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Abstract
The Alternating Direction Method of Multipliers (ADMM)
has gained significant attention across a broad spectrum
of machine learning applications. Incorporating the over-
relaxation technique shows potential for enhancing the con-
vergence rate of ADMM. However, determining optimal al-
gorithmic parameters, including both the associated penalty
and relaxation parameters, often relies on empirical ap-
proaches tailored to specific problem domains and contextual
scenarios. Incorrect parameter selection can significantly hin-
der ADMM’s convergence rate. To address this challenge, in
this paper we first propose a general approach to optimize the
value of penalty parameter, followed by a novel closed-form
formula to compute the optimal relaxation parameter in the
context of linear quadratic problems (LQPs). We then exper-
imentally validate our parameter selection methods through
random instantiations and diverse imaging applications, en-
compassing diffeomorphic image registration, image deblur-
ring, and MRI reconstruction.

1 Introduction
ADMM is a versatile algorithm with applications spanning
various domains, including compressed sensing (Hou, Li,
and Zhang 2022; Liu et al. 2023), image processing (Chan,
Wang, and Elgendy 2016; Yazaki, Tanaka, and Chan 2019),
and machine learning (Li et al. 2022; Zhou and Li 2023).
Although introduced in the 1970s for optimization, its roots
can be traced back to the 1950s as a method to solve el-
liptic and parabolic partial difference equations (Boyd et al.
2011). ADMM leverages the convergence strengths of the
method of multipliers and the decomposability property of
dual ascent. It is particularly useful in addressing convex op-
timization of considerable scale, beyond the capacity of con-
ventional solvers. The ongoing research and outstanding al-
gorithmic performance have significantly contributed to its
widespread adoption, highlighting the growing importance
of exploring its theoretical properties, particularly regarding
parameter selection (Ghadimi et al. 2014; Wang et al. 2019).

ADMM, from a technical viewpoint, decomposes com-
plex optimization problems into manageable sub-problems,
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often solvable using point-wise, closed-form solvers
(Candès et al. 2011; Lu et al. 2016; Thorley et al. 2021;
Jia et al. 2021; Duan et al. 2023). It proceeds by itera-
tively updating these sub-problems alternately until a so-
lution meeting the original problem’s objectives and con-
straints is attained. Within ADMM, the augmented Lagrange
function incorporates penalty terms associated with the con-
straints. The penalty parameters determine the strength of
these penalty terms. As highlighted in (Deng and Yin 2016),
the convergence rate of ADMM is directly impacted by these
penalty parameters. The optimal selection of such parame-
ters can significantly enhance the algorithm’s convergence
rate. However, the lack of a universal method to compute
these parameters optimally remains a challenge.

The convergence rate of ADMM can be further acceler-
ated by leveraging information from prior iterations during
the computation of subsequent iterations. Such a technique
is known as over-relaxation and often used in conjunction
with ADMM (De Pierro and Iusem 1986; Zhang et al. 2020).
Numerous research endeavors have been devoted to defin-
ing appropriate values for the resultant relaxation parameter.
Notably, in the study conducted by (Eckstein 1994), the au-
thors proposed a widely acknowledged empirical range of
values, typically falling within [1.5, 1.8], which however is
not always the case according to our findings in this paper.
Despite a multitude of papers presenting specific guidelines
for selecting this parameter, many real-world application pa-
pers (Stellato et al. 2020; Duan et al. 2023) still resort to
empirically determined values. This reliance on empirical
choices is due to the absence of a straightforward and effi-
cient method that can promptly and optimally determine this
relaxation parameter.

The objective of this paper is to introduce novel methods
for the selection of optimal parameters within both ADMM
and over-relaxed ADMM. As an example, we focus on linear
quadratic problems (LQPs), particularly with applications
tailored to image processing. The theories developed in this
paper could offer valuable insights for addressing other non-
quadratic problems, such as non-smooth L1 optimization.
More specifically, we have identified four key contributions
of this paper, summarized as follows:

• We perform a comprehensive convergence analysis of
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the ADMM algorithm as applied to LQPs, effectively
demonstrating its unconditional convergence within the
context of LQPs. This is achieved by initially convert-
ing the ADMM iterations into its fixed-point iterations,
which facilitates the derivation of the iteration matrix.
Subsequently, we theoretically show that the spectral ra-
dius of the iteration matrix is bounded by 1, regardless of
the value of the penalty parameter.

