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Abstract

Graph Neural Networks (GNNs) show promising results for
graph tasks. However, existing GNNs’ generalization ability
will degrade when there exist distribution shifts between test-
ing and training graph data. The cardinal impetus underlying
the severe degeneration is that the GNNs are architected pred-
icated upon the I.I.D assumptions. In such a setting, GNNs
are inclined to leverage imperceptible statistical correlations
subsisting in the training set to predict, albeit it is a spurious
correlation. In this paper, we study the problem of the general-
ization ability of GNNs in Out-Of-Distribution (OOD) settings.
To solve this problem, we propose the Learning to Reweight
for Generalizable Graph Neural Network (L2R-GNN) to en-
hance the generalization ability for achieving satisfactory per-
formance on unseen testing graphs that have different distribu-
tions with training graphs. We propose a novel nonlinear graph
decorrelation method, which can substantially improve the out-
of-distribution generalization ability and compares favorably
to previous methods in restraining the over-reduced sample
size. The variables of the graph representation are clustered
based on the stability of the correlation, and the graph decorre-
lation method learns weights to remove correlations between
the variables of different clusters rather than any two variables.
Besides, we interpose an efficacious stochastic algorithm upon
bi-level optimization for the L2R-GNN framework, which fa-
cilitates simultaneously learning the optimal weights and GNN
parameters, and avoids the overfitting problem. Experimental
results show that L2R-GNN greatly outperforms baselines on
various graph prediction benchmarks under distribution shifts.

Introduction
Graph Neural Networks (GNNs) have achieved state-of-the-
art performances on various graph tasks (Kipf and Welling
2016; Veličković et al. 2017; Xu et al. 2018a), but they as-
sume that the training and testing data are independent and
identically distributed (i.e., i.i.d assumption), which is not
always the case in real-world applications (Chen, Xu, and
Wang 2021; Chen and Wang 2021; Chen, Gai, and Wang
2019; Chen, Wang, and Yin 2021; Gai et al. 2019). This
leads to inadequate out-of-distribution (OOD) generalization
ability, causing significant performance degradation under
distribution shifts (Hu et al. 2020; Wu et al. 2018; Chen et al.
2021).

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

GNNs’ inadequate out-of-distribution generalization is
caused by a spurious correlation between irrelevant features
and category labels in training data (Xiao, Chen, and Wang
2022; Chen et al. 2023b). This correlation varies across distri-
butions and is exploited by GNNs for inference. An example
of spurious correlation is shown in the graph classification
task of the “wheel” motif in Figure 1. In the biased training
dataset, most positive graphs have only “star” motifs added,
leading to a strong correlation between structural features of
“wheel” motifs and “star” motifs. This unexpected correlation
leads to a spurious correlation between the structural features
of “star” motifs and the label “wheel”. The GCN model ex-
ploits this spurious correlation and tends to use “star” motifs
for prediction, making false predictions on negative graphs
with a “star” motif.

To solve the spurious correlation problem caused by the
discrepancy between training and testing distributions, ear-
lier research attempts to train a model with stability guar-
antee through variable decorrelation with sample reweight-
ing, taking model misspecification into consideration (Shen
et al. 2020; Kuang et al. 2020; Lv et al. 2023b; Zhang et al.
2023; Lv et al. 2023a). However, the majority of these ap-
proaches are suggested in linear settings. GNNs combine
heterogeneous data from node features and graph topological
structures, resulting in the existence of intricate and unrec-
ognized non-linear relationships across representations (Fan
et al. 2021; Li et al. 2021). Non-linear dependencies on graph
data cannot be removed using linear sample reweighting ap-
proaches. Recent studies propose non-linear decorrelation
methods for graph tasks (Fan et al. 2021; Li et al. 2021).
They attempt to eliminate the dependencies between all the
variables of the graph representation through a set of learned
sample weights. However, such a demanding aim might result
in an excessively small sample size, which hampers the gen-
eralization ability of GNNs (Martino, Elvira, and Louzada
2017; Llorente et al. 2022; Zhang et al. 2022). Moreover,
these non-linear decorrelation methodologies on graph data
suffer from overfitting problems due to the additional hyper-
parameters, leading to difficulties in achieving convergence.

