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Abstract

As one of the most common tasks in graph data analysis,
node classification is frequently solved by using graph struc-
ture learning (GSL) techniques to optimize graph structures
and learn suitable graph neural networks. Most of the exist-
ing GSL methods focus on fusing different structural features
(basic views) extracted from the graph, but very little graph
semantics, like hierarchical communities, has been incorpo-
rated. Thus, they might be insufficient when dealing with the
graphs containing noises from real-world complex systems.
To address this issue, we propose a novel and effective GSL
framework for node classification based on the structural in-
formation theory. Specifically, we first prove that an encoding
tree with the minimal structural entropy could contain suffi-
cient information for node classification and eliminate redun-
dant noise via the graph’s hierarchical abstraction. Then, we
provide an efficient algorithm for constructing the encoding
tree to enhance the basic views. Combining the community
influence deduced from the encoding tree and the prediction
confidence of each view, we further fuse the enhanced views
to generate the optimal structure. Finally, we conduct exten-
sive experiments on a variety of datasets. The results demon-
strate that our method outperforms the state-of-the-art com-
petitors on effectiveness and robustness.

Introduction
Node classification aims to classify the nodes in a graph
with limited labels, which is a fundamental problem in
graph analysis and widely used in many applications (Song,
Zhang, and King 2022). The mainstream solution is training
graph neural networks (GNNs) to generate node embeddings
for classification (Kipf and Welling 2017). Since the perfor-
mance of GNNs is highly dependent on the quality of the
input graph structure, various techniques of graph structure
learning (GSL) have been proposed to enhance the graph
structure and fine-tune the GNN parameters for better clas-
sification (Sun et al. 2022).

Existing GSL methods mainly extract multiple graph
structures (basic views) from the given graph to generate an
optimal structure (final view), which should contain the in-
formation for classification while reduce redundant noise as
much as possible (Sun et al. 2023). Despite the success of
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GSL, most of these methods aim to learn the optimal struc-
ture based on the mutual information over different views.
However, traditional mutual information is unsuitable for
quantifying the structural information and theoretical analy-
sis on what is the optimal graph structure for node classifi-
cation is still unexplored (Li and Pan 2016; Li et al. 2018).
Many GSL methods focus on combining different but simple
structural features of the original graph to improve the per-
formance of GNNs, and rarely consider the graph semantics
like hierarchical communities (Zhu et al. 2021). As a result,
these methods might be insufficient when tackling the com-
plex and noisy graphs from real-world systems (Zou et al.
2023). To address these issues, it is essential to develop a
novel theoretic principle for measuring the optimal graph
structure and make full use of the structural information to
improve the GSL for node classification.

Recently, graph information bottleneck (GIB) has been
proposed to optimize node embeddings by extracting the in-
formation from both graph structure and node features (Wu
et al. 2020). GIB provides an interesting theoretic princi-
ple for GSL that an optimal graph structure should con-
tain the minimal sufficient information for downstream tasks
(Liu et al. 2022). Furthermore, GIB relies on the local-
dependence assumption for graph data and enhances the em-
bedding of each node by its neighborhood information. Ac-
tually, real-world graphs usually contain hierarchical com-
munities. This structural information is useful for node clas-
sification, since the nodes within the same community are
more likely to have the same class label. How to incorporate
the hierarchical community information with GSL to gener-
ate the optimal graph structure for node classification is still
an underexplored problem.

In this paper, we propose a structural information theory
based GSL framework for node classification. Based on the
structural entropy (Li and Pan 2016) and GIB, we provide a
theoretic principle for GSL to find the optimal graph struc-
ture for node classification. We then prove that an encoding
tree, as a hierarchical abstraction of a graph, could contain
the information for classifying nodes and remove redundant
noise by minimizing its structural entropy. We next design
an efficient algorithm to construct the encoding tree from
each basic view, such that the GSL could be guided for op-
timizing the graph structure. To fully use the information in
the basic views, we also enhance each basic view by a sim-
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ilarity graph with minimal structural entropy. With the en-
hanced views, we propose a fusion mechanism to generate
the final view based on the community influence from the
encoding trees and the prediction confidence from the en-
hanced views (Liu et al. 2022). We finally prove that an op-
timal structure could be obtained by maximizing the mutual
information between every two encoding trees, and provide
a two-fold objective to train our model effectively.