• We propose a general optimization method for the se-
lection of the optimal penalty parameter in ADMM.
We achieve this by utilizing numerical gradient descent
to minimize the spectral radius of the iteration matrix.
Moreover, in specific scenarios like image deblurring
and MRI reconstruction, we show the existence of an
closed-form solution for accurately determining the opti-
mal penalty parameter within ADMM.

• We establish, for the first time, the existence of an closed-
form solution for determining the relaxation parameter in
over-relaxed ADMM. We find that for any arbitrary value
of the penalty parameter, there exists a corresponding re-
laxation parameter, computed from the closed-form so-
lution, that minimizes the spectral radius of the iteration
matrix. Consequently, we can transform the original joint
optimization problem, with respect to both penalty and
relaxation parameters, into a single-variable optimization
problem focused only on the penalty parameter.

• We verify our proposed parameter selection methods
through random instantiations and practical real-world
imaging applications, encompassing diffeomorphic im-
age registration, image deblurring, MRI reconstruction.
This approach sets us apart from previous methods, e.g.,
(Ghadimi et al. 2014), that only depend on simulated data
for validation purpose.

2 Related Works
(Boley 2013) studied the convergence rate of ADMM for
both quadratic and linear programs via the spectral analy-
sis based on a novel matrix recurrence. While acknowledg-
ing that the penalty parameters of ADMM can influence
its convergence rate, they did not offer guidance on how
to select these parameters. To address this issue, (Ghadimi
et al. 2014) reformulated ADMM into a fixed-point iteration
system to analyze the impact of parameters on the conver-
gence rate of ADMM and over-relaxed ADMM. By mini-
mizing the spectral radius of the iteration matrix, they suc-
cessfully derived optimal penalty and relaxation parameters
for quadratic programming. (Teixeira et al. 2015) extended
the applicability of Ghadimi’s theory by transforming the
distributed quadratic programming into an equivalent con-
strained quadratic programming. (França and Bento 2016)
introduced a method that determines the relaxation param-
eter for semi-definite programming through the analysis of
the problem’s condition number.

(Boyd et al. 2011) suggested an empirical parameter up-
date strategy for ADMM’s penalty parameters. The idea is
to maintain a proportional relationship between the norms
of primal and dual residuals, ensuring their convergence to

zero within a specified factor. (Xu, Figueiredo, and Gold-
stein 2017) proposed an adaptive ADMM approach by ap-
plying the Barzilai-Borwein spectral method to the original
ADMM algorithm. Their method allows to dynamically up-
date penalty parameters in each iteration based on primal
and dual residuals. Inspired by this work, (Mavromatis, Foti,
and Vavalis 2020) introduced a weighted penalty parameter
ADMM algorithm for solving optimal power flow problems.
Their approach involves the computation of absolute values
from the admittance matrix and the Hessian matrix in each
ADMM iteration. These values are then used to recalibrate
the penalty parameters, aiming to refine the accuracy of pa-
rameter estimation.

However, certain limitations exist in the current research
landscape. Firstly, many methods (Boyd et al. 2011; Xu,
Figueiredo, and Goldstein 2017; Wohlberg 2017; Mhanna,
Verbič, and Chapman 2018) rely on primal and dual residu-
als for estimating optimal parameters during iterations, but
there often lack closed-form or explicit pre-iteration param-
eter selection approaches. Secondly, existing parameter se-
lection techniques, based on the spectral analysis of the iter-
ation matrix (Ghadimi et al. 2014; França and Bento 2016),
predominantly focus on specific problem types (e.g., stan-
dard quadratic problem with L being an identity matrix).
These methods requiring the spectral radius of the iteration
matrix to be computable in an explicit form, which restricts
their applicability and generalization ability (Stellato et al.
2020). In this paper, we will propose effective methods to
address these two challenges.

3 Methodology
This section starts with the introduction of essential nota-
tions utilized in the subsequent formulations. We proceed
by presenting the concept of fixed-point iterations, which
serves as a foundational element for both the convergence
analysis and parameter selection processes. Following this,
we proceed to apply both ADMM and its over-relaxed vari-
ant to address LQPs. In the final stages, we propose novel
methods for selecting the penalty and relaxation parameters.
This is accomplished through the conversion of ADMM and
over-relaxed ADMM into the form of fixed-point iterations,
followed by the utilization of spectral radius analysis.

