17,1]-s[17])

+ max(0, s[27]-deadline[27,1])
NEW BOUND: 83
CORE: x242 >= 3

where the last line shows raw core c ≡ x242>=3 whose
associated nogood is N ≡ x242<3. Note that |Output is
used to mark plain output. Applying the definition of vari-
able x242 yields raw core e(17)+t(27)>=3 and associated
nogood e(17)+t(27)<3. Applying FINDMUS to the result
of appending N and its variables’ definitions to the end of
M [δ] yields a MUS combining N with 2 additional con-
straints: s[17]+2<=s[24] and s[24]+4<=s[27]. These
are the instance constraints in Figure 2 (arrows labeled 1⃝)
that caused this core.

Once a MUS is found, our method uses constraint and
variable paths to identify the model constraint from which
each instance constraint in this MUS comes, and match
its model variables with the instance ones. Then, thanks
to the analysis and instrumentation of Step 1, we can sub-
stitute any occurrences of constants that match the pattern
variables in the constraint and data annotations to generate
the core explanation. For example, consider again the MUS
with constraints s[17]+2<=s[24] and s[24]+4<=s[27],
in addition to nogood N . These two instance constraints are
mapped to the model constraint shown in Section 3, and the
instance variables (e.g., s[27]) to the model ones (s[i]).
With the annotated constraint shown in Section 4, they are
used to generate FLATZINC code similar to the following:

(s[24] - s[27] <= -4) |FlatZinc
:: data("in", "j", "suc[i]")
:: data("assign", "j", 27);
:: data("in", "i", "Tasks")
:: data("assign", "i", 24);

(s[17] - s[24] <= -2)
:: data("in", "j", "suc[i]")
:: data("assign", "j", 24)
:: data("in", "i", "Tasks")
:: data("assign", "i", 17);

which tells us 17 is the successor of 24, and 24 of 27. From
this our method generates the explanations shown in the up-
per right blue box of Figure 2 for core {e(17),t(27)}.

Find Explanation Patterns: As shown in Figure 2, cores
with the same pattern can have different explanations,
which may require different model reformulations. Thus, we
should only group cores with the same “kind” of explana-
tion, i.e., the same explanation pattern. To do this, for each
core pattern our method collects the explanations of all its
cores. It then substitutes the core pattern variable mappings
into the explanations. Finally, it computes the MSG of the re-
sulting explanations. For example, consider again the cores
{e(17),t(27)}, {e(21),t(8)}; pattern {e(A),t(B)}
with mapping {{A/17,B/27}, {A/21,B/8}}; and their

explanations shown in the upper and lower right blue boxes
in Figure 2. Applying the mapping for core {e(17),t(27)
} to its explanation generates:
(A in Tasks, 24 in suc[A])
(24 in Tasks, B in suc[24])
The same is generated for core {e(21),t(8)}with 12
rather than 24. Thus, their MSG yields explanation pattern:
(A in Tasks, C in suc[A])
(C in Tasks, B in suc[C])
and mapping {{A/17,B/27,C/24}, {A/21,B/8,C/12}}.
This automatically infers that these cores share an explana-
tion pattern different (as shown in Figure 2) from that of
cores {e(8),t(14)} and {e(16),t(25)}. Thus, the two
kinds are later used separately. Note that with only one MUS
per core, our method may miss some explanations. Explor-
ing the accuracy/speed trade-off is interesting future work.

6 Step 3: Reformulating The Model
Step 3.1 Reformulate the Objective
As explained in Section 3, the method must now determine
the conditions that make some instantiations of an explana-
tion pattern yield constraints tight enough to fail creating a
core that changes the objective’s bound, while other instan-
tiations do not. This section discusses how we achieve this.

Tuple Enumeration & Scoring: For each explanation
pattern EP we perform three actions. First, we generate a
new MINIZINC model MEP [∆] that enumerates all possible
instantiations of EP for the parameter values of any δ ∈ ∆.
For the EP in the previous section, this means adding:
forall(pA in Tasks, pC in suc[pA], |Generated

pB in suc[pC])
(trace("Tuple: \(pA) \(pB) \(pC)\n"));

to an MEP [∆] containing the parameter definitions from
M [∆] (here, the suc array of successors). The trace func-
tion, which outputs information during compilation, will

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8069

output the values for pA, pB, and pC, i.e., the possible as-
signments to the pattern variables of EP . Thus, compiling
each MEP [δ] enumerates all possible tuples of A, B and C,
and thus all instantiations of EP , in M [δ].