To summarize, our main contributions are:

• We propose a novel framework of graph structure learn-
ing based on the structural information theory for node
classification tasks.

• We design an efficient algorithm for constructing encod-
ing tree to extract the hierarchical community informa-
tion and enhance the basic views.

• We provide a community influence based fusion mecha-
nism to generate the optimal graph structure.

• We conduct extensive experiments on a variety of
datasets and the results show the superiority of our pro-
posed method.

Preliminary
In this section, we present the basic concepts of node classi-
fication, graph structure learning and structural entropy.

Node Classification
Let G = (V,E) represent a graph, where V = {v1, ..., vn}
is the set of nodes and E ⊆ V × V is the set of edges.
The original graph structure is represented in an adjacency
matrix A ∈ Rn×n, where aij ∈ A denotes the weight be-
tween nodes vi and vj . All nodes are assigned with node
feature matrix X ∈ Rn×d and each xi ∈ X is a d dimen-
sional feature vector of node vi. Given a small portion of
nodes VL = {v1, ..., vq} with labels YL = {y1, ..., yq|yi ∈
{1, ..., C}}, the node classification task is to predict the la-
bels ŶU = {ŷq+1, ..., ŷn} for the unlabeled nodes VU =
V \ VL. At present, the mainstream solution is to build a
GNN encoder f(X,A) on the graph structure and node
features, and produce low dimensional node embeddings
Z ∈ Rn×dz (dz ≪ d) for classification (Song, Zhang, and
King 2022).

Graph Structure Learning
Given an input graph G, the traditional goal of GSL is to si-
multaneously learn an optimal graph structure A⋆ and cor-
responding node embeddings Z⋆ = f(X,A⋆) (Zhu et al.
2021). In this work, we focus on the graph structure learning
technique for node classification tasks, in which the objec-
tive can be formulated as

Lgsl = Lcls(Z
⋆, YL) + µLreg(A

⋆,Z⋆,A) (1)

where the first term Lcls refers to the node classification ob-
jective with respect to the given labels YL, the second term
Lreg imposes constraints on the learned graph structure and
node embeddings, and µ ∈ R is a hyperparameter that bal-
ances the two terms.

Structural Entropy
Structural entropy is an extension of Shannon entropy for
measuring the uncertainty of a graph under a strategy of hi-
erarchical partitioning (Li and Pan 2016). The optimal hier-
archical structure of a graph, also called encoding tree, could
be generated by minimizing the K-dimensional structural
entropy (Zeng, Peng, and Li 2023).

Encoding Tree The encoding tree T of a graph G(V,E) is
defined with the following properties: (1) Each node α ∈ T
is associated with a nonempty subset of nodes Tα ⊆ V .
Intuitively, for the root node λ, Tλ contains all nodes in G,
i.e., Tλ = V . For each leaf node α, Tα contains a single node
v ∈ V . (2) For each nonleaf node α ∈ T , its ith child node is
denoted as α<i>, and its all child nodes’ subsets Tα<i> are
disjointed, i.e., Tα = ∪mi=1Tα<i> , where m is the number of
α’s children. An encoding tree is a hierarchical abstraction
of G, and widely used to extract the hierarchical community
information from G.

One-dimensional Structural Entropy The one-
dimensional structural entropy of G reflects the dynamical
complexity of G based on random walk, defined as:

H1(G) = −
∑
v∈V

dv
vol(G)

log2
dv

vol(G)
(2)

where dv is the sum of the weights of v’s connected edges,
and vol(G) =

∑
v∈V dv is the volume of G.

K-dimensional Structural Entropy Given an encoding
tree T with height no more than K, the K-dimensional
structural entropy of G is defined as follows:

HK(G) =min
T

∑
α∈T ,α ̸=λ

HT (G;α) (3)

HT (G;α) = − gα
vol(G)

log2
Vα
Vα−

(4)

where gα is the sum of weights of edges from the nodes in
Tα to those outside of Tα, Vα =

∑
v∈Tα

dv is the volume of
Tα, and α− is the parent node of α.