3.1 Notations and Fixed-Point Iterations
Let R and C denote respectively the set of real and complex
numbers, R++ denote the set of positive numbers, Sn×n de-
note the set of n × n matrices, and In (or I) be the n × n
identity matrix. For the square matrix T and its correspond-
ing eigenvalues λ′s, we define the nth smallest eigenvalue
of T as λn(T ), and the spectral radius of T as ρ(T ).

Fixed-point iterations involve the iterative process below
uk+1 = Tuk + c,

where T ∈ Sn×n is known as the iteration matrix, u ∈ Rn,
and c ∈ Rn. It was shown in (Ghadimi et al. 2014) that the
convergence factor ζ of this fixed-point iteration system is
equal to ρ(T ). Here, the convergence factor ζ is defined as

ζ ≜ sup
k:uk ̸=u∗

∥uk+1 − u∗∥
∥uk − u∗∥

,
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where ∥ · ∥ represents the L2 norm, and u∗ denotes the op-
timal solution (i.e., so-called ground truth). The sequence
{uk} is Q-sublinear if ζ = 1, Q-linear if ζ < 1, and
Q-superlinear if ζ = 0. Throughout this paper, the let-
ter Q has been omitted when referring to the convergence
rate. For linearly convergence sequences with ζ ∈ (0, 1),
if we define tϵ as the smallest iteration count to ensure
∥uk+1−u∗∥ < ε for all k > tε, then tε can be calculated by
(log(ε)− log(σ)) / log(ζ), where σ denotes the worst case
distance between u0 and u∗, i.e., ∥u0 − u∗∥ < σ. This sug-
gests that by reducing the value of the the convergence fac-
tor ζ, the iteration count can be decreased, leading to a faster
convergence rate.

3.2 ADMM for LQPs
The LQPs for image processing we study in this paper have
the following structure

min
u

µ

2
∥Au− f∥2 + 1

2
∥Lu∥2, (1)

where µ ∈ R++ is the regularization parameter; A ∈ Rm×n

or Cm×n (m ≤ n) is an encoding matrix; u ∈ Rn or Cn

is the unknown vector; f ∈ Rm or Cm is the input vector;
and L ∈ Rn×n is a regularization matrix. The value of µ
determines the output quality, whereas smaller values of µ
tend to yield smoother results. By differentiating (1) with
respect to u and setting the respective derivative to zero, we
have the following linear system(

µATA+ LTL
)
u = µAT f. (2)

When addressing the solution of Equation (2), two primary
challenges arise: Firstly, in certain scenarios like our MRI
reconstruction and diffeomorphic image registration, where(
µATA+ LTL

)
may be positive semi-definite, the process

of inverting such a matrix becomes unfeasible. Secondly,
in the context of higher-dimensional cases like 3D medi-
cal image registration (Thorley et al. 2021), even if the ma-
trix

(
µATA+ LTL

)
remains positive definite, the process

of matrix inversion becomes computationally expensive. To
address these two issues, we propose to use ADMM to han-
dle the original problem (1), as an alternative to using the
normal equation to solve (2).

To apply ADMM, we introduce an auxiliary variable w ∈
Rn, a Lagrangian multiplier b ∈ Rn, and a penalty parame-
ter θ ∈ R++, transforming (1) into the following augmented
Lagrange function

L(u,w; b) = µ

2
∥Au−f∥2+1

2
∥Lw∥2+ θ

2
∥w−u−b∥2. (3)

To optimize (3) with ADMM, we need to decompose it into
two sub-problems with respect to u and w and then update
the Lagrangian multipliers b until the process converges. The
following Algorithm 1 outlines the optimization process us-
ing ADMM. In Algorithm 1, we have wk+1 = (LTL +
θI)−1(θuk + θbk) and uk+1 = (µATA + θI)−1(θwk+1 −
θbk + µAT f). It is worth noting that while matrix inversion
is applied to both variables wk+1 and uk+1, fast solvers ex-
ist in specific cases due to the distinctive structure of ATA
and LTL. For instance, in diffeomorphic image registration,

Algorithm 1: ADMM for LQPs
Input: matrices A and L; parameter µ and θ
Initialize: u0 and b0

Repeat:
wk+1 = argmin

w

1
2∥Lw∥

2 + θ
2∥w − uk − bk∥2

uk+1 = argmin
u

µ
2 ∥Au− f∥2 + θ

2∥w
k+1 − u− bk∥2

bk+1 = bk + uk+1 − wk+1

until some stopping criterion is met

ATA takes on a rank-1 form, allowing efficient inversion
through the Morris-Sherman equation (Bartlett 1951; Thor-
ley et al. 2021). Similarly, in MRI reconstruction and diffeo-
morphic image registration, LTL can be effectively diago-
nalized using the discrete Fourier transformation basis func-
tions (Goldstein and Osher 2009; Duan et al. 2023). Con-
sequently, the application of ADMM to solve LQPs offers
distinct advantages.