Second, we identify the types of terms in M [∆]’s ob-
jective f [∆], and connect them to the cores in which they
appear. Identifying term types involves traversing the AST
to collect any top level definitions, including those under
top level conjunctions. We start from the objective vari-
able definition and expand any sum expressions, collecting
generators (i in Tasks), coefficients (deadline[i,3]),
and the term variables (max(0,s[i]-deadline[i,1]) at
the leaves of the tree, with their location. We identify as
leaves any non-linear expression or call to a function outside
M [∆]. We also collect conditions from generators, and en-
ter branches of if statements. For rcpsp-wet, the two term
types (i.e., earliness and tardiness) in the objective yield:
TERM TYPE 0: |Output

Loc : "rcpsp-wet_orig.mzn|122|26|122|54|"
Gens: ["i in Tasks"]
Coef: ["deadline[i,3]"]
Var : "max(0,s[i]-deadline[i,1])"

TERM TYPE 1:
Loc : "rcpsp-wet_orig.mzn|120|26|120|54|"
Gens: ["i in Tasks"]
Coef: ["deadline[i,2]"]
Var : "max(0,deadline[i,1]-s[i])"

where each line of a term type shows its path: a string
locating the term in M [∆] as model-name|start-line|start-
column|end-line|end-column|; the generator for the term
variable (if any); the coefficient for the term (if any); and
the actual variable. Connecting the term types to the core
variables is done by matching the paths of the FLATZINC
variables in the core with those of the term type to be used.

And third, we score each tuple generated by MEP [δ] by
solving M [δ], minimizing the penalty the terms of the core
pattern can yield when instantiated to the tuple values. For
example, for the above EP and tuple (A=17, B=27, C=24)
the objective is to minimize:
objective = |Generated

deadline[17,2]*max(0,deadline[17,1]-s[17])
+ deadline[27,3]*max(0,s[27]-deadline[27,1])
This gives us an idea of how useful this grouping will be.
Flattening for each possible group can be slow, so we mod-
ified GEAS to optimize arrays of objectives (thus flattening
only once), and create arrays of at most 1, 000 objectives.

Collect Features: The training data must include model
parameters likely to be useful features. Our method adds
any parameters in the objective terms and in the constraints
used to build the explanations. For our example EP , it adds
deadline[A,1] and deadline[B,1] from the objective,
and d[A] from the constraints used to build its explanations.
It then generates for each EP an expression that outputs the
values of these parameters when instantiated using the tuples
found for that EP . For our example EP , it yields:
forall (|Generated

pA in Tasks, pB in suc[pA] where pA < pB)
(trace("\(pA) \(pB) \(deadline[pA,1])

\(deadline[pB,1]) \(d[pA])\n"))
where pA < pB, which was discovered when computing the

MSG for EP , filters out spurious candidates.

Train scoring functions: We can now construct a train-
ing dataset for each EP . Consider, for brevity, the EP for
a chain of two tasks (A in Tasks, B in suc[A]). The
method generates features by instantiating the expression:
A B deadline[A,1] deadline[B,1] d[A] isCore
with the values of A and B from each tuple, and isCore,
a 0/1 value indicating if this tuple incurred a penalty. The
aim is to build a scoring function that can predict how use-
ful grouping the terms of the cores explained by EP may
be. Our implementation uses the LinearSVC regressor from
Scikit-learn (Pedregosa et al. 2011) to learn the coefficients
of a function that predicts isCore. A trained scoring func-
tion approximating the overlap between the target start time
of tasks A and B above is:
function float: score_0(int: A, |Generated

int: B) =
max([deadline[A,2], deadline[B,3]]) *

(0.4644 * deadline[A,1] + 0.4657* d[A]
+ -0.4621 * deadline[B,1] + -0.2326);

where the numbers in bold are the learned coefficients. The
resulting sum is multiplied by the coefficients of the terms
involved ([deadline[A,2] and deadline[B,3]]) to in-
fer a score that approximates the penalty of moving these
tasks. Code is then added to the model that uses these scor-
ing functions to compute scores for all possible groupings.
These scores are then used to decide which groups should
be introduced in the final objective.