We suggest that not all correlations should be eliminated,
in contrast to prior techniques (Fan et al. 2021; Li et al. 2021),
which aggressively decorrelate all connections across graph
representations. Such an aggressive objective may result in
an issue with an overly-reduced sample size (Martino, Elvira,
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Figure 1: An illustration of a fictitious correlation in the “wheel” motif graph classification task.

and Louzada 2017; Llorente et al. 2022), which hampers the
generalization ability of GNNs. Taking the graph classifica-
tion task in Figure 1 as an example, although varied variables
may be used to characterize the “wheel” motif’s graph struc-
ture and the features of nodes; they function as an integrated
whole, and these relationships remain stable across datasets
with varied or unknown distribution shifts. The significant
correlations between the variables in the “wheel” and the
“star” due to the selection bias seen in the biased training
dataset. Such ”spurious” relationships, however, cannot be
used in OOD datasets. Therefore, to obtain a precise graph
model, we just need to eliminate the spurious correlations
between two sets of variables (the “wheel” and the “star”).

In this paper, we propose a framework called L2R-GNN
to solve the problem of learning out-of-distribution graph
representation. Our framework includes a nonlinear graph
decorrelation method that reduces correlations between vari-
ables of various clusters. This method is more effective than
previous approaches at controlling the overly-reduced sample
size and can significantly increase the ability to generalize
outside of the distribution. We group the variables of graph
representations based on the stability of their correlations and
learn a set of weights to remove spurious correlations. By do-
ing so, graph neural networks can focus more on the real rela-
tionship between their ground-truth labels and the graph rep-
resentations. We also introduce a stochastic approach based
on bi-level optimization for the L2R-GNN framework. This
approach allows for the simultaneous learning of the optimal
GNN parameters and weights while avoiding the over-fitting
problem. Our experimental results show that L2R-GNN out-
performs baselines on different graph tasks subjected to distri-
bution shifts. Our contributions are as follows: 1) We propose
a novel framework that can learn effective graph represen-
tation under complex distribution shifts and achieve better
performance simultaneously. - We propose a more effective
graph decorrelation method than prior approaches at control-

ling the overly-reduced sample size and increasing the ability
to generalize outside of the distribution. 2) We propose an
effective stochastic algorithm based on bi-level optimization
for the L2R-GNN framework, which enables simultaneously
learning the optimal weights and GNN parameters and avoid-
ing the over-fitting issue. 3) Our extensive empirical results
on several graph benchmarks subjected to distribution shifts
show that L2R-GNN greatly outperforms baselines in terms
of performance.

Related Works
Generalizable Graph Neural Network. Most GNNs meth-
ods are proposed under the IID hypothesis, which states that
the training and testing sets are independently sampled from
the same distribution (Kipf and Welling 2016; Veličković
et al. 2017). However, in practice, it might be challenging to
satisfy this ideal hypothesis. Recent research (Fan et al. 2021;
Li et al. 2021) studies how well GNNs generalize outside
the training distribution. Several studies concentrate on size
generalization ability to make GNNs function effectively on
testing graphs whose size distribution is different from that
of training graphs. SL-DSGCN (Tang et al. 2020) reduces the
degree-related distribution shifts of GCNs for the OOD node
classification task. ImGAGN (Qu et al. 2021) produces a set
of synthetic minority nodes to balance the class distribution
shifts. BA-GNN (Chen, Xiao, and Kuang 2022) is proposed
to learn node representations that are invariant across vari-
ous distributions for invariant prediction. EERM(Wu et al.
2022) helps GNNs take advantage of invariance principles
for prediction on node-level problems. For OOD graph clas-
sification task, some works (Fan et al. 2021; Li et al. 2021)
improve the generalization capability of GNNs via non-linear
decorrelation methods. However, such an aggressive target
might result in an issue with an excessively small sample
size problem(Martino, Elvira, and Louzada 2017; Llorente
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et al. 2022), which hampers the generalization ability of
GNNs. Moreover, these non-linear decorrelation methods on
graph data suffer from over-fitting issues due to the additional
hyper-parameters and are hard to converge.