Theorem 1. In order to determine the optimal penalty pa-
rameter θ∗ in ADMM automatically, we need to transform
the ADMM iterations in Algorithm 1 into the following fixed-
point iteration system, solely with respect to the variable u

uk+1 = (I +Q)uk −
(
µATA+ θI

)−1 (
θµAT f

)
, (4)

where I +Q is the iteration matrix with Q defined as

Q = θ(µATA+ θI)−1((LTL+ θI)−1(θI − µATA)− I).
(5)

Next, given a value of µ, we can prove

ρ (I +Q) ≤ 1, (6)

regardless of the value of θ. As per Section 3.1, we know that
the convergence factor ζ of Algorithm 1 is equal to the spec-
tral radius of the iteration matrix. As such, ζ is bounded by
1, meaning Algorithm 1 or (4) is unconditionally convergent.

Proof. Detailed derivations proving the equivalence be-
tween Algorithm 1 and the fixed-point iteration system (4),
as well as Inequality (6), have been provided in Appendix 1
of the arXiv version of this paper.

Next, we search the optimal parameter θ∗ that minimizes
the convergence rate of Algorithm 1. Since ζ is dependent on
the penalty parameter θ, the objective is to identify a value
for θ that minimizes the convergence factor ζ. For this, we
define the following minimization problem

min
θ

ζ (θ) , (7)

where ζ (θ) = ρ (I +Q(θ)). From Inequality (6) in Theo-
rem 1 we have λi (Q(θ)) ∈ [−1, 0], and we can also easily
derive λi (I +Q(θ)) = 1 + λi (Q(θ)). As such, we have
ρ (I +Q(θ)) = 1 + λn (Q(θ)), with which the minimiza-
tion problem (7) can be converted to

min
θ

λn (Q(θ)) . (8)

Though the minimization problem (8) is a one-
dimensional optimization problem with respect to only θ,
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Algorithm 2: Over-relaxed ADMM for LQPs
Input: matrices A and L; parameter µ, θ and α
Initialize: u0 and b0

Repeat:
wk+1 = argmin

w

1
2∥Lw∥

2 + θ
2∥w − uk − bk∥2

uk+1 = argmin
u

µ
2 ∥Au− f∥2 + θ

2∥αw
k+1 − αuk − bk∥2

bk+1 = bk + uk+1 − αwk+1 − (1− α)uk

until some stopping criterion is met

computing θ∗ directly is however not trivial. This is the rea-
son why a general applicable method for optimizing θ is still
lacking. Previous works (Ghadimi et al. 2014; Teixeira et al.
2015) were based on the assumption that λn(Q) can be ex-
plicitly written for spectral analysis. However, in practical
applications such as diffeomorphic registration in Section
4.2, this is a significant limitation. To address this challenge,
we propose to use numerical gradient descent to optimize θ

θk+1 = θk − t∇λn

(
Q(θk)

)
, (9)

where t denotes the step size. In this study, we employed the
central finite difference scheme to compute gradients. Com-
pared to the one-sided finite difference method, this scheme
offers better numerical stability. It also provides more accu-
rate estimation of gradients. It is important to note that this
gradient descent method is general, as it does not need to
know the explicit form of the eigenvalues of matrix Q. The
definition for the central finite difference is given by

∇λn

(
Q(θk)

)
≈

λn

(
Q(θk + η)

)
− λn

(
Q(θk − η)

)
2η

,

where η represents a small value. In our experiments, we set
this value within the range of 10−5 to 10−3, which led to a
satisfactory convergence of the gradient descent (9).

3.3 Over-Relaxed ADMM
Over-relaxation technique can be used in the ADMM algo-
rithm and further accelerate the convergence rate of ADMM.
This method is achieved by introducing an additional relax-
ation parameter α and replacing wk+1 in Algorithm 1 with
αwk+1 +(1− α)uk. Algorithm 2 outlines the optimization
process of the augmented Lagrange function (3) using over-
relaxed ADMM.

To investigate the influence of relaxation parameter α on
convergence, we transform Algorithm 2 into its fixed-point
iteration system. Such a conversion approach is in line with
Proof of Theorem 1 in Appendix. The resulting fixed-point
iteration system is given as follows

uk+1 = (I + αQ)uk − α
(
µATA+ θI

)−1 (
θµAT f

)
.

