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Abstract

Trajectory similarity computation serves as a fundamental
functionality of various spatial information applications. Al-
though existing deep learning similarity computation meth-
ods offer better efficiency and accuracy than non-learning so-
lutions, they are still immature in trajectory embedding and
suffer from poor generality and heavy preprocessing for train-
ing. Targeting these limitations, we propose a novel frame-
work named KGTS based on knowledge graph grid embed-
ding, prompt trajectory embedding, and unsupervised con-
trastive learning for improved trajectory similarity compu-
tation. Specifically, we first embed map grids with a GRot
embedding method to vigorously grasp the neighbouring re-
lations of grids. Then, a prompt trajectory embedding net-
work incorporates the resulting grid embedding and extracts
trajectory structure and point order information. It is trained
by unsupervised contrastive learning, which not only allevi-
ates the heavy preprocessing burden but also provides excep-
tional generality with creatively designed strategies for pos-
itive sample generation. The prompt trajectory embedding
adopts a customized prompt paradigm to mitigate the gap
between the grid embedding and the trajectory embedding.
Extensive experiments on two real-world trajectory datasets
demonstrate the superior performance of KGTS over state-
of-the-art methods.

Introduction
GPS sensors emit continued points of location data, the se-
quence of which assembles a trajectory that describes the
spatial path of a moving object over time. The similarity
between two trajectories of different objects or different
time segments of the same object is a fundamental measure
for many real-world applications, such as animal migration
analysis (Li et al. 2011), transportation optimization (Song
et al. 2014), route retrieval (Ranu et al. 2015), and traffic pre-
diction (Li et al. 2023; Lin et al. 2023; Chang et al. 2023).
Therefore, the trajectory similarity computation has always
been a research hotspot for decades (Yang et al. 2021; Yao
et al. 2019; Evans et al. 2013; van Kreveld and Luo 2007).
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Various trajectory similarity computation approaches
have been investigated such as dynamic time warping
(DTW) (Yi, Jagadish, and Faloutsos 1998), edit distance
on real sequences (EDR) (Chen, Özsu, and Oria 2005),
and Hausdorff distance (Atev, Miller, and Papanikolopoulos
2010). Despite some success, they suffer from a common
deficiency of high computation complexity (Li et al. 2018).
Specifically, since two trajectories need to be aligned point
by point, the computation complexity attains a quadratic
form O(l2), where l is the mean length of the trajectories.
This flaw hinders their practical applications to long trajec-
tories and large datasets.

Although previous methods have achieved good descrip-
tion about similarity, there are still some problems in certain
aspects. First, existing deep learning similarity computation
work requires heavy preprocessing. Specifically, these stud-
ies generally rely on supervised learning, which requires the
similarity measure of each pair of trajectories as the super-
vision label (Yang et al. 2021; Han et al. 2021; Yang et al.
2022b). However, the similarity measures are not directly
available in the raw dataset and thus have to be calculated
during the dataset preprocessing, requiring extensive com-
putation. Assuming there are q trajectories in the dataset,
each of which has l points, the complexity of computing
the similarities of all trajectory pairs is thus quadratic as
O(q2l2). Therefore, it is costly to achieve a ready-to-use
dataset when the raw dataset has numerous long trajectories.

Second, a realistic dataset cannot contain trajectory pat-
terns exhaustively. The supervision based methods find pos-
itive samples in the dataset, however, there are still some
trajectories whose positive samples are not really similar to
themselves. In addition, distance of location is considered
more than similarity of structure in previous methods, and
having high similarity of structure is in a same paragraph.
Therefore, a large dataset with diverse trajectory relation-
ships is essential to a model with high generality. However,
it is unrealistic to handle a real-world dataset with exhaus-
tive relationships of trajectories.

In addition to the limitations, there is still room to improve
the performance of existing solutions. Some studies (Li et al.
2018; Yao et al. 2019) do not use dedicated modules to em-
bed three sorts of information of a trajectory, namely loca-
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tion, structure, and the order of points, while others rely on
out-of-dated modules or ineffective frameworks.