Methodology
In this section, we introduce the framework of structural en-
tropy based graph structure learning for node classification
and the technical details of each component.

Overview
The framework of our GSL method is shown in Figure 1.
We first extract two basic views from the given graph as
the input of our model. Then, we build an encoding tree
for each basic view. One advantage of the encoding tree is
that it could retain the information for classifying nodes but
eliminate the noise as much as possible by minimizing the
structural entropy. We use the encoding tree to train a graph
convolutional network (GCN) (Kipf and Welling 2017) on
each basic view and generate node embeddings, from which
we construct a kNN similarity graph to enhance the basic
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Figure 1: (a) The framework of our method. (b) Basic view enhancement. (c) Maximization of the mutual information between
graph and encoding tree.

view. Another advantage of the encoding tree is that the hi-
erarchical community information extracted from the graph
could be used for fusing the basic views. Thus, we com-
bine the community influence and prediction confidence of
each enhanced view to obtain the final view. Moreover, we
also build an encoding tree for the final view to guide the
training of our proposed model, which guarantees that the
learned graph structure is minimal and sufficient for node
classification.

Basic View Selection
Leveraging the structural information theory (Li and Pan
2016) to measure the evolution of graph in GSL, we find
that GSL for node classification is to reduce the uncertainty
of the original graph structure. This means that adopting
more useful basic views could reduce more uncertainty in
the graph. Thus, we carefully choose two basic views G1

and G2 as the input of our method, following the basic view
selection in CoGSL.

Information Flow Constraint
A key challenge of GSL is how to constrain the information
flow from basic views to the final view as to learn an optimal
graph structure for downstream tasks (Zhu et al. 2021). Ac-
cording to GIB, the optimal structure should contain suffi-
cient information for classification yet eliminates the noise,
also called minimal sufficient structure. We adopt GIB to
constrain the information flow by maximizing the mutual
information between the node embeddings and labels, while
minimizing the mutual information between the node em-
beddings and the original graph:

GIB(G, Y ;Z⋆) = max
Z

[I(Z;Y )− βI(Z;G)] (5)

where Y is the label set and β > 0 is a hyperparameter. The
first term I(Z;Y ) can be optimized by classification loss,
but the second term I(Z;G) is intractable to minimize.

The traditional solution for Eq. 5 is to sample a subgraph
Gs from the input graph to minimize I(Z;G), since Gs has
less information than G. Suppose that Gs retains the infor-
mation of node labels, and then we have

min
Z

I(Z;G)⇔ min
Gs

H1(Gs) (6)

where H1(·) is the one-dimensional structural entropy.

Therefore, the goal of min I(Z;G) is to generate an en-
hanced graph that contains sufficient information for node
classification while reducing its uncertainty (i.e., redundant
information or noise) as much as possible. For this purpose,
we give the following proposition.
Proposition 1. Given a basic view G and a label set YL,
the enhanced graph could retain the information for node
classification and minimize its uncertainty, if the information
flow from G to the final view satisfies:

min
Gs

max
Z

I(Z;YL) + βI(Z;Gs) (7)

s.t.,H1(G) > H1(Gs), I(G;YL) = I(Gs;YL) (8)

The above min-max principle aims to train an encoder
such that the mutual information among node embeddings
Z, labels YL and Gs can be maximized, while Eq. 8 guaran-
tees that Gs can capture the minimal and sufficient informa-
tion for node classification.

Encoding Tree Construction
In structural information theory, structural entropy is used
to measure the uncertainty embedded in a graph (Li et al.
2018). Moreover, an encoding tree is a hierarchical abstrac-
tion of a graph, which could be used to represent the hierar-
chical community partition of the graph. Minimizing the un-
certainty of a graph could be implemented by an encoding
tree with the minimal structural entropy (Zou et al. 2023),
stated as follows.
Proposition 2. The encoding tree T ⋆ of G with the mini-
mal structural entropy could retain the information for node
classification and eliminate redundant noise in G.