Then we can analyze the spectral radius of this matrix to
determine the optimal relaxation parameter α∗.
Theorem 2. The optimal α∗ can be directly calculated using
the following closed-form formula

α∗ = − 2

λ1 (Q (θ)) + λn (Q (θ))
, (10)

where Q(θ) is a matrix whose entries reply on the value of θ.
As per Equation (10), we can compute the optimal relaxation
parameter α∗ as long as a value of θ is given.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

|1
+

i(Q
)|

*

|1 + 1(Q)|
|1 + i(Q)| i {2, . . . , n 1}
|1 + n(Q)|
Reflection Point
Intersection Point

Figure 1: Relationship between |1 + αλi(Q)| and the value
of α. The slope of each line before reflection is λi (Q). The
spectral radius before the intersection point is governed by
the green line, while after the reflection, it is determined by
the reflected red line. The intersection point corresponds to
the optimal α∗ as well as the minimum spectral radius of the
iteration matrix I + αQ.

Proof. To prove Theorem 2, we begin with the following
two-dimensional joint optimization problem

min
θ,α

ζ (θ, α) , (11)

where ζ (θ, α) = ρ(I+αQ(θ)). In order to express the spec-
tral radius in terms of the eigenvalue structure, we first de-
rive the equality λi (I + αQ(θ)) = 1+αλi (Q(θ)), and the
spectral radius ρ(I + αQ(θ)) is then defined as

max
i

|1 + αλi (Q(θ)) |, ∀i ∈ {1, ..., n}. (12)

From Inequality (6) in Theorem 1, we know λi (Q(θ)) ∈
[−1, 0]. Based on this and (12), we plot Figure 1 to demon-
strate the correlation between the absolute eigenvalue of the
iteration matrix and the relaxation parameter. From this fig-
ure, it is straightforward to express the spectral radius as the
following piecewise function

ρ =

{
1 + αλn(Q), if − 1− αλ1(Q) ≤ 1 + αλn(Q)

−1− αλ1(Q), if − 1− αλ1(Q) > 1 + αλn(Q)
,

(13)
where with a slight abuse of notation, we use ρ to represent
ρ(I + αQ(θ)).

Once we have (13), our objective is to minimize it in or-
der to enhance the convergence rate. From Figure 1 again, it
becomes evident that the smallest spectral radius is located
at the intersection point where the following equality holds

−1− αλ1(Q) = 1 + αλn(Q),

from which α can be computed using a closed-form solution
as follows

α = − 2

λ1 (Q (θ)) + λn (Q (θ))
,

which exactly verifies the validity of Equation (10).

If now we plug the optimal α∗ into (13), we can convert
the joint minimization problem (11) into the following min-
imization problem

min
θ,α

ζ (θ, α) ⇒ min
θ

λ1(Q (θ))− λn(Q (θ))

λ1 (Q (θ)) + λn (Q (θ))
, (14)
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which is a single-variable optimization problem with respect
to only θ. This problem can be minimized with a numerical
gradient descent method similar to Equation (9). Once θ∗

is found, α∗ can be computed using the closed-form solu-
tion (10). It is worth noting that even if θ is not optimal, α
computed via (10) can still accelerate convergence.

4 Experiments
In this section, we will first test the generalization ability of
our proposed parameter selection method through random
instantiations. Following that, we will apply the proposed
parameter selection methods to diffeomorphic image regis-
tration, image deblurring, and MRI reconstruction. We will
compare our optimal ADMM algorithm and over-relaxed
variant (oADMM) with gradient descent (GD), gradient de-
scent with Nesterov’s acceleration (GD-N) (Nesterov 1983;
Bartlett and Duan 2021), gradient descent with Nesterov’s
acceleration and restart (GD-NR) (O’donoghue and Candes
2015; Bartlett and Duan 2021), as well as conjugate gra-
dient (CG). In all of our experiments, we chose the step
size in gradient-based methods using the Lipschitz constant
of the corresponding problem. It is worth noting that opti-
mal values for penalty parameters can be determined analyt-
ically for image deblurring and MRI reconstruction prob-
lems. However, for image registration numerical gradient
descent is required to compute these parameters.