The Bi-level Optimization. Many works use bi-level op-
timization (Maclaurin, Duvenaud, and Adams 2015; Wang
et al. 2020; Chen, Chen, and Wang 2021; Gai, Chen, and
Wang 2021; Chen et al. 2023a) to improve the performance
of GNNs. They optimize a higher-level learning subject for
lower-level learning. To search the GNN architectures, sev-
eral studies (Xiao et al. 2022; Xiao, Chen, and Wang 2023;
Jiang et al. 2022) optimize a bi-level goal using reinforce-
ment learning. Furthermore, (Xiao et al. 2021) presents bi-
level programming with variational inference to provide a
framework for learning propagation methods. The study (Liu
et al. 2020) attempts to get a parameter initialization that can
swiftly adapt to unfamiliar workloads utilizing gradient in-
formation from the bi-level optimization. Our study focuses
on the capacity of GNNs to generalize in graph-level tasks,
and we use bi-level programming to provide a framework for
learning graph weights while avoiding over-fitting problems.

Method
Problem Formulation. Given the training graphs Gtrain =
{Gn, Yn}Nn=1, where Gn is the n-th graph and Yn is the
corresponding label. Gtest is the testing graph which is unob-
served in the training stage. The task is to learn a graph neural
network GNN(θ) : G → Z and classifier R : Z → Y to
predict the label of testing graphs Gtest, which is under
distribution shifts P(Gtrain) ̸= P(Gtest). Denote graph rep-
resentations Z = GNN(θ,G), Z ⊂ RN×d. Zi,j represent
the i-th row and j-th column in Z.

Graph Reweighting with RFF. Similar to previous works
(Fan et al. 2021; Li et al. 2021), we decorrelate graph rep-
resentations, removing statistical relationships between rele-
vant and irrelevant graph representations. Relevant graph rep-
resentation is invariant across many unknown testing graphs,
while irrelevant representation varies. We remove statistical
dependency of all dimensions in representation Z, defined
as: Z:,i ⊥⊥ Z:,j , ∀i, j ∈ [1, d], i ̸= j. Hypothesis testing
statistics evaluate independence between random variables.
We use the Hilbert-Schmidt Independence Criterion (HSIC)
to supervise feature decorrelation. If the product kZ:,ikZ:,j

is a characteristic kernel, we have HSIC(Z:,i,Z:,j) = 0 ⇔
Z:,i ⊥⊥ Z:,j . However, HSIC is not suitable for training
deep models on large datasets due to high computational
cost. We use the Frobenius norm as the independent testing
statistic for the graph representation space. The partial cross-

covariance matrix is:Σ̂Z:,i,Z:,j
= 1

N−1

∑N
n=1

[(
u(Zn,i)−

1
N

∑N
m=1 u(Zm,j)

)T

·
(
v(Zn,j) − 1

N

∑N
m=1 v(Zm,j)

)]
where HRFF represents the space of a random Fourier func-
tion. Using nu, nv = 5 is reliable enough to assess the inde-
pendence of random variables in real-world situations.

Using the independence criterion, we apply graph reweight-
ing to remove inter-variable dependencies in graph represen-
tation, and RFF to assess overall independence. The learnable

graph weight W = {wn}Nn=1 for the n-th graph Gn in the
training set is wn ∈ R. The partial cross-covariance matrix
after reweighting is:

Σ̂W
Z:,i,Z:,j

=

1

N − 1

N∑
n=1

(wnu(Zni)−
1

N

N∑
m=1

wmu(Zmi)

)⊤

·

(
wnv(Znj)−

1

N

N∑
m=1

wmv(Zmj)

)]
.

(1)

By reducing the squared Frobenius norm of the partial
cross-covariance matrix ∥Σ̂W

Z:,i,Z:,j
∥2F, the optimal graph

weight W∗ reduces inter-variable dependencies in graph
representation:

W∗ = argminW
∑

1≤i<j≤d

∥Σ̂W
Z:,i,Z:,j

∥2F, (2)

Reducing Eq. (1) directly eliminates correlations between
any two variables of graph representation.

These methods are widely used in recent works (Fan et al.
2021; Li et al. 2021). However, this aggressive target in
Eq. (1) hampers GNNs’ generalization capacity due to an
excessively decreased sample size problem.

Graph Decorrelation. We contend that not all correla-
tions need to be eliminated, in contrast to prior approaches
(Fan et al. 2021; Li et al. 2021), which aggressively decorre-
late all dependencies between graph representations. As an
example, consider the graph classification problem given in
Figure 1. Although the features of the nodes and the graph
structure of the “wheel” motif may be represented by several
variables, they function as a single unit and exhibit consis-
tent correlations across various unknown testing graphs. We
can see the significant correlations between the variables in
the “wheel” and the “star” due to the selection bias observed
in the biased training dataset. Such ”spurious” correlations,
however, cannot be used for many unknown testing graphs.
In order to get a correct graph model for such a situation, we
just need to eliminate the erroneous connection between two
sets of data (the “wheel” and the “star”).