According to Proposition 2, we incorporate the encoding
tree into the min-max principle to train GNNs for node clas-
sification. Different from previous GSL methods that gen-
erate the enhanced graph by graph sampling, we adopt the
encoding tree to enhance the graph with theoretical guaran-
tee. According to Eq. 3, the encoding tree with minimum
K-dimensional structural entropy could be found by

T ⋆ = argmin
∀T :height(T )≤K

(HT (G)) (9)

However, building an optimal encoding tree is intractable
(Zou et al. 2023). For this, we design an efficient algorithm
for encoding tree construction. Specifically, given a graph
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G(V,E), let P = {P1, ..., Pc} be a partition of V , where
each Pi ⊂ V is called a community. We define three basic
operators as follows:
Definition 1. (Merging operator) Given any two commu-
nities Pi and Pj (1 ≤ i < j ≤ c), merging operator
opm(Pi, Pj) merges Pi and Pj into a new community Px,
i.e., Px = Pi∪Pj , and then removes Pi and Pj fromP . After
merging, P = {P1, ..., Pi−1, Pi+1, ..., Pj−1, Pj+1, Pc, Px}.

According to Eq. 4, the difference of K-dimensional
structural entropy ∆SEP

i,j(G) before and after merging
could be calculated by

∆SEP
i,j(G) =

1

vol(G)
[(Vi − gi) log2 Vi + (Vj − gj) log2 Vj

− (Vx − gx) log2 Vx + (gi + gj − gx) log2 vol(G)]
(10)

Definition 2. (Compressing operator) Given a graph G and
a corresponding partition P , compressing operator opc(P)
compresses G into a smaller graph by transferring each
community Pi ∈ P to a node v′i, and assigning the weight
of edge between v′i and v′j to the sum of the weights of the
edges from Pi to Pj .

Definition 3. (Updating operator) Given an encoding tree
T and a graph G with partition P , updating operator
opu(T ,P) is to update the encoding tree by taking all com-
munities in P as the leaf nodes of T , i.e., inserting P into T
and increasing the height of T .

Initially, we adopt each node in the graph as a single com-
munity, and then iteratively execute the merging and com-
pressing operators until the updating operator could con-
struct a K-dimensional encoding tree. Actually, in the merg-
ing operation, we merge the communities with the maximal
∆SEP

i,j(G) greedily until there are no communities satisfy-
ing ∆SEP

i,j(G) > 0, which can achieve the minimal struc-
tural entropy. The complete procedure is shown in Algo-
rithm 1.

Graph Structure Enhancement
To fully use the information contained in the basic views,
we have to enhance the basic views before generating the
final view. For the basic view G1, we train a GCN encoder
f(X,A1) to generate the node embeddings Z1. When the
embeddings are available, we use the cosine similarity s1ij =

(z1
i · z1

j )/(||z1
i || × ||z1

j ||) to measure the relation between
node v1i and v1j . Intuitively, larger s1ij means higher proba-
bility that v1i and v1j are in the same class. It is reasonable to
construct a cosine similarity graph to represent the relations
among all nodes, but this similarity graph is unsuitable for
node classification since it might be fully connected (i.e., all
nodes belong to one class).

Consequently, we build a k-nearest neighbor (kNN) graph
G1

k to enhance the basic view. Based on the structural infor-
mation theory, we could find an optimal value for k by min-
imizing the one-dimensional structural entropy of G1

k, i.e.,
finding the value of k satisfying H1(G1

k−1) ≥ H1(G1
k) ≤

H1(G1
k+1). Note that the optimal k guarantees the kNN

Algorithm 1: Encoding Tree Construction
Input: a graph G, an integer K > 1
Output: an encoding tree T

1: G1 ← G, T ← an encoding tree with height 1
2: for h = 1 to K do
3: Ph ← initialize each node in Gh as a community
4: while True do
5: P ′

i , P ′
j ← argmax∆SEPh

i,j (Gh) by Eq. 10
6: if ∆SEPh

i,j (Gh) > 0 then
7: Ph ← opm(P ′

i , P
′
j), continue // Definition 1

8: else
9: Gh ← opc(Ph), break // Definition 2

10: end if
11: end while
12: end for
13: for h = K − 1 down to 0 do
14: T ← opu(T ,Ph) // Definition 3
15: end for
16: return T

graph could retain the most useful information in the corre-
sponding node embeddings. Thus, the value of k is selected
based on the structural entropy and does not require users to
provide. Combining G1

k with the basic view G1, we obtain
the following enhanced view

G1
en = G1 + ξG1

k (11)

where ξ ∈ [0, 1] is a combination coefficient. Similarly, we
generate the enhanced view G2

en from G2.