4.1 Generalization Ability
Emphasizing that our approach is model-driven, the selec-
tion of parameters1 relies on the matrices A and L in the
minimization problem (1). As such, the measure of general-
ization ability lies in how effectively our method performs
as A and L undergo variations, which is in contrast to data-
driven methods, where the generalization ability is often ex-
amined using multiple different datasets.

We presented Figure 2 to demonstrate the generalization
ability of our approach, where the analysis is based on 50
random instantiations of A ∈ R200×50 and L ∈ R200×50

while keeping f and µ fixed. For ADMM, we employed
numerical gradient descent to minimize (8) with respect to
θ. For oADMM, we utilized numerical gradient descent to
minimize (14) with regard to θ, whilst the optimal value of
α was calculated using (10) once θ∗ was found. We note
that the optimal values of θ for both ADMM and oADMM
are similar and that the optimal values of α are not within
[1.5, 1.8] as suggested in (Eckstein 1994). As evident from
Figure 2, the calculated optimal values consistently result
in faster convergence rates for both ADMM and oADMM,
reaffirming the generalization ability of our proposed param-
eter selection methods.

4.2 Diffeomorphic Image Registration
Computing a diffeomorphic deformation can be treated as
modelling a dynamical system (Beg et al. 2005), given by
an ordinary differential equation (ODE): ∂ϕ/∂t = vt(ϕt),

1The parameter selection also relies on the regularization pa-
rameter µ which we fix as a constant in this paper.
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Iterat ion
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= 1, = * + 200

= 1, = * + 400

= 1, = * 200

= 1, = * 400

= * [2.5, 2.7] , = *

0 25 50 75 100 125 150 175 200

Iterat ion

35

30

25

20

15

10

5

0

lo
g
(|
|u
k

u
*
||
)

= 1, = * = 512

= 1, = * + 60

= 1, = * + 120

= 1, = * 60

= 1, = * 120
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Figure 2: Left: Convergence rates of different methods and
parameter values based on 1 random instantiation of A and
L. Right: Convergence rates based on 50 random instantia-
tions of A and L. The solid lines represent the average over
50 instantiations. The algorithm is ADMM when α = 1, and
oADMM when α = α∗.

where ϕ0 = Id is the identity transformation and vt indi-
cates the velocity field at time t (∈ [0, 1]). The ODE can be
solved by Euler integration, in which the deformation field
ϕ is calculated as the compositions of a series of small de-
formations, defined as ϕ = (Id+

vtN−1

N )◦ · · · ◦ (Id+ vt1

N )◦
(Id +

vt0

N ). If the velocity fields vti are sufficiently small
whilst satisfying some smoothness constraints, the resulting
composition is a diffeomorphic deformation.

To compute the velocity fields whilst satisfying these dif-
feomorphic constraints, we minimize the following linear
quadratic problem (Thorley et al. 2021)

min
vx,vy

µ

2
∥⟨Ix, vx⟩+ ⟨Iy, vy⟩+ It∥2+

1

2
∥∇vx∥2+

1

2
∥∇vy∥2,

(15)
where Ix, Iy ∈ Rn denote the spatial derivatives of the im-
age; It ∈ Rn represents the temporal derivative of the im-
age; and vx, vy ∈ Rn denote the velocity field in x and y
directions. In this case, by setting

ATA =

(
diag(⟨Ix, Ix⟩) diag(⟨Ix, Iy⟩)
diag(⟨Iy, Ix⟩) diag(⟨Iy, Iy⟩)

)
∈ R2n×2n

and

LTL =

(
∇T∇ 0
0 ∇T∇

)
∈ R2n×2n,

we can use numerical gradient descent to compute optimal
parameters for both ADMM and oADMM.

In Figure 3, we show results obtained through the in-
troduced diffeomorphic registration technique. We examine
the impact of the penalty parameter θ in both ADMM and
oADMM, and then evaluate the convergence efficiency of
different algorithms. Given a pair of images (depicted as
source and target in the figure), we can compute a deforma-
tion (shown in the bottom left panel) that ensures a positive
Jacobian determinant (shown in the bottom middle panel)
for all pixel positions. In the top right panel, we show the
correlation between the spectral radius of the iteration ma-
trix and θ in both ADMM and oADMM. As can be seen,
there exists an unique optimal value where the spectral ra-
dius is minimized. As such, when using numerical gradi-
ent descent, it is possible to find the optimal value of θ that
can considerably reduce iteration counts. This panel also il-
lustrates that θ∗, producing the smallest spectral radius for
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Figure 3: Illustration of diffeomorphic image registration re-
sults, visualization of the correlation between spectral radius
and θ, and comparison of convergence rates of algorithms.
The x-axes of the two plots in the third column represent the
values of θ and iteration numbers, respectively.