In light of the above considerations, we attempt to ad-
dress the above issues. For the first problem, we adopt an
unsupervised method to reduce the burden of computing
labels, which is achieved through contrastive learning. For
the second matter, just ordinary data augmentation (Deng
et al. 2022) has great limitations and is not sufficient for
similarity calculation. We propose a new method to allevi-
ate the shortcomings of unsupervised methods. Specifically,
this enhancement method aims at generating positive sam-
ples which are similar to the original trajectories. To extract
spatial information accurately, we consider the relationship
between grids and attempt to acquire better grid representa-
tions through knowledge graph embedding methods.

In this paper, we propose KGTS, a brand-new framework
for improved trajectory similarity computation. Specifically,
based on the grid-based approach (Li et al. 2018; Zhang
et al. 2011), we first innovatively employ a novel relation
model GRot (Grid RotateE) to embed the grids of the entire
space to encourage neighbouring grids to have similar em-
bedding. Next, to alleviate the incompatibility from pretrain
to fintune, we propose a prompt trajectory embedding mod-
ule that has a novel attentive prompt scheme to effectively
incorporate the grid embedding into the final trajectory em-
bedding. The trajectory embedding module has a GCN to
model the trajectory structure and a GRU to extract the or-
der of points in a trajectory. We train the prompt trajectory
embedding module with unsupervised contrastive learning
so that supervision labels and consequently the costly pre-
processing are not required. Besides, three novel strategies
of positive sample generation for contrastive learning are de-
vised to simulate diverse cases of highly similar trajectories
thus enhancing the model’s generality.

The main contributions are summarized as follows:
• First, we propose a framework KGTS including grid em-

bedding and prompt trajectory embedding through unsu-
pervised training scheme.

• Second, we propose the GRot for trajectory grid embed-
ding so that spatially neighbouring grids are encouraged
to have similar embedding, and a prompt trajectory em-
bedding module for trajectory embedding that properly
grasps the location, structure and points order informa-
tion of trajectories.

• Third, we train the prompt trajectory embedding module
using unsupervised contrastive learning with newly de-
signed positive sample generation strategies.

• Finally, we conduct extensive experiments on two large
benchmark datasets to justify our design and its superior
performance to state-of-the-art studies.

Related Work
Trajectory Similarity Computation Trajectory similar-
ity computation methods can roughly be divided into
two categories, namely, knowledge-based methods and
learning-based methods. The computational complexity of
knowledge-based methods, such as longest common sub-
sequence (LCSS) (Vlachos, Gunopulos, and Kollios 2002),

Dynamic Time Warping (DTW) (Yi, Jagadish, and Falout-
sos 1998), edit distance with real penalty (ERP) (Chen and
Ng 2004), and edit distance on real sequences (Chen, Özsu,
and Oria 2005) (EDR), heavily depends on the length of tra-
jectories. With the rapid development of machine learning
especially the deep learning technique in various areas (Le-
Cun, Bengio, and Hinton 2015), an early study is t2vec (Li
et al. 2018; Yao et al. 2019), which employs a seq2seq model
to consider the order of points for trajectory embedding. T3S
(Yang et al. 2021) is a combination of the grid-based method
and the coordinate-based method that alleviates the impact
of noisy points and measurement errors. A recent work GTS
(Han et al. 2021) represents the trajectories with a two-step
process, i.e., a skip-gram point embedding step and a GNN-
based trajectory embedding step for good performance.

Prompt Learning In this work, we adopt a two-step pro-
cess: the first step embedding trajectory points and the sec-
ond step embedding the whole trajectories. Since these two
steps are separately trained and the first step does not com-
ply with the final trajectory embedding objective, we adopt
the prompt learning (Liu et al. 2021) scheme to facilitate the
second-step learning process. Prompt learning is a technique
that autonomously tunes the downstream learning process
to fit a pre-trained model through prompts. In this light, re-
cent studies propose to learn the prompt together with the
downstream model (Gao, Fisch, and Chen 2021; Jiang et al.
2020), which are revised from early studies (Brown et al.
2020; Raffel et al. 2020).