Final View Generation
An important step in GSL is fusing all basic views to gener-
ate the final view (Zhu et al. 2021). Different from previous
methods that use the average or attention mechanism (Zhao
et al. 2021), we combine the community influence and pre-
diction confidence to fuse the basic views.

First, we define the community influence.
Definition 4. (Community influence) Given an optimal en-
coding tree T of a graph G, the community influence of a
leaf node α in T is

εα =
HT (G;α)∑
δ∈T HT (G; δ)

(12)

where δ is the node in the path from λ to α.
Intuitively, HT (G;α) reflects the activity of the node α in

its community Tα− , and larger εα indicates larger influence
of α in Tα− .

Then, for each node vi, we combine the community influ-
ence and prediction confidence to measure the importance
a1i of vi in the basic view G1, defined as

a1i =
σ(π1

i ) · π1
i + σ(ε1i ) · ε1i

σ(π1
i ) + σ(ε1i )

(13)

where σ(·) is an activation function, and π1
i is vi’s prediction

confidence in G1. We use the same prediction confidence as
CoGSL, and obtain a2i of vi in G2 analogously.
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Next, we normalize the importance and obtain the weights
of vi as follows:

w1
i = a1i /(a

1
i + a2i ), w2

i = a2i /(a
1
i + a2i ) (14)

Finally, we generate vi’s final view:

G⋆
i = w1

i ·G1
en,i + w2

i ·G2
en,i (15)

The above operations are repeatedly executed to fuse all
nodes and generate the final view G⋆.

Model Training
We now discuss how to instantiate the min-max principle
and use the community information to guide the training of
our GSL model, as well as the generation of the minimal
sufficient structure for node classification.

Minimal Sufficient Structure We aim to make full use of
the hierarchical community information to guide the training
of our GSL model, since the information could be decoded
from the encoding tree. Based on the definitions of minimal
sufficient structure (Liu et al. 2022) and structural entropy
(Li and Pan 2016), we have the following proposition.
Proposition 3. Given the enhanced views G1

en and G2
en, fi-

nal view G⋆ and their encoding trees T 1, T 2 and T ⋆, and
label set YL, G⋆ is a minimal sufficient structure guided by
community information if the following two principles are
satisfied:

I(G1
en;YL) = I(G2

en;YL) = I(G⋆;YL) = H(YL) (16)

max{I(T 1; T 2) + I(T 1; T ⋆) + I(T 2; T ⋆)} (17)

where H(·) denotes the Shannon entropy.
Eq. 16 guarantees that the information of YL for node

classification is totally contained in G1
en, G2

en and G⋆.
Meanwhile, Eq. 17 connects the encoding trees of the ba-
sic and the final views. Maximizing the mutual information
among these encoding trees could make these trees share
their community information for generating the minimal suf-
ficient structure.

Training Objective We design a two-fold objective to op-
timize the parameters in our model.
(1) Optimizing the parameters of GCNs over the enhanced
and final views to improve the classification accuracy by the
following cross-entropy loss:

Lcls =
2∑

i=1

Lcross(Π
i, YL) + Lcross(Π

⋆, YL) (18)

where Π1, Π2 and Π⋆ is the prediction confidence of G1
en,

G2
en and G⋆, respectively.

(2) Optimizing the parameters of basic view enhancers to
constraint the information flow by the min-max principle
and maximization of mutual information of encoding trees.

For the min-max principle in Eq. 7, we adopt the cross-
entropy loss to maximize the first term I(Z;YL), and design
a hierarchical contrastive loss for the second term I(Z;Gs).
According to Proposition 2, Gs is replaced by an encoding

tree T in our method. Thus, we first provide a tree convolu-
tional network (TCN) to generate the community embedding
from T . Actually, the community embedding of node α in
T is the weighted sum of the embeddings of α’s children,
formally defined as

hα =
m∑
i=1

[
hT (G;α<i>)∑m
j=1 h

T (G;α<j>)
hα<i>

]
(19)

where m is the number of α’s children. The community em-
beddings of leaf nodes in T are the corresponding node em-
beddings Z.