Specifically, we propose a novel nonlinear graph decor-
relation method, which is more effective than previous ap-
proaches at limiting the overly-reduced sample size and may
significantly increase the out-of-distribution generalization
ability. The graph decorrelation approach learns a set of
weights to reduce correlations between the variables of vari-
ous clusters rather than any two variables. The variables of
graph representation are grouped depending on the stability
of their correlations. By eliminating erroneous correlations,
the learnt weights enable graph neural networks to focus
more on the real relationship between learned discriminative
graph representations and their ground-truth labels.

We define the dissimilarity of two variables of graph rep-
resentation Z as follows in order to express the invariant
property of two variables through the variance of their corre-
lation:
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Dis (Z:,i, Z:,j) =√√√√ 1

N − 1

N∑
l=1

(
Corr (Zl,i, Zl,j)−Ave− Corr

(
Ẑ:,i, Ẑ:,j

))2

(3)

where Ave− Corr
(
Ẑ:,i, Ẑ:,j

)
represents the average corre-

lation across whole datasets and Corr (Zl,i, Zl,j) represents
the pearson correlation of Zl,i, Zl,j in the lth graph. We load
the full dataset in order to obtain Ẑ:,i and Ẑ:,j . However, be-
cause of the high computational cost and enormous storage
usage, it is practically impossible to apply in huge datasets.
Thus, we propose a scalable method with momentum update.

It makes sense to cluster the variables with lower dissimi-
larity into the same cluster since they are more likely to retain
a stable joint distribution over many graphs. Therefore, we
choose the cluster with the closest mean as determined by
the least squared Euclidean distance for each variable in the
graph representation Z.

We could have K clusters of variables in graph representa-
tion Z, where jth cluster is Sj and cluster center is µj . Thus,
we could learn µ and S by minimizing

µ, S = argminµ,S

k∑
j

∑
Z:,i∈Sj

Dis(Z:,i, µj) (4)

We could eliminate the correlation between the variables of
distinct clusters rather than any two variables by combining
the variable clustering of the graph representation. We could
reformulate Eq. 2 as:

W ∗ = argminW
∑

1≤i<j≤d

I(i, j)∥Σ̂W
Z:,i,Z:,j

∥2F, (5)

where indicator variable I(i, j) returns 0 if the clusters of Z:,i

and Z:,j are different and 1 if the clusters are the same.
To get optimal graph weights W, graph neural network

GNN(θ), and classifier R, we have:

θ∗,R∗ = argminθ,R

N∑
n=1

wnℓ (R ◦GNN(G, θ),Yn) ,

(6)

W∗ = argminW
∑

1≤i<j≤d

I(i, j)∥Σ̂W
Z:,i,Z:,j

∥2F, (7)

where ℓ is the loss function. The statistical dependence be-
tween different clusters rather than all variables could be
eliminated by jointly optimizing the graph neural network
GNN(θ), classifier R, and graph weights W.

However, such non-linear decorrelation methods on graph
data suffer from over-fitting issues due to the additional hyper-
parameters and are hard to converge. To overcome such over-
fitting problem, we consider a bi-level optimization method
for the model framework that allows for the simultaneous
learning of the optimal GNN parameters and weights.

Bi-level Training Algorithm. We introduce our L2R-
GNN framework to learn effective graph representation. How-
ever, as suggested by previous works (Ren et al. 2018; Xiao

et al. 2021), sample reweighting algorithms suffer from over-
fitting due to the additional hyperparameters and are hard
to converge. In this section, we propose the bi-level training
algorithm to alleviate the over-fitting problem.

For our proposed L2R-GNN framework, the introduced
decorrelation method for joint learning sample reweights also
increases the risk of over-fitting as shown in experiments.
Inspired by gradient-based meta-learning (learning to learn),
we use bi-level optimization to solve the over-fitting issue.
Thus, the objective can be formulated as the following bi-
level optimization problem:

min
W

Lval (θ
∗(W ),W ) =

∑
1≤i<j≤d

I(i, j)∥ΣW
GNN(Gval,θ

∗(W ))∥2F

s.t. θ∗(W ) = argmin
θ

Ltrain(θ,W )

= Wℓ (R ◦GNN (Gtrain, θ) ,Ytrain) ,
(8)

This bi-level update aims to optimize the graph weights
based on its validation for avoiding the over-fitting issues,
where Ltrain(θ,W ) and Lval (θ

∗(W ),W ) are lower-level and
higher-level objectives on the training and validation sets,
respectively.