oADMM, closely aligns with that of ADMM. Furthermore,
due to the two-loop2 iterative nature of diffeomorphic image
registration, the data term of (15) undergoes slight changes
at each iteration of the outer loop. These changes however
do not significantly influence the value of θ∗, as evident
from the top right panel. Therefore, given a specific value
of µ, it is sufficient to use gradient descent to search θ∗ for
each outer iteration. Finally, in the bottom right panel, con-
vergence rates among different algorithms are compared. As
is evident, the parameter-optimized oADMM algorithm re-
mains the fastest in terms of convergence rate.

4.3 Image Deblurring
In this application, we look at a phantom test image. The
image went through a Gaussian blur of size 7 × 7 and stan-
dard deviation 2, followed by an additive zero-mean white
Gaussian noise with standard deviation 10−4. The top left
and middle panels of Figure 4 depict the original and blurred
images, respectively. To deblur the image we minimize the
following problem

min
u

µ

2
∥Ku− f∥2 + 1

2
∥u∥2, (16)

where K ∈ Sn×n is the matrix representing the blur oper-
ator, u ∈ Rn is the vectorized unknown clean image, and
f ∈ Rn is the vectorized input image. By setting A = K
and L = I , the matrix Q in (5) for this application has the
form of
Q = θ(µKTK + θI)−1((I + θI)−1(θI − µKTK)− I).

Since K is a convolution matrix derived from the Gaus-
sian kernel function, the eigenvalues of KTK can be calcu-
lated using the two-dimensional discrete Fourier transform
(Capus and Brown 2003). With λ

(
KTK

)
, we can derive

the maximum eigenvalues of Q as

λn(Q) = − θ + θµλi(K
TK)

θ2 + µλi(KTK) + θ + θµλi(KTK)
, (17)

2We did not use the pyramid implementation as in (Thorley
et al. 2021), so we ended up with a two-loop algorithm compris-
ing inner ADMM/oADMM iterations and outer warping iterations.
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Figure 4: Demonstration of image deblurring effects and
convergence rates of different algorithms. The x-axis and y-
axis of each plot in the second row represent iteration num-
bers and log(∥uk − u∗∥), respectively.

where i is either 1 or n. Since λn(Q) in this case can be ex-
plicitly written, we can derive closed-form solutions for the
parameters in ADMM and over-relaxed ADMM. In Theo-
rem 3, we give their optimal parameters.
Theorem 3. Firstly, to tackle the optimization problem (16)
using ADMM, given a regularization parameter µ ∈ R++,
the optimal value of the penalty parameter in ADMM can be
expressed in closed form

θ∗ =

{√
µ, if µ ≤ 1

1, otherwise
,

which was derived by minimizing the value of λn(Q) in (17).
If over-relaxed ADMM is used to tackle the optimization

problem (16), the optimal penalty and relaxation parameters
are given by

θ∗ = 1 and α∗ = 2,

among which θ∗ was determined by minimizing the problem
(14) with λ1(Q) and λn(Q) defined in (17), and then α∗ was
computed using (10) with θ∗.

Proof. Detailed derivations have been given in Appendix 2
of the arXiv version of this paper.

In Figure 4, the top right panel displays the deblurred im-
age from oADMM (comparable results were achieved with
ADMM), which closely resembles the original image. Note
that we set the regularization parameter µ to 103 for this
experiment. The bottom left and middle panels demonstrate
that with the optimal θ∗ and α∗ there is a clear enhancement
over the model’s convergence, and that the optimal values
of θ for both ADMM and oADMM are the same in this
case. The bottom right panel shows that ADMM, CG, and
oADMM exhibit superior performance than GD, GD-N, and
GD-NR. Upon a detailed examination from the zoomed-in
window, CG addresses this quadratic problem very well, al-
beit still needing multiple iterations to attain convergence.
In contrast, oADMM achieves convergence in a single step3,
outperforming all compared algorithms.