Contrastive Learning Contrastive learning has recently
shown profound performance and influence on various tasks
(Rethmeier and Augenstein 2021; Yu et al. 2022; Yang et al.
2022a). A key aspect of contrastive learning is to create pos-
itive and negative samples. SimCSE (Gao, Yao, and Chen
2021) utilizes the smile dropout technique to generate pos-
itive samples from input sentences. Deep InfoMax (Hjelm
et al. 2019) creates positive and negative samples by manip-
ulating local and global features of images. CBT (Sun et al.
2019a) masks a part of a video clip and uses the masked
videos as positive samples.

Preliminary
Problem Statement
DEFINITION 1 (Trajectory). A trajectory T is formed as a
sequence of points, i.e., T = ⟨p1, p2,...,pn⟩, where pi = (lati,
loni) is the i-th point associated with a tuple of latitude lati
and longitude loni, and n is the length of the trajectory.
DEFINITION 2 (Trajectory Similarity). Given two trajec-
tories Ti and Tj , their distance dist(Ti, Tj) is used as the
similarity measure sim∗(Ti, Tj) to assess the similarity be-
tween Ti and Tj . Then, Tj is similar to Ti, if sim∗(Ti,
Tj) < ϵ or ∀ Tp ∈ D, sim∗(Ti, Tj) ≤ sim∗(Ti, Tp), where
D is a set of trajectories.

Given a specific similarity measure sim∗(·, ·), our goal is
to find an optimal trajectory embedding function f∗

e (·) :

f∗
e = argmin

fe

E
D
|sim∗(fe(Ti), fe(Tj))− sim∗(Ti, Tj)|,

(1)
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where Ti, Tj ∈ D. Note that sim∗(·, ·) can be any distance
metric such as Euclidean distance for trajectory computing
or Cosine distance for representation computing.

Grid-based Trajectory Embedding Realistic trajectories
often have non-uniform sampling rates and noisy points. For
example, GPS receivers may miss data or have erroneous
recordings due to poor satellite visibility. One of the prob-
lems with trajectory embedding is how to embed points. Fol-
lowing previous work (Yang et al. 2021; Li et al. 2018),
we adopt the grid-based trajectory embedding for handling
varying sampling rates and noise in trajectories. Specifically,
the space (e.g., a map) is partitioned into m grids of equal
size (see the map in Figure 1), and a trajectory point falling
into a grid is represented by the grid entity gi. Next, a trajec-
tory T can be represented by a sequence of grids:

T = ⟨p1, p2, ..., pn⟩ ⇒ T ≈ ⟨g1, g2, ..., gn⟩, (2)

where gi ∈ [1,m] is the gird ID of the i-th trajectory grid.
Then, the trajectory embedding problem is converted to em-
bed the grid sequence of a trajectory.

The Proposed KGTS Method
As shown in Figure 1, our KGTS has two main modules: a
grid embedding module that embeds all grids in the entire
space and a prompt trajectory embedding module that em-
beds specific trajectories. In addition, we propose an unsu-
pervised contrastive learning scheme for efficient trajectory
similarity learning.

GRot Gird Embedding
Knowledge graph embedding is the task of learning repre-
sentations of graph nodes considering both their entities and
relations. Recent research has well demonstrated its success
for various downstream tasks (Ji et al. 2021; Huang et al.
2019; Sun et al. 2018). The task of grid embedding is to
embed space grids about their locations and relations, so
knowledge graph embedding naturally fits this goal. Specif-
ically, we regard the entire space as a graph and its grids
as nodes. We only consider one relation between grids, that
is direct connection; One grid is considered to have direct
connections to its eight immediately neighbouring grids in
the space. The notable RotatE model (Sun et al. 2019b) is
chosen and further modified to better adapt to our case.

The RotatE model originates from the Euler’s identity and
represents the head h and tail t entity of an edge/relation in
a graph with embedding in the complex space. The mapping
from h to t induced by relation r is realised by an element-
wise rotation:

t = h ◦ r, (3)
where h, t ∈ Ck are embeddings in the complex space of
the head and tail entities, r ∈ Ck is the embedding of the
relation between h and t, and ◦ is the Hadamard (or element-
wise) product. The rj is of the form eiΘr,j = cosΘr,j +
i sinΘr,j and thus |rj | = 1. Therefore, the original RotatE
score function that measures how distant two nodes h, t are
relative to their relation r is defined as:

d(h, t) = ∥h ◦ r − t∥. (4)