Since there is no closed-form expression for theta, it is
hard to directly optimize the higher-level objective function
in Eq. (8). We provide an alternating approximation approach
to solve such problems.

Updating θ in outer loop. Different from previous works
(Fan et al. 2021; Li et al. 2021), we do not solve the lower
level problem for each outer loop. At the i-th iteration, we fix
W and only perform the gradient steps for parameter θ with
the learning rate ηθ that are listed below:

θ(i) = θ(i−1) − ηθ∇θLtrain(θ
(i−1),W (i−1)), (9)

Updating W in inner loop. We compute the higher-level
objective in the inner loop after getting the parameter θ(i),
which is an estimate of θ(∗)(W )):

W (i) = W (i−1) − ηW∇WLval(θ
(i),W (i−1)). (10)

We could have the gradient of W , since the W is
part of function θ(i) due to Eq. (9), and the function
∇WLval(θ

(i),W (i−1)) could be represented by:

∇WLval(θ
(i),W (i−1)) = ∇WLval(θ̄

(i),W (i−1))

− ηθ
1

ϵ
(∇WLtrain(θ

(i−1) + ϵ∇θLval(θ
(i), W̄ (i−1)),W (i−1))

−∇WLtrain(θ
(i−1),W (i−1))), (11)

where θ̄(i) and W̄ (i−1) denote stopping the gradient. Set
ηθ to 0 in Eq. (11) to obtain a first-order approximation as
followed:

∇WLval(θ
(i),W (i−1)) = ∇WLval(θ̄

(i),W (i−1)). (12)

By alternating the update procedures in Eqs. (9) and (10),
we can derive the whole model algorithm from the above
gradient derivations. Moreover, we investigate the impact of
bi-level optimization as well as the first- and second-order
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Figure 2: Results of GCN and GIN backbones under differ-
ent correlation degree settings. Comparing with GCN and
GIN method, our L2R-GNN methods (by applying our L2R-
GNN framework on GCN and GIN backbone) improves the
accuracy of graph classification across different spurious cor-
relation degree settings.

approximations in experiments. Results show that the best
performance is obtained with a first-order approximation.

Momentum Graph Weight Estimator. For each graph,
a specific weight should be learned as shown in Equation 8.
However, simultaneously loading the entire dataset for opti-
mization is impractical due to high computational cost and ex-
cessive storage consumption, especially for large datasets. We
employ weight queues with a K dimension to balance opti-
mization performance and weight consistency. We have graph
representation queue Z(q) = [Z(q1), · · · ,Z(qK)] and the cor-
responding weight queue W(q) = [W(q1), · · · ,W(qK)].
During training, they act as a memory bank from earlier
mini-batches.

The graph representations and weights used for optimiza-
tion are constructed as follows for each mini-batch of in-
put graphs Gn: Ẑ = Concat(Z(q1), · · · ,Z(qK),Z(l)),Ŵ =
Concat(W(q1), · · · ,W(qK)W(l)). Using graph representa-
tions queues, we reformulate Eq.3 as:

Dis (Z:,i, Z:,j) =√√√√ 1

N − 1

N∑
l=1

(
Corr

(
Z

(l)
:,i , Z

(l)
:,j

)
−Ave− Corr

(
Ẑ

(q)
:,i , Ẑ

(q)
:,j

))2

(13)
where the pearson correlation of Z:,i, Z:,j in the mini-batch

is represented by Corr
(
Z

(l)
:,i , Z

(l)
:,j

)
, and their average corre-

lation across all graph representation queues is represented
by Ave− Corr

(
Ẑ

(q)
:,i , Ẑ

(q)
:,j

)
.

Our L2R-GNN reduce the computational cost via weight
queues. If the batch size is B, then Ẑ is a matrix with dimen-
sions of ((k+1)B)×mZ , and Ŵ is a vector with dimensions
of (K + 1)B. The computational cost is lowered from O(N)
to O(kB) in this manner.