Inspired by InfoNCE (Oord, Li, and Vinyals 2018), we
compare the node embeddings with different levels of com-
munity embeddings to make the nodes in the same commu-
nity have similar embeddings. The corresponding hierarchi-
cal contrastive loss is

Lhc(Z; T ) = −
K∑
l=2

θl log2

n∑
i=1

sim(zi,h(i,l))∑n
j=1,j ̸=i sim(zj ,h(j,l))

(20)

where θl = γ(1 − γ)l is a coefficient related to the level
number l, sim(·) is the cosine similarity, and h(i,l) is the
embedding of the l-th level’s community of node vi in T .

For the enhanced view G1
en, its min-max principle loss is

L1
mmp = L1

cross(Π
1, YL) + Lhc(Z

1; T 1) (21)

Similarly, we can get the loss L2
mmp and L⋆

mmp for G2
en and

G⋆ respectively, as well as the total min-max principle loss
Lmmp = L1

mmp + L2
mmp + L⋆

mmp.
To maximize the mutual information between the two en-

coding trees T 1 and T 2, we extend Eq. 20 as

Lmiet(T 1, T 2) =
1

2

[
Lhc(Z

1; T 2) + Lhc(Z
2; T 1)

]
(22)

Consequently, the loss for the basic view enhancers is

Lve =Lmmp + (Lmiet(T 1, T 2) + Lmiet(T 1, T ⋆)

+ Lmiet(T 2, T ⋆)) (23)

To effectively train our model, we alternatively and itera-
tively perform the above two-fold objective.

Experimental Study
In this section, we conduct extensive experiments to evaluate
the effectiveness and robustness of our method.

Experimental Setup
Datasets We choose eight open benchmark datasets for
experiments, including (1) blog graph Polblogs (Pedregosa
et al. 2011), (2) website networks from WebKB, Texas and
Wisconsin (Bandyopadhyay et al. 2005), (3) citation net-
works, Citeseer (Kipf and Welling 2017), Wiki-CS (Mernyei
and Cangea 2020) and MS Academic (Klicpera, Bojchevski,
and Gunnemann 2019), and (4) non-graph datasets, Breast
Cancer (Cancer) and Digits (Pedregosa et al. 2011). We con-
struct a kNN graph as an initial adjacency matrix for each
non-graph dataset, and adopt the original splits on training,
validation and test sets.
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Method Texas Wisconsin Cancer Digits Polblogs Citeseer Wiki-CS MS Academic

GCN 54.4±5.6 50.7±1.6 93.5±0.4 90.3±0.5 95.2±0.2 69.7±0.6 71.0±0.8 91.3±0.5
GAT 56.0±1.4 52.1±0.9 93.8±0.9 90.8±1.1 94.3±0.3 71.9±0.1 72.8±0.3 89.3±0.2
GATv2 52.1±0.6 49.4±1.2 95.0±0.2 90.6±0.7 94.7±0.6 71.6±0.1 69.2±1.1 89.4±0.8
GraphSAGE 55.0±5.9 51.3±3.9 92.7±0.4 88.2±0.2 93.7±2.1 70.4±0.8 72.5±0.4 91.2±0.2

DGI 43.8±3.6 49.4±3.1 86.9±1.5 89.1±0.4 91.7±0.8 72.0±0.5 61.0±0.3 90.5±1.2
gCooL 59.0±3.8 52.4±2.8 95.1±0.5 91.3±0.9 95.4±0.3 67.9±1.9 74.1±0.5 91.2±0.4
MGEDE 57.1±1.1 50.0±0.4 94.8±0.1 91.5±0.2 94.9±0.1 68.7±0.2 68.9±0.6 90.1±0.2