In the context of knowledge graph for grid embedding,
h and t are grid embeddings in the complex space, i.e.,
h, t = cosΦj + i sinΦj , where Φj is randomly initialized
and learnable hidden embedding for grid gj . Unlike con-
ventional knowledge graph embedding problems, we argue
that the graph of the map space additionally requires that the
neighbouring grids in terms of geographical locations have
similar embedding. It is thus expected that h ◦ r = t ◦ r and
consequently the score function in Eq. 4 is modified as:

dr(h, t) = ∥h ◦ r − t ◦ r∥, (5)
where r = cos Θ + i sinΘ parameterized by Θ is the rela-
tion of direct connection of two grids. With this customized
RotatE score function, both grids and grid relations can be
well embedded. Same as the original RotatE model, Θ ∈ Rk

is randomly initialized and learned together with Φj using
the self-adversarial negative sampling approach (Sun et al.
2019b) and the following loss function (Sun et al. 2019b):

L =− log σ(γ − dr(h, t))

−
o∑

j=1

p(h
′
j , r, t

′
j) log σ(dr(h

′
j , t

′
j)− γ),

(6)

where γ is a fixed margin and σ(·) is the sigmoid function.
p(h

′

j , r, t
′

j) is the negative sampling probability of the j-th
negative sample (h

′

j , r, t
′

j), which is the grid embedding pair
that does not have the relation r, i.e., the two grids are not
directly connected.

After training the GRot, we achieve the embedding of
each grid as the Hadamard product between hi and r:

Φ̃i = hi ◦ r, where Φ̃i ∈ Rk. (7)

Prompt Trajectory Embedding
We now present how to use the achieved grid embedding
Φ̃i to produce the final trajectory embedding. The grid em-
bedding embeds all grid entities regarding the grid locations
in the entire map space without considering trajectory infor-
mation. However, our goal is to embed specific trajectories.
Thus, there is a gap between these two embedding objec-
tives. Inspired by the recent success of prompt learning (Liu
et al. 2021), we employ a prompt to instruct the trajectory
embedding module to unify the two embedding objectives.

Prompt Design Different from the original prompt learn-
ing for NLP, which designs human-understandable prompts,
we propose to learn the prompt together with the trajec-
tory embedding network. Moreover, we propose an atten-
tive prompt concatenation scheme that concatenates prompt
and grid embedding (Eq. 7) with attentive weights. Then, the
prompt grid embedding Pi is formally denoted as:

Pi = [ αi
1U ; αi

2Φ̃i ]

αi
1 = UW1, α

i
2 = Φ̃iW2,

(8)

where αi
∗ is the attentive concatenation coefficient, U ∈

R1×u is the prompt vector, and W1 ∈ Ru×1 and W2 ∈ Rk×1

are the learnable weights to achieve αi
∗. Thus, Pi ∈ Ru+k.

Through this design, the subsequent trajectory embedding
can properly incorporate grid embedding under the instruc-
tion of a learnable attentive prompt.
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Figure 1: Overall framework of KGTS. Left: a trajectory and its grid-based representation; Right: the KGTS network structure.
[gr1, ..., g

r
n] is the grid sequence of a trajectory Ti; [gv1 , ..., g

v
n] is the grid sequence of a negative/positive sample for Ti.

Trajectory Embedding Besides the gird embedding, it is
also critical to embed the structure (or the shape) of trajecto-
ries to enhance the spatial connections of grids. We appeal to
the graph convolutional network (GCN) (Kipf and Welling
2017) for this task, which is known for its extraordinary ca-
pability to embed spatial structures. We consider all grids in
the map as nodes vi to construct a graph G for GCN. In addi-
tion, two grids are regarded as adjacent, if they are directly
connected in any trajectories in the dataset. Specifically, the
edge set of G is E = {(vi, vj)}, where vi and vj (i.e., gi and
gj) are directly connected in any trajectories.

With the graph G and the prompt grid embedding P =
[P1, P2, ..., Pm] from Eq. 8 for nodes, we have one GCN
layer embedding as:

H = σ(D̃− 1
2 ÃD̃− 1

2PW )

Ã = A+ I, D̃ii =
∑

j
Ãij ,

(9)

where A ∈ Rm×m is the adjacency matrix, I is an identity
matrix, W ∈ R(u+k)×(u+k) is the weight matrix, and σ(·) is
a nonlinear activation function.