Grouping terms automatically: The last step adds the
following code to the original MINIZINC model:
objective = |Generated

decompose_bottomup(get_order_array(...));
where function decompose_bottomup takes an array of el-
ements |x1, · · · , xn|, creates a new variable zi = x2i−1+x2i

for each pair of adjacent elements, and recursively calls itself
with the new array; and function get_order_array adds
new variables by ranking candidate groupings and grouping
those with the highest score. It outputs an array containing
these new variables and any remaining un-grouped terms.

Step 3.2 Add Bounds for New Variables
While the reformulations from (Leo et al. 2020) were useful
for LCG solvers, traditional CP solvers required the intro-
duction of stronger upper bounds on new variables to im-
prove performance. Our automated approach produces se-
mantically equivalent objective functions, as the terms are
simply reordered. Adding bounds to the introduced variables
requires stronger reasoning since, if performed incorrectly,
could yield incorrect solutions. This is not tackled yet.

7 Experimental Evaluation
This section evaluates the results of applying our automated
method to the rcpsp-wetmodel. In doing this, it uses a data
set of 12 instances, split into 6 easy (30 task), 3 medium (60
task), and 3 hard (90 task). All experiments were performed
on an Intel Xeon 8260 CPU with 24 cores with 268.55GB
of RAM, and using the GEAS solver in free-search mode
with core-guided features disabled for solving. The results of

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8070

EMH:N T(s) Cs Es EPs PVs S F
300:1 39.9 40 20 2 3 0.8 1.3
210:1 60.2 54 26 3 4 1.0 1.6
120:1 88.0 61 35 4 5 1.0 2.5
111:1 100.7 84 38 3 4 0.9 1.7
300:A 56.4 40 26 2 3 0.8 1.3
210:A 258.4 54 40 4 5 0.9 11.6
120:A 352.3 61 51 5 5 1.0 12.2
111:A 473.9 84 60 4 5 0.9 12.5

Table 1: Using different training sets for rcpsp-wet

applying our method to the other benchmarks in (Leo et al.
2020) are discussed in Appendix B.

Table 1 shows a summary of the impact of several train-
ing sets on the training process and on the resulting models.
The EMH:N column shows the number of easy, medium,
and hard instances used for training, followed by whether
the resulting reformulation is based on all (:A) patterns or
the highest scoring one (:1). Column T shows the training
time; Cs the number of cores found in the selected instances;
Es the number of explanations acquired; EPs the number of
resulting EP s; and LVs the largest number of variables in a
pattern. Each instance was solved twice per reformulation,
and the ratio of the average solving and flattening times to
those of the hand-reformulated model were computed. The
S and F columns show the geometric means of these ratios.
The choice of training set can significantly impact the result-
ing reformulation. Using the highest scoring pattern resulted
in faster training and models that flatten faster than using all
patterns. Interestingly, the solve times were not very differ-
ent to the hand-written model.

Table 2 compares the performance of the original rcpsp
-wet model (column O) with that of five reformulations
for several instances. The first three come from (Leo et al.
2020): its hand-written direct model, which groups the ear-
liness/tardiness terms of direct successor tasks that over-
lap based on the cost of enforcing their precedence (H);
a naı̈ve reformulation that groups terms in order of occur-
rence (N); and a “weighted” naı̈ve reformulation that groups
terms sorted by their coefficients (NW). The last two (300:1
and 111:A) are the best and worst performing reformulations
from Table 1. A timeout of 600 seconds was used and rep-
resented by TO, underscored if the best objective value was
found (but not proven optimal). Results for other reformula-
tions and instances are presented in Appendix B. The results
show that while the naı̈ve reformulations are not faster than
the original model, the performance of the reformulations
produced by our method (300:1 and 111:A) is comparable
to that of the hand-written model.

8 Interesting Applications of the Method
At its heart, our method first groups cores by their common
explanation patterns (Step 2), and finds the conditions that
make those explanations generate cores rather than feasible
constraints (Step 3.1). While this is done for cores, the same
can be done for any set of infeasible constraints.