To dynamically update the representations Z(q) and
weights W(q) in queues, we use a momentum coefficient
αi ∈ [0, 1): Z(qi)∗ = αiZ

(qi) + (1− αi)Z
(l),W(qi)∗ =

αiW
(qi) + (1− αi)W

(l). We replace all Z(qi), W(qi) with
Z(qi)∗, W(qi)∗ for the next batch.
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Figure 3: The training and validation loss curves on D&D.

Experiments
In this section, we describe the experimental setup used to
evaluate the effectiveness of our proposed method. Experi-
mental results demonstrate the effectiveness of our frame-
work in comparison with different GNN backbones and
datasets. We specifically aim to answer the following ques-
tions: (RQ 1) How effective is the proposed L2R-GNN
framework for the graph classification task? (RQ 2) Could the
proposed L2R-GNN alleviate different distribution shifts?
(RQ 3) Could the proposed Bi-Level Training Algorithm
alleviate the over-fitting issue? (RQ 4) Does the proposed
reweighting mechanism work as designed and give some
useful insights? (RQ 5) What are the effects of our proposed
different components?

Baselines We compare our L2R-GNN with several repre-
sentative state-of-the-art methods: GCN (Kipf and Welling
2016), GIN (Xu et al. 2018a), SGC (Wu et al. 2019),
JKNet (Xu et al. 2018b), FactorGCN (Yang et al. 2020),
PNA (Corso et al. 2020), TopKPool (Gao and Ji 2019), SAG-
Pool (Lee, Lee, and Kang 2019), OOD-GNN (Li et al. 2021)
and StableGNN (Fan et al. 2021).

Datasets We evaluate our method and baselines on syn-
thetic and real-world datasets for complex and realistic graph
distribution shifts: Synthetic Datasets. To validate L2R-
GNN effectiveness with various distribution shifts, we gener-
ate synthetic datasets, allowing biased degree creation. Fol-
lowing GNN explanation works (Ying et al. 2019; Lin, Lan,
and Li 2021), we focus on graph classification tasks with
distribution shifts from training to testing datasets. We create
a base subgraph for each graph, where each positive graph
has a “wheel”-structured network motif and each negative
graph has a motif chosen from four candidates: “star”, ”cir-
cle”, ”grid”, and ”diamond”. The “wheel” motif is the causal
structure determining the label.

Real-world Datasets. (1) Molecule and social datasets.
Similar to previous works (Knyazev, Taylor, and Amer 2019),
we consider three graph classification benchmarks: COL-
LAB, PROTEINS, and D&D. These datasets are split based
on graph size. Methods are trained on smaller graphs and
tested on unseen larger graphs. Specifically, COLLAB is a
social dataset with 3 public datasets: High Energy Physics,
Condensed Matter Physics, and Astro Physics. We train on
graphs with nodes from 32 to 35 and test on graphs with
nodes from 32 to 492. PROTEINS is a protein dataset. We
train on graphs with nodes from 4 to 25 and test on graphs
with nodes from 6 to 620. D&D is also a protein dataset.
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TOX21 BACE BBBP CLINTOX HIV ESOL
Metric ROC-AUC (↑) RMSE (↓)
GIN 70.4±0.9 73.8±3.1 67.9±1.4 87.4±2.8 75.8±1.2 1.14±0.08
GCN 72.7±0.6 77.6±1.5 66.8±1.2 88.6±2.2 76.2±1.2 1.12±0.04
SGC 71.8±1.2 70.7±1.4 62.7±1.8 76.4 ±2.0 67.5±1.3 1.59±0.06
PNA 69.1±0.8 74.9±1.9 64.5±1.3 80.6±2.3 76.2±1.8 0.98±0.07

JKNet 69.8±1.2 77.5±1.2 63.4±1.1 82.4±2.2 73.7±1.2 1.29±0.09
SAGPool 72.6±2.5 75.8±1.2 68.4±2.0 86.2±1.3 76.4±1.2 1.13±0.08
TopKPool 72.1±1.5 76.5±2.3 67.8±1.8 86.2±1.2 75.1±1.2 1.10±0.06

FactorGCN 56.2 ±2.8 68.9±1.5 55.1±1.6 65.7±2.6 57.5±1.9 3.12±0.17
OOD-GNN 76.2±1.3 78.3±1.8 68.4±2.8 89.1±1.6 78.2±1.2 0.94±0.06
StableGNN 74.8±1.9 79.2±2.4 68.1±2.6 88.4±1.9 76.5±1.8 0.96±0.04
L2R-GNN 78.6±1.2 81.9±1.0 70.6±1.3 91.9±1.5 79.7±1.0 0.84±0.07

Table 1: Performance of six Open Graph Benchmark (OGB) graph datasets.