The element of the adjacency matrix A is:

Aij =

{
1 if (vi, vj) ∈ E,

0 otherwise.
(10)

Through GCN embedding and graph G, the grid connection
patterns in trajectories can be well embedded.

We finally proceed to embed the order of grids in trajecto-
ries. Since a trajectory is generated by a moving object, the

order of its locations is a critical characteristic for match-
ing trajectories. Among many existing sequence order em-
bedding models, the gated recurrent unit (GRU) (Cho et al.
2014) is widely adopted due to its superiority. We thus uti-
lize it to embed the trajectory grid order:

z = GRU(H(T )|Ψ), (11)

where z ∈ Rd is the last step of the GRU, d is the GRU
embedding size and Ψ is the parameters of GRU. We take z
as the final trajectory embedding.

Unsupervised Contrastive Similarity Learning
Given the trajectory embedding network, two trajectories are
fed to achieve their embeddings, which are then used to cal-
culate a particular similarity measure. Existing approaches
need to compute labels to conduct supervised learning dur-
ing preprocessing. This learning scheme suffers from two
limitations: (1) the preprocessing for generating supervision
labels is costly (the computation complexity is quadratic to
the number and length of trajectories); (2) the training set
cannot well contain adequate cases where two trajectories
are highly similar, so the resulting similarity computation
model has poor generality.

In light of the above limitations and the recent success of
the SimCSE model (Gao, Yao, and Chen 2021), we employ
unsupervised contrastive learning for training the prompt
trajectory embedding module. The basic idea of contrastive
learning is to minimize the distance between similar samples
while maximizing the distance between dissimilar samples.
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(a) (b) (c)

Figure 2: Examples of the positive sample generation strate-
gies. (a) whole trajectory strategy; (b) partial trajectory
strategy-end; (c) partial trajectory strategy-mid.

We adopt the following infoNCE loss (Oord, Li, and Vinyals
2018) for training:

Li = − E
M

log esim(zi,z
+
i )/τ

esim(zi,z
+
i )/τ +

∑N
j=1 e

sim(zi,z
−
j )/τ

 , (12)

where Li is the loss for the trajectory Ti, zi is the embedding
of the trajectory Ti, z+i and z−i are embeddings of the posi-
tive samples T+

i (i.e., similar trajectories to Ti) and the neg-
ative samples T−

i (i.e., dissimilar trajectories to Ti), respec-
tively, τ is a hyperparameter that controls the convergence
speed, and sim(·, ·) is the similarity computation function
(e.g., Euclidean distance computation). There are N nega-
tive samples and M positive samples for each trajectory.

As shown in Figure 1, a trajectory and its positive/nega-
tive samples are fed into the KGTS encoder to compute their
similarities and thus the loss in Eq. 12. We use the other tra-
jectories in a training batch other than Ti as its negative sam-
ples; we argue that the trajectories in the training set are not
able to properly cover enough cases where two trajectories
are highly similar, so we suggest creative strategies (as de-
tailed in next section) to generate positive samples from the
original trajectories.

Positive Sample Generation This task is to create simi-
lar trajectories to a base trajectory. Existing studies only use
simple operations, such as randomly dropping grids from the
base trajectory (Li et al. 2018), while the positive samples
generated by these simple operations are nearly identical to
the base trajectory, narrowing down the possible cases of
similar trajectories. For example, two trajectories are actu-
ally similar when they have identical structures but are on
adjacent paths; however, this case cannot be simulated and
identified by existing solutions.

Before introducing our new strategies of positive sample
generation, we first present the basic operations used to im-
plement the strategies. These operations include copy which
duplicates a grid at the same position, add which creates a

new grid to one of the eight immediately neighbouring po-
sitions of a base grid, delete which deletes a grid, and move
which moves a grid to one of its eight immediate neighbours.

With the above basic operations, we now present the pro-
posed positive sample generation strategies as follows. The
basic operations are denoted as italic. We present exemplar
trajectories generated by the strategies in Figure 2.