A particularly interesting application is explainability.
Consider answering query “why didn’t you perform task X

Instance O H N NW 300:1 111:A
30 27 5 0.52 0.18 2.11 1.60 0.15 0.71
30 43 10 6.18 0.67 10.99 5.07 0.70 1.17
30 44 8 1.49 0.24 1.66 1.24 0.30 1.07
60 19 6 158.72 4.26 180.32 84.36 0.79 3.63
60 28 3 TO 2.43 TO TO 3.86 5.72
60 36 8 TO 4.64 TO TO 4.60 10.36
90 10 10 TO TO TO TO TO TO
90 19 7 TO TO TO TO TO TO
90 48 4 TO TO TO TO TO TO

Table 2: Flatten and solve times for models of rcpsp-wet

after task Y?” for an instance of rcpsp-wet by modifying it
to force X be executed before Y. If it is is infeasible, a useful
system will try to find MUSes to help users understand why.
This would be easier if the explanation for each MUS (first
part of Step 2.2) is also displayed. Further, often, the number
of MUSes found is large enough to overwhelm users. This
could be avoided if they can be grouped according to their
explanation patterns (Step 2) reducing their number and, ex-
plaining the failure. Consider, for example, an instance of
rcpsp-wet where the user asked to perform a task before
five of its predecessors. It would be clearer for the user to
get one MUS pattern and its explanation indicating that task
needs to be after all its predecessors, than five MUSes each
for one predecessor. Further, MUS enumeration could be
sped up if patterns among MUSes could be detected and
the search modified to forbid more MUSes that match the
pattern. We will explore such applications in future work.

9 Conclusions and Future Work

This paper shows how to automate the process defined
in (Leo et al. 2020) to use the cores inferred by a core-guided
solver to reformulate a model in such a way it is likely to
speed up solving for many model instances. To achieve this,
the method instruments the model to find the constraints and
associated explanations that caused each core, group cores
that share the same explanation pattern, and train a scoring
function to predict how useful it is to group the objective
terms associated to the cores in that explanation pattern. The
results of applying the method to the rcpsp-wet model
show that the performance of the reformulated model (1)
depends on the instances used to detect cores, find the as-
sociated explanation patterns and train the scoring function;
and (2), in the case of rcpsp-wet, it is comparable to that
of a hand-crafted reformulation.

Future work includes exploring several accuracy/speed
trade-offs such as the use of more than one MUS per core
(particularly disjoint ones), more complex MSGs, and dif-
ferent instance selection strategies. We also plan to explore
other uses of the method, with special focus on applications
related to constraint explainability. Finally, we would like
to explore the relationship between the new variables intro-
duced by our system with the theory of backdoors (Williams,
Gomes, and Selman 2003).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8071

Acknowledgements
This work was partly funded by Australian Research Coun-
cil grant DP180100151. This material is based on research
partially sponsored by the DARPA Assured Neuro Symbolic
Learning and Reasoning (ANSR) program under award
number FA8750-23-2-1016.