Figure 4: Case study of GCN and L2R-GNN in biased synthetic dataset. Shadow areas are the important subgraph calculated by
the GNNExplainer.

COLLAB PROTEINS D&D
GIN 56.3±3.5 74.4±2.5 68.9±4.1
GCN 64.0±2.8 74.8±2.7 71.7±3.3
SGC 54.9±4.1 72.6±2.1 64.2±3.8
PNA 58.7±4.3 71.9±2.9 70.5±2.4

JKNet 57.9±3.8 74.2±2.6 69.5±3.6
SAGPool 66.8±1.3 75.9±0.6 77.1±1.6
TopKPool 54.7±1.4 65.7±2.8 68.2±3.2

FactorGCN 52.3±1.8 62.4±4.3 55.2±2.4
OOD-GNN 66.9±1.5 77.1±1.1 79.1±1.3
StableGNN 67.3±1.4 76.5±0.9 78.7±1.6
L2R-GNN 68.2±1.4 78.9±0.7 80.8±1.2

Table 2: Performance of graph classification accuracy (%)
with graph size distribution shifts, where the training and
testing graphs are split by graph sizes. All methods are trained
on small graphs and tested on larger graphs. Best results are
indicated in bold.

We train on graphs with nodes from 30 to 300 and test on
graphs with nodes from 30 to 5, 748. (2)Open Graph Bench-
mark (OGB) (Hu et al. 2020). We consider OGBG-MOL∗
TOX21, BACE, BBBP, CLINTOX, HIV, and ESOL as six
graph property prediction datasets from OGB with distribu-
tion shifts. Predicting target molecule properties is the graph
classification task. We use scaffold splitting technique to sepa-
rate graphs based on two-dimensional structural frameworks.
This technique divides structurally diverse molecules into
subsets, creating a more realistic and hard out-of-distribution
generalization situation.

RQ1. Performance Comparison. Results on 6 OGB
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(b) OGBG and D&D datasets.

Figure 5: The distribution of the learned graph weights on (a)
unbiased and biased synthetic dataset and (b) two real-world
datasets.

datasets are in Table 1. Datasets use scaffold splitting (Wu
et al. 2018), dividing molecules by 2D structural frameworks,
creating distribution shifts between train and test graphs. We
could find that L2R-GNN outperforms other GNN models in
all cases, effectively alleviating distribution shifts. L2R-GNN
surpasses StableGNN and OOD-GNN, showing effective-
ness of graph decorrelation method and bi-level optimization.
L2R-GNN performs well on various tasks and dataset scales,
indicating generality. L2R-GNN excels in out-of-distribution
generalization, esp. for large-scale real-world graphs. Size
generalization problem considered on real-world molecule
and social datasets (COLLAB, PROTEINS, D&D), with train
and test graphs split by size. Results in Table 2. L2R-GNN
outperforms baselines, demonstrating best out-of-distribution
generalization under size distribution shifts.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8325



0.70

0.75

0.80

0.85

0.90
Ac
cu
ra
cy

L2R-GIN
L2R-GINw/oBi
L2R-GINw/oGD
GIN

0.70

0.75

0.80

0.85

0.90

Ac
cu
ra
cy

L2R-GCN
L2R-GCNw/oBi
L2R-GCNw/oGD
GCN

Figure 6: Ablation study of our L2R-GNN with (a) GIN and
(b) GCN backbones.