• Whole trajectory strategy. We use the whole trajectory
as the base to generate positive samples. There are three
steps: (1) we first copy base grids to create a new grid
sequence (purple grids in Figure 2a) which completely
overlaps the original one (the blue grids in Figure 2a); (2)
we then delete a random amount of consecutive grids (red
grids in the upper left corner in Figure 2a) on one end of
the new grid sequence and add the same number of con-
secutive grids (yellow grids in the lower right corner in
Figure 2a) on the other end; (3) finally, we randomly move
(grids in the dashed rectangle in Figure 2a) and delete sev-
eral grids (the red grids in the middle of the trajectory
in Figure 2a). This strategy can generate positive samples
with minimized dissimilarities to the original trajectory.

• Partial trajectory strategy-end. In addition to generating
positive samples that are similar to the entire base trajec-
tory, we also generate positive samples that are only sim-
ilar to part of the base trajectory. As shown in Figure 2b,
a base sequence is first divided into three equal parts, then
we apply the whole trajectory strategy to one of the two
end parts to generate positive samples, but there are no
delete operations in the second step to keep the positive
samples having a comparable length to the base trajectory.

• Partial trajectory strategy-mid. To create the positive
samples that are on adjacent paths of the base trajectory,
we apply the move operation to the grids of the middle
one of the three aliquots of the base trajectory (Figure 2c).
Then, we apply the whole trajectory strategy without the
delete operation in the second step to the new sequence of
grids to enhance the diversity of positive samples.

Overall Training Process
There are two modules in KGTS that are trained in two un-
supervised learning phases, respectively. The first module is
the GRot for grid embedding with trainable hidden vectors
{Φi}mi=1 and relation embedding parameter Θ. These param-
eters are trained using loss function Eq. 6 and are fixed to
produce grid embedding {Φ̃i}mi=1 for the subsequent trajec-
tory embedding. Next, we train the prompt trajectory em-
bedding module using the loss function Eq. 12 to learn the
prompt vector U , weight matrix W∗, and GRU parameters
Ψ. After fully training KGTS, the embedding of a trajectory
can be achieved through Eq. 11. Note that the trajectory em-
bedding can be used for different similarity measures and
we choose cosine similarity in this work.

Experiments
Experimental Setup
Dataset We adopt two popular large benchmark datasets
for trajectory analysis in our experiments, namely GeoLife
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and Porto. (1) The GeoLife dataset (Zheng, Xie, and Ma
2010) contains trajectories recorded over five years from 182
users in the city of Beijing, China. The time interval between
two successive points is about five seconds. We discard tra-
jectories under 2km and cut the trajectories above 5km as
done for the Porto dataset. (2) The Porto dataset (Moreira-
Matias et al. 2016) contains trajectories recorded over one
year from 442 taxis in the city of Porto, Portugal. The time
interval between two consecutive points is 15 seconds. Fol-
lowing conventional research (Yao et al. 2019), we discard
trajectories under 2km and randomly cut the trajectories
above 5km into trajectories between 2km and 5km long. For
both datasets, we randomly chose trajectories to keep the
training, validation, and test ratio approximately as 1:1:1.

Implementation Details We divide the geographical
space into 1000 × 1300 grids for the GeoLife dataset and
140× 280 grids for the Porto dataset. The interval of the lat-
itude and longitude are both 0.001. We first train the GRot
module using the loss function in Eq. 6 to obtain the grid
embedding. The margin γ in Eq. 6 is set to 12. We then train
the trajectory embedding module using unsupervised con-
trastive learning with the loss function in Eq. 12. The hyper-
parameter τ in Eq. 12 is set to 0.05. Both phases are trained
with the Adam optimizer and a learning rate of 0.0001. All
experiments are conducted with GeForce RTX 3090 GPU.

Evaluation Metrics Following existing studies (Han et al.
2021), we use the Top-k hitting ratio to measure the perfor-
mance of trajectory similarity computation,

HR@K =
1

| Dt |
∑
τ∈Dt

| LP
τ @K

⋂
LR
τ |

| LR
τ |

(13)

where τ represents a specific trajectory; Dt is the test set;
LR
τ is the set of the Top-k similar trajectories in the training

set for the given trajectory τ , and LP
τ @K is the set of the

Top-k similar trajectories predicted by our approach for τ .