IDGL 49.5±9.1 54.3±1.9 94.5±0.6 92.8±0.1 94.4±0.6 72.6±0.4 72.7±0.8 -
Pro-GNN 55.1±3.5 58.0±3.1 93.4±0.6 90.5±0.8 95.0±0.1 67.6±0.4 68.9±0.8 -
GEN 51.1±6.7 54.5±4.1 94.1±0.8 91.8±0.9 95.3±0.4 72.5±0.8 71.5±0.7 91.8±0.5
CoGSL 57.7±3.5 55.7±1.2 94.8±0.2 92.5±0.5 95.5±0.1 72.7±0.3 74.7±0.4 92.1±0.2
SE-GSL 59.2±7.6 58.0±4.0 92.6±0.3 82.7±0.5 95.1±0.5 71.4±1.3 53.2±1.6 90.8±0.1
PROSE 58.4±2.1 58.2±1.9 95.4±0.4 92.8±0.5 95.5±0.4 73.3±0.1 75.0±0.7 91.8±0.2

Ours 61.3±3.0 58.6±1.2 95.8±0.5 93.7±0.3 95.9±0.1 74.1±0.6 75.6±0.3 92.7±0.1

Table 1: Effectiveness comparison on F1-micro (%± σ). (bold: best, ’-’: exceeding GPU memory or cannot finish in 12 hours)

Comparison Methods We compare our method with
three categories of node classification methods.

(1) Classical GNN methods: GCN (Kipf and Welling 2017),
GAT (Velickovic et al. 2018), GATv2 (Brody, Alon,
and Yahav 2022) and GraphSAGE (Hamilton, Ying, and
Leskovec 2017).

(2) Information theory (IT) based methods: DGI (Velick-
ovic et al. 2019), gCooL (Li, Jing, and Tong 2022) and
MGEDE (Yang et al. 2023).

(3) Graph structural learning (GSL) based methods: IDGL
(Chen, Wu, and Zaki 2020), Pro-GNN (Jin et al. 2020),
GEN (Wang et al. 2021), CoGSL (Liu et al. 2022), SE-
GSL (Zou et al. 2023) and PROSE (Wang et al. 2023).

Metrics We evaluate the accuracy of a node classification
algorithm by a standard metric F1-micro ranging from 0 -
100%, and a higher score means a more accurate classifier.

Implementation We implement our method in PyTorch.
For fair comparison, we use the same dimensionality of
node embeddings and optimizer for all methods (except
MGEDE), and set other parameters to the values recom-
mended in the original papers. All experiments are con-
ducted on a machine with Intel 13900KF CPU, 128GB
RAM and RTX4090 GPU, running Windows 11. Each test
is repeated for 10 times, and the average is reported here.

Experimental Results
Exp-1: Effectiveness Evaluation In the first set of tests,
we evaluate the effectiveness of our method by comparing
with other node classification methods. The encoding tree
height K is fixed to 3. The results are reported in Table 1.

The results tell us that: (a) our method outperforms the
other comparison methods on all datasets. (b) PROSE is the
second best method and GSL based methods generally per-
form better than the other two categories of methods, since
GSL could enhance the graph structure for classification. (c)

gCooL is the best IT based method and GAT is the best clas-
sical GNN method. SE-GSL performs worse on Digits and
Wiki-CS, since it requires large amount of labeled training
data and is unsuitable for node classification with a small
set of labels. By adopting the encoding tree to extract the
hierarchical community information for the model training,
our method improves F1-micro over the second best method
PROSE. These verify the effectiveness of our method.

Exp-2: Attacks on Edges In the second set of tests, we
follow (Liu et al. 2022) to evaluate the robustness of our
method by random edge deletions and additions. We choose
PROSE (the second best method), gCooL (the best IT based
method) and GAT (the best classical GNN method) for com-
parison. The curves of ’Ours v1’, ’Ours v2’ and ’Ours both’
are the results of the first, second and all basic views of our
method are attacked, respectively. The results on Texas and
MS Academic are reported in Figure 2.

The results tell us that: (a) our method outperforms other
methods under different perturbations. (b) GSL methods are
better than other methods. (c) all methods become worse
with the increase of perturbations. (d) ’Our both’ is compet-
itive with ’Ours v1’ and ’Ours v2’ that only one basic view
is attacked. These verify the robustness of our method.

Exp-3: Impacts of Encoding Tree In the third set of tests,
we analyze the impacts of encoding tree by comparing with
other two community structure extraction methods kNN and
Louvain (Blondel et al. 2008) and varying the tree height K
from 2 to 5. The results are reported in Figure 3.