3The spectral radius in this case is close to zero, leading to a
superlinear convergence rate.
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4.4 MRI Reconstruction
To reconstruct MR images we minimize the problem

min
u

µ

2
∥DFu− f∥2 + 1

2
∥∇u∥2, (18)

where D ∈ Rm×n (m < n) is the sampling matrix; F ∈
Cn×n is the Fourier transform matrix; u ∈ Cn is a complex-
valued MR image stacked as a column vector; f ∈ Cm is the
undersampled k-space data; ∇ denotes the first-order gradi-
ent operator. By setting A = DF and L = ∇, the matrix Q
in (5) for this application has the form of

Q = θ(µM1+θI)−1((∇T∇+θI)−1(θI−µM1)−I), (19)

where M1 = FTDTDF . Due to the use of periodic bound-
ary conditions, ∇T∇ can be efficiently diagonalized in the
form of FTGF , where G is a diagonal matrix. Equation (19)
can be simplified to FTM2F , where M2 is given as

M2 = θ(µDTD + θI)−1((G+ θI)−1(θI − µDTD)− I),

which is a diagonal matrix. The eigenvalues of FTM2F are
simply the values along the diagonal of M2. If we define
λi(G) as the ith smallest eigenvalue of G, and di as the di-
agonal value of DTD at the position where λi(G) is indexed
from G, the maximum eigenvalues of Q can be derived as

λn(Q) = − θλi(G) + θµdi
θ2 + µdiλi(G) + θλi(G) + θµdi

,

where i ∈ {1, ..., n}. Since λn(Q) can be written explic-
itly, we can derive the closed-form solution for θ in ADMM.
In Theorem 3, we present the optimal value for this param-
eter. If over-relaxed ADMM is used to solve (18), a closed-
form solution still exists for θ. It is however too cumbersome
to derive them in this case. As such, the penalty parameter
θ in over-relaxed ADMM was searched by gradient descent,
and once θ∗ was found the optimal relaxation parameter α∗

can be directly obtained using Equation (10) with θ∗.
Theorem 4. To tackle the optimization problem (18) using
ADMM, given a regularization parameter µ ∈ R++, the
optimal value of the penalty parameter in ADMM can be
expressed in closed form

θ∗ =



√
µa, if µ ≤ 2b− a√

µab
µ+a−b , if 2b− a < µ ≤ a

µ, if a < µ ≤ b√
µcb

µ+c−b , otherwise

,

where a, b and c are defined as follows

a = λ1((DTD)⊙G)

b = λ1((1−DTD)⊙G),

c = λx((DTD)⊙G)

where ⊙ is the hadamard product; λ1((DTD) ⊙ G) de-
notes the smallest eigenvalue of (DTD) ⊙ G, excluding
the eigenvalues corresponding to zero entries on the diag-
onal of DTD; λ1((1 − DTD) ⊙ G) denotes the smallest
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Figure 5: Demonstration of MRI reconstruction results and
comparison of convergence rates among algorithms. The x-
axis and y-axis of each plot in the second row represent iter-
ation numbers and log(∥uk − u∗∥), respectively.

eigenvalue of (1 − DTD) ⊙ G, excluding the eigenvalues
corresponding to zero entries on the diagonal 1 − DTD;
and λx((DTD) ⊙ G) represents the largest eigenvalue of
(DTD) ⊙ G, excluding the eigenvalues corresponding to
zero entries along the diagonal of DTD.

Proof. Detailed derivations have been given in Appendix 3
of the arXiv version of this paper.

In Figure 5, we reconstruct a cardiac MR image from k-
space. The original image (displayed in the top left panel)
was first transformed into k-space using the Fourier trans-
formation. Then 50% of the data there was taken using a
cartesian sampling mask, displayed in the original image.
This undersampled data was then corrupted by an additive
zero-mean white Gaussian noise with standard deviation 1 to
form f in (18). The reconstruction (top right), despite some
slight blurring due to the smooth regularization, clearly en-
hances image quality compared to that displayed in the top
middle panel, which is a direct reconstruction of f using the
inverse Fourier transformation. The bottom left and middle
panels of this figure illustrate that the choice of θ and α has a
significant impact on the convergence rate and that our pro-
posed methods result in faster convergence. Thanks to the
utilization of these optimal parameters, we observe a clear
superiority of our ADMM and oADMM over GD, its accel-
erated variants, and CG in terms of convergence efficiency.

5 Conclusion
In this paper, we presented automated techniques for select-
ing optimal penalty and relaxation parameters within the
framework of ADMM and over-relaxed ADMM for linear
quadratic problems. Our approaches involve a numerical
gradient descent method for estimating the penalty param-
eter and a novel closed-form solution for determining the
optimal relaxation parameter. We verified the generalizabil-
ity and efficacy of these approaches through random instan-
tiations and real-world imaging applications.
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