Baselines We compare our method with the following ap-
proaches:(1) SRN (Pei, Tax, and van der Maaten 2016) uses
a Siamese recurrent network for sequence similarity com-
putation. (2) t2vec (Li et al. 2018) is also an unsupervised
approach, which adopts a seq2seq model and a customized
positive sample generation method for unsupervised train-
ing. (3) NeuTraj (Yao et al. 2019) uses a spatial attention
memory unit to train the similarity computation model. (4)
T3S (Yang et al. 2021) jointly considers both coordinates
and grid entities to train the trajectory embedding model.
(5) GTS (Han et al. 2021) uses a modified skip-gram module
and a GNN for improved POI embedding; an LSTM is also
used to embed the trajectory points order information. (6)
CL-TSim (Deng et al. 2022) also adopts the skip-gram mod-
ule and LSTM to gather grid sequences’ information with
contrastive learning to narrow similar trajectories’ represen-
tation. (7) TMN (Yang et al. 2022b) combines points across
trajectories and considers not only individual trajectory se-
quence information, but also interaction between trajectories
to reach state-of-the-art.

Dataset Method HR@1 HR@5 HR@10

GeoLife

SRN 0.3363 0.4257 0.4624
t2vec 0.363 0.3761 0.3184

NeuTraj 0.4113 0.53 0.5823
T3S 0.4273 0.5362 0.5843
GTS 0.4327 0.4962 0.5102

CL-TSim 0.3233 0.3448 0.3027
TMN 0.4290 0.5092 0.5517

KGTS (Ours) 0.5123 0.579 0.5942

Porto

SRN 0.3503 0.5079 0.5606
t2vec 0.4105 0.5056 0.5138

NeuTraj 0.4103 0.5465 0.591
T3S 0.3923 0.5506 0.6109
GTS 0.3987 0.5269 0.578

CL-TSim 0.2973 0.3347 0.3379
TMN 0.401 0.5263 0.586

KGTS (Ours) 0.5244 0.6277 0.6542

Table 1: Comparison results on the GeoLife and Porto
datasets. HR@k denotes the Top-k hitting rate.

Experimental Results
Overal Performance The comparison results are summa-
rized in Table 1 with the best results shown in bold and the
second best results shown in underline. It is demonstrated
that our KGTS remarkably outperforms all baselines. We
note that KGTS outperforms the baselines more significantly
on smaller Top-k hit rates. This is due to the fact that our
positive sample generation strategies for contrastive learning
can properly cover enough cases of highly similar trajecto-
ries, while existing approaches can only learn from datasets
that do not contain diverse cases of similar trajectories.

Compared with other models, we find that although some
baselines (i.e., SRN, NeuTraj, T3S, and TMN) use power-
ful modules to capture the trajectory structures, they do not
have specific modules for trajectory point embedding. By
contrast, our KGTS has the GRot to well embed the trajec-
tory grids and uses a prompt trajectory embedding to prop-
erly incorporate grid embedding into the subsequent trajec-
tory structure and the grid order embedding.

Similarly, the t2vec and CL-TSim also use the same un-
supervised learning scheme as KGTS. However, their posi-
tive sample generation strategy only considers the cases of
mostly overlap. This strategy is quite limited, as it is com-
mon that trajectories are partially similar in real datasets. In
contrast, we suggest three positive sample generation strate-
gies that cover more general cases of similar trajectories.

Besides the better performance of trajectory similarity
computation, our method uses zero time to prepare su-
pervision labels, while supervised learning baselines take
around one hour per 5,000 trajectories and the cost increases
quadratically with the number and length of trajectories.

Ablation Study We perform an ablation study to justify
our design choices for KGTS. In particular, we compare
KGTS with the following variants: (1) w/o GRot: it does
not use the proposed GRot model for grid embedding. (2)
w/ original RotatE: it utilizes the original RotatE instead of
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Figure 3: Visualization of the case studies. The red trajectories are the query trajectories; the blue trajectories are the Top-3
ground truth similar trajectories; the black trajectories are the Top-3 similar trajectories found by KGTS.