The results tell us that: (a) encoding tree is more effective
than the other methods to extract the community informa-
tion. (b) kNN performs as well as Louvain, which means
that community information is indeed useful for GSL. (c)
the F1-micro scores are stable with the increase of K, which
verifies the insensitivity of our method to the tree height. (d)
we fix K = 3 by default for better efficiency, since con-
structing a high encoding tree is time-consuming.
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Figure 2: F1-micro results of different methods under edge attacks.
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Figure 3: Impacts of encoding tree.

Fusion Cancer Polblogs Citeseer Wiki-CS

Average 95.0 95.6 73.4 74.9
Attention 95.2 95.3 71.8 70.7
Confidence 95.3 94.7 73.3 75.2
Ours 95.8 95.9 74.1 75.6

Table 2: F1-micro results of different fusion mechanisms.

Exp-4: Impacts of Fusion Mechanism In the last set of
tests, we evaluate our fusion mechanism by comparing with
other three mechanisms: average, attention and prediction
confidence. The results are reported in Table 2.

The results tell us that: (a) our fusion mechanism performs
better than others on all datasets. (b) ’Average’ performs as
well as ’Confidence’, but ’Attention’ performs worse, since
it requires large training data to fine-tune parameters. By
combining the community influence and prediction confi-
dence, our fusion mechanism outperforms the competitors,
which verifies the effectiveness of our method.

Related Work
Node Classification Node classification is a primary task
in graph analysis. The mainstream solution is training GNNs
to aggregate neighborhood information for better node em-
beddings, e.g., GCN (Kipf and Welling 2017), GraphSAGE
(Hamilton, Ying, and Leskovec 2017), GAT (Velickovic
et al. 2018) and GATv2 (Brody, Alon, and Yahav 2022).
Some methods incorporate the information theory with
GNNs, e.g., DGI (Velickovic et al. 2019), gCool (Li, Jing,
and Tong 2022) and MGEDE (Yang et al. 2023). Recently,
GSL techniques are used to enhance the node embeddings

and become the dominant solution (Zhu et al. 2021), which
motivates our study of GSL based node classification.

Graph Structure Learning GSL is to simultaneously op-
timize the graph structure and node embeddings (Song,
Zhang, and King 2022). IDGL (Chen, Wu, and Zaki 2020)
recalibrates edge weights by node embedding similarities,
Pro-GNN (Jin et al. 2020) treats the graph structure as a
trainable parameter in GNN training, and GEN (Wang et al.
2021) optimizes the graph structure by stochastic block
model. Moreover, information theory has been adopted in
GSL, e.g., SE-GSL (Zou et al. 2023) adopts structural
entropy to enhance connectivity among uncertain nodes,
CoGSL (Liu et al. 2022) uses mutual information to learn the
minimal sufficient structure, and PROSE (Wang et al. 2023)
uses a progressive strategy to learn graph structures. Most
of these methods focus on extracting multiple and simple
structural features, and neglect to use the graph semantics,
such as hierarchical community information. Different from
these methods, we adopt the encoding tree to hierarchically
abstract the graph and enhance the basic views in GSL.

Structural Entropy Guided Neural Network As an ad-
vanced theory in graph analysis, structural entropy has
gained substantial traction and been widely used in bioin-
formatics (Li, Yin, and Pan 2016) and community detec-
tion (Liu et al. 2019). Recent works combine structural en-
tropy with neural networks, e.g., HRN (Wu et al. 2022),
SR-MARL (Zeng, Peng, and Li 2023) and SEGA (Wu
et al. 2023). Although these methods successfully exploit the
structural entropy to optimize neural networks, how to incor-
porate this theory with GSL to measure and find the optimal
structure for node classification is still understudied, and we
are among the first attempts.

Conclusion
In this work, we propose a structural entropy based approach
to improving GSL for node classification. We first prove that
an encoding tree with minimal structural entropy could ex-
tract hierarchical community information for classification
while removing redundant noise in the graph. We then pro-
vide a community influence based fusion mechanism to gen-
erate the final view. Finally, we efficiently construct encod-
ing trees for all views and apply them to guide the training
of our GSL model. Extensive experiment results show the
effectiveness and robustness of our method.
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