References
Andres, B.; Kaufmann, B.; Matheis, O.; and Schaub, T.
2012. Unsatisfiability-based optimization in clasp. In
Proc. ICLP Technical Communications, volume 17 of
LIPIcs, 211–221. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik.
Ansótegui, C.; Bonet, M. L.; Gabàs, J.; and Levy, J. 2012.
Improving SAT-Based Weighted MaxSAT Solvers. In
Proc. CP, volume 7514 of Lecture Notes in Computer Sci-
ence, 86–101. Springer.
Berg, J.; and Järvisalo, M. 2017. Weight-Aware Core Ex-
traction in SAT-Based MaxSAT Solving. In Proc CP, vol-
ume 10416 of Lecture Notes in Computer Science, 652–670.
Springer.
Charnley, J.; Colton, S.; and Miguel, I. 2006. Automatic
Generation of Implied Constraints. In Proceedings of the
2006 conference on ECAI 2006: 17th European Conference
on Artificial Intelligence August 29 – September 1, 2006,
Riva del Garda, Italy, 73–77. Amsterdam, The Netherlands,
The Netherlands: IOS Press. ISBN 1-58603-642-4.
Fourer, R.; Gay, D. M.; and Kernighan, B. W. 1987. AMPL:
A mathematical programming language. AT & T Bell Lab-
oratories Murray Hill, NJ 07974.
Frisch, A. M.; Grum, M.; Jefferson, C.; Martı́nez, B.; and
Miguel, H. I. 2007. The design of ESSENCE: a constraint
language for specifying combinatorial problems. In IJCAI-
07, 80–87.
Gange, G.; Berg, J.; Demirović, E.; and Stuckey, P. J. 2020.
Core-guided and Core-boosted Search for CP. In Hebrard,
E.; and Musliu, N., eds., Proceedings of Seventeenth In-
ternational Conference on Integration of Artificial Intelli-
gence and Operations Research techniques in Constraint
Programming (CPAIOR2020), 205 – 221. Springer.
Hentenryck, P.; Flener, P.; Pearson, J.; and Ågren, M. 2005.
Compositional Derivation of Symmetries for Constraint Sat-
isfaction. In Zucker, J.-D.; and Saitta, L., eds., Abstrac-
tion, Reformulation and Approximation, volume 3607, chap-
ter LNCS, 234–247. Springer Berlin Heidelberg. ISBN 978-
3-540-27872-6.
Leo, K.; Gange, G.; de la Banda, M. G.; and Wallace, M.
2020. Core-Guided Model Reformulation. In Simonis, H.,
ed., Principles and Practice of Constraint Programming,
445–461. Cham: Springer International Publishing.
Leo, K.; Mears, C.; Tack, G.; and Banda, M. G. d. l. 2013.
Globalizing Constraint Models. In Schulte, C., ed., CP, vol-
ume 8124 of LNCS, 432–447. Springer. ISBN 978-3-642-
40626-3.
Leo, K.; and Tack, G. 2017. Debugging Unsatisfiable Con-
straint Models. In Salvagnin, D.; and Lombardi, M., eds.,

CPAIOR 2017, volume 10335 of Lecture Notes in Computer
Science. Springer. ISBN 978-3-319-59775-1.
Marques-Silva, J.; Argelich, J.; Graça, A.; and Lynce, I.
2011. Boolean lexicographic optimization: algorithms &
applications. Annals of Mathematics and Artificial Intelli-
gence, 62(3-4): 317–343.
Mears, C.; Garcia De La Banda, M.; Wallace, M.; and De-
moen, B. 2015. A method for detecting symmetries in con-
straint models and its generalisation. Constraints, 20(2):
235–273.
Morgado, A.; Dodaro, C.; and Marques-Silva, J. 2014. Core-
Guided MaxSAT with Soft Cardinality Constraints. In
O’Sullivan, B., ed., Principles and Practice of Constraint
Programming, 564–573. Cham: Springer International Pub-
lishing. ISBN 978-3-319-10428-7.
Nethercote, N.; Stuckey, P. J.; Becket, R.; Brand, S.; Duck,
G. J.; and Tack, G. 2007. MiniZinc: Towards a Standard CP
Modelling Language. In Bessiere, C., ed., CP, volume 4741
of LNCS, 529–543. Springer. ISBN 978-3-540-74969-1.
Ohrimenko, O.; Stuckey, P. J.; and Codish, M. 2007. Propa-
gation = Lazy Clause Generation. In Bessiere, C., ed., Pro-
ceedings of the 13th International Conference on Principles
and Practice of Constraint Programming, volume 4741 of
LNCS, 544–558. Springer. ISBN 978-3-540-74969-1.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine Learning in Python. Journal of Machine
Learning Research, 12: 2825–2830.
Rendl, A. 2010. Effective Compilation of Constraint Mod-
els. Ph.D. thesis, Univ. of St Andrews.
Van Hentenryck, P. 1999. The OPL Optimization Program-
ming Language. Cambridge, MA, USA: MIT Press. ISBN
0-262-72030-2.
Williams, R.; Gomes, C. P.; and Selman, B. 2003. Backdoors
to Typical Case Complexity. In Proceedings of the 18th
International Joint Conference on Artificial Intelligence,
IJCAI’03, 1173–1178. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.
Zeighami, K.; Leo, K.; Tack, G.; and de la Banda, M. G.
2018. Towards Semi-Automatic Learning-Based Model
Transformation. In Hooker, J. N., ed., Principles and Prac-
tice of Constraint Programming - 24th International Confer-
ence, CP 2018, Lille, France, August 27-31, 2018, Proceed-
ings, volume 11008 of Lecture Notes in Computer Science,
403–419. Springer.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8072