Method HR@1 HR@5 HR@10
w/o GRot 0.3243 0.4211 0.4468

w/ original RotatE 0.5067 0.6151 0.6445
w/o prompt 0.5096 0.6227 0.6514
w/o GCN 0.4853 0.5951 0.6304
w/o GRU 0.152 0.2231 0.2553

KGTS (ours) 0.5244 0.6277 0.6542

Table 2: Ablation study on the Porto dataset.

(a) dimension of k (b) dimension of u (c) dimension of d

Figure 4: Hyperparameter sensitivity analysis.

our proposed modified one to study its effectiveness. (3) w/o
prompt: it does not employ a prompt to instruct the trajectory
embedding to incorporate grid embedding. The grid embed-
ding Φ̃i is directly input into the trajectory embedding mod-
ule. (4) w/o GCN: it does not apply the GCN to trajectory
structure embedding, and the prompt grid embedding is di-
rectly fed into the GRU. (5) w/o GRU: it does not consider
the order of points in a trajectory. The embeddings from the
GCN are summed up to form a single trajectory embedding.

Table 2 reports the ablation study results. We make the
following observations: (1) The w/o GRot variant is lack of
calculation of inter grid relationships, so its effectiveness
is relatively low. (2) KGTS is better than the w/ original
RotatE variant demonstrating the superior capability of the
GRot. (3) Prompt learning is originally proposed to adapt
a pre-trained network to downstream tasks with the help of
a prompt. We adopt this idea to better utilize grid embed-
ding for the final trajectory embedding, and the results that
w/oprompt is inferior to KGTS well justify our design. (4)
The w/o GCN variant shows superior performance to the
w/o GRot variant. This suggests that properly embedding
the grids in the space is more important. Thus, our GRot
module for grid embedding is an essential innovation. (5)
The w/o GRU variant is the worst variant with considerably
lower hitting rates. This draws two conclusions: the trajec-
tory point order information is critical to the trajectory em-
bedding; simply adding up the embedding of each grid in
a trajectory into a single embedding is far from enough to

produce a favourable trajectory embedding.

Case Study We randomly choose one query trajectory
from the test set and find its similar trajectories from the
training set using our KGTS. We visualize the obtained Top-
3 trajectories from KGTS and ground truth Top-3 similar tra-
jectories in Figure 3. For the query trajectory T3111 (in Fig-
ure 3), our approach successfully finds all the Top-3 similar
trajectories, although there is a slight deviation between the
order of the three trajectories and the ground truth. This still
indicates that under unsupervised conditions, the similarity
between trajectories can be accurately calculated.

Hyperparameter Sensitivity Analysis Three hyperpa-
rameters influence our KGTS performance the most: grid
embedding dimension k, prompt dimension u, and trajec-
tory embedding dimension d. We show the parameter sensi-
tivity analysis on the Proto dataset in Figure 4. We observe
that the hitting rate increases as the grid embedding dimen-
sion k grows from 32 to 128 and decreases at 256. A larger
embedding dimension can embed more information, while
a too-large value would make it overfitting and thus poorly
generalised. The hitting rate rises sharply as prompt dimen-
sion u doubles from 16 to 32 and decreases slightly after-
wards. This manifests the importance of the prompt scheme
for trajectory embedding. For the trajectory embedding di-
mension d, the hitting rate increases straightly as it climbs
from 64 to 512. We do not try larger dimensions due to ex-
ponentially increasing computational costs. The best trajec-
tory embedding dimension (i.e., 512) is larger than the best
grid embedding dimension (i.e., 128). This is due to the fact
that the trajectory embedding needs to encompass richer in-
formation than the grid embedding.

Conclusion
In this paper, we target the trajectory similarity computation
task and manage to mitigate the limitations of current deep
learning solutions. We propose KGTS which has a modified
RotatE module for grid embedding and a prompt trajectory
embedding module for the final trajectory embedding. Fur-
thermore, we present three novel positive sample generation
strategies for unsupervised contrastive trajectory embedding
learning, which can well cover extensive cases of highly
similar trajectories. Thus, the proposed approach manifests
improved generality and does not require the costly prepro-
cessing for generating supervision labels as done by exist-
ing deep learning solutions. Extensive experiments on two
benchmark datasets well demonstrate the effectiveness of
each KGTS component.
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