RQ2. Different Distribution Shifts. To inject spurious
correlation, µ ∗ 100% of “wheel” graphs have “star” motif
added, and the remaining graphs have a non-causal motif
chosen from 4 candidate motifs. For all nodes, node features
are taken from the same uniform distribution. To create four
spurious correlations for the training set, we set µ as {0.6,
0.7, 0.8, 0.9}. To answer RQ2, we conduct experiments on
synthetic datasets with different distribution shifts. The re-
sults of GCN and GIN backbones under different correlation
degree settings are shown in Figure 2. As spurious correlation
degree increases, both GIN and GCN experience significant
performance decline, suggesting spurious correlation greatly
impacts GNNs’ generalization performance, and larger dis-
tribution changes result in greater performance decline. Our
L2R-GNN methods, implementing our framework on GCN
and GIN backbones, increase graph categorization accuracy
across various spurious correlation degree settings compared
to GCN and GIN methods. The “wheel” motif, as described
earlier, represents the label; thus, using this causal subgraph
is the only way to improve performance. This demonstrates
how our models can significantly reduce the impact of er-
roneous subgraph correlation. In all biased scenarios, our
L2R-GNN outperforms backbones, proving it is a universal
framework capable of fitting different GNN architectures.

RQ3. Bi-Level Optimization. To answer RQ3, we con-
duct experiments to analyze the model loss during training.
We use training as a baseline, where we optimize W simul-
taneously with θ on training data without validation. We
compare training with first-order and second-order approxi-
mates. Figures 3 shows the learning curves of training loss
and validation loss on the D&D dataset of L2R-GNN . We
can observe that the training gets stuck in the over-fitting
issue attaining low training loss but high validation loss. For
first-order and second-order, the difference between training
and validation losses is significantly lower. It proves that the
first-order approximation is adequate to prevent over-fitting
and the bi-level optimization increases generalization ability.

RQ4. Reweighting Mechanism. We study the reweight-
ing mechanism’s contribution to robust graph representa-
tion learning via experiments on synthetic and real-world
datasets. In synthetic datasets, µ ∗ 100% positive graphs have
a ”star” motif added, and the remaining positive and negative
graphs have a non-causal motif chosen from 4 candidates.
We collect graph weights in unbiased (µ = 0.25) and bi-
ased (µ = 0.8) datasets, as shown in Figure 5(a). Median

weight in biased data is lower than in unbiased data, indi-
cating L2R-GNN can identify noise graphs with spurious
correlation. Weight variance in biased data is higher than in
unbiased data, showing L2R-GNN ’s reliable detection of
noise graphs with spurious correlation. On real-world datasets
D&D and OGBG-MOLTOX21, Figure 5(b) displays learned
graph weight distribution, demonstrating non-trivial weights
and varying distribution across datasets.

Case study. Using GNNExplainer (Ying et al. 2019),
we visualize important subgraphs for GNN’s prediction as
shadow areas and compare GCN with L2R-GNN in Figure
4. Three cases demonstrate L2R-GNN effectiveness: Case 1.
GNNExplainer (Ying et al. 2019) shows GCN assigns higher
weights to ”star” motif, while L2R-GNN focuses on ”wheel”
motif. GCN’s accurate but unstable prediction may rely on
spurious correlation, which is undesirable. Case 2. GCN
ignores ”wheel” motif due to spurious correlation, leading
to incorrect prediction. L2R-GNN focuses on ”wheel” mo-
tif, determining the true label. Case 3. Spurious correlation
causes GCN to focus on ”star” motif and make incorrect pre-
dictions. L2R-GNN ’s decorrelation of subgraphs attributes
more to prediction with ”circle” motif.

RQ5. Component Effects We conduct an ablation study
and hyper-parameter sensitivity analysis to understand com-
ponent effects on performance. We compare L2R-GNN with:
L2R-GNNw/oBi: L2R-GNN without bi-level optimization,
optimizing W and θ simultaneously on training data with-
out validation. L2R-GNNw/oGD: L2R-GNN without graph
decorrelation module. Results in Figure 6 show L2R-GNN
achieves the best performance, indicating each component
contributes to effectiveness and robustness. Both components
contribute to performance gain, complementing each other.

Conclusions

GNNs achieve state-of-the-art performance in tasks like
molecular graph prediction, scene graph classification, and so-
cial network classification. We propose Learning to Reweight
for Generalizable Graph Neural Network for OOD general-
ization of GNNs. Our novel nonlinear graph decorrelation
method improves OOD generalization and outperforms pre-
vious methods in preventing over-reduced sample size. We
propose a bi-level optimization-based stochastic algorithm
for the L2R-GNN framework, enabling simultaneous learn-
ing of optimal example weights and GNN parameters, and
avoiding over-fitting. Empirical results on synthetic and real-
world datasets demonstrate L2R-GNN ’s effectiveness.
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