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Abstract

Recommender systems are typically biased toward a small
group of users, leading to severe unfairness in recommenda-
tion performance, i.e., User-Oriented Fairness (UOF) issue.
Existing research on UOF exhibits notable limitations in two
phases of recommendation models. In the training phase,
current methods fail to tackle the root cause of the UOF issue,
which lies in the unfair training process between advantaged
and disadvantaged users. In the evaluation phase, the cur-
rent UOF metric lacks the ability to comprehensively evaluate
varying cases of unfairness. In this paper, we aim to address
the aforementioned limitations and ensure recommendation
models treat user groups of varying activity levels equally.
In the training phase, we propose a novel Intra- and Inter-
GrOup Optimal Transport framework (II-GOOT) to alleviate
the data sparsity problem for disadvantaged users and nar-
row the training gap between advantaged and disadvantaged
users. In the evaluation phase, we introduce a novel metric
called 𝜉-UOF, which enables the identification and assess-
ment of various cases of UOF. This helps prevent recommen-
dation models from leading to unfavorable fairness outcomes,
where both advantaged and disadvantaged users experience
subpar recommendation performance. We conduct extensive
experiments on three real-world datasets based on four back-
bone recommendation models to prove the effectiveness of
𝜉-UOF and the efficiency of our proposed II-GOOT.

Introduction
Fairness is a critical research field in Machine Learning
(ML) (Binns 2018; Dai et al. 2022; Mehrabi et al. 2021;
Hutchinson and Mitchell 2019; Verma and Rubin 2018),
and is also widely investigated in Recommender Systems
(RSs) (Deldjoo et al. 2022; Chen et al. 2023; Han et al.
2023a). RS is a complex field involving frequent interactions
between users and items (Su et al. 2023; Zheng et al. 2022b;
Li et al. 2022, 2023). Fairness issues commonly arise from
both the users’ side (Li et al. 2021; Rahmani et al. 2022) and
the items’ side (Dash et al. 2021; Deldjoo et al. 2021a). In
this paper, we focus on the fairness issue related to perfor-
mance disparities among different user groups.

*Xiaolin Zheng is the corresponding author.
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Figure 1: (a) visualizes the norm (i.e., 𝐿2 − 𝑛𝑜𝑟𝑚 ) of gra-
dients coming from different users in a training epoch of
LightGCN (He et al. 2020) in the Amazon Health dataset.
(b) shows the best and worst cases of UOF that both share
the same objective of facilitating equitable recommendation
results for different user groups. Though the worst fairness
will lead to dissatisfaction in both user groups, the existing
metric treats these two cases as equally favorable.

RSs are always biased toward a small group of users,
resulting in significant unfairness in the quality of recom-
mendations (Li et al. 2021; Rahmani et al. 2022; Wen et al.
2022), i.e., the User-Oriented Fairness (UOF) issue. We de-
fine the users with more satisfied recommendation results as
advantaged users and other users as disadvantaged users.
Existing research has proved that advantaged users consti-
tute only a small proportion of the total user base (Li et al.
2021) since many users suffer from the data sparsity (Han
et al. 2023b; Zheng et al. 2022a) problem and fail to receive
satisfying recommendation results. Therefore, addressing
the UOF issue becomes crucial in RSs to enhance the overall
quality of recommendation services.

To date, the relevant work of UOF is quite limited and
exhibits notable limitations in both the training phase and
evaluation phase. In the training phase, the existing meth-
ods fail to tackle the root cause of the UOF issue. The
root of the UOF issue lies in the unfairness of the training
process for recommendation models. Since recommenda-
tion models are always trained based on the interactions be-
tween users and items, we identify the advantaged users and
disadvantaged users based on their interaction numbers (Li
et al. 2021; Dai et al. 2022) and show the gradient distri-
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bution in a training epoch of LightGCN in Figure 1(a). The
majority of users (i.e., disadvantaged users) fail to provide
sufficient training data for recommendation models due to
the data sparsity problem. Consequently, recommendation
models become dominated by advantaged users who con-
tribute more to the model’s updating process. Although ex-
isting research has proposed some re-ranking methods (Li
et al. 2021; Dai et al. 2022) that adjust recommendation
results after model training to achieve fairness, they can-
not mitigate the unfair training process. Thus, the UOF is-
sue cannot be solved well. Recently, researchers proposed
a distributionally-robust optimization-based method (Wen
et al. 2022) that aims to improve the worst-case user experi-
ence. Nevertheless, the limited availability of training sam-
ples from disadvantaged users restricts the performance of
this method. In the evaluation phase, The existing UOF
metric fails to provide a comprehensive evaluation of rec-
ommendation models As depicted in Figure 1(b), it is evi-
dent that the best case of UOF involves improving the qual-
ity of recommendation results for disadvantaged users to
reach that of advantaged users, significantly surpassing the
worst UOF. We argue that the UOF metric should be able
to capture the differences among recommendation models
with the worst and best fair. However, the existing metric (Li
et al. 2021; Dai et al. 2022) solely compares whether differ-
ent user groups receive nearly the same quality of recom-
mendation services, treating both the best and worst fairness
scenarios as equally favorable. This metric will encourage
recommendation models to close the worst fair and lead to
dissatisfaction in both user groups.

In this paper, we propose a comprehensive solution to
the aforementioned limitations through the introduction of
the Intra- and Inter-GrOup Optimal Transport (II-GOOT)
framework and a new metric 𝜉-UOF. In detail, In the train-
ing phase, we propose the II-GOOT framework to enhance
the training process for disadvantaged users. Therefore, we
can tackle the root cause of the UOF issue by reducing the
training gap between advantaged users and disadvantaged
users. The II-GOOT framework comprises two stages: the
intra-group stage and the inter-group stage. (1) In the intra-
group stage, our objective is to facilitate mutual assistance
between pairs of similar disadvantaged users, thereby en-
hancing the training process. Firstly, we leverage the Opti-
mal Transport (OT) (Liu et al. 2022b; Villani et al. 2009)
mechanism to identify one-to-one similarities among disad-
vantaged users. Secondly, we facilitate the sharing of train-
ing samples between the two most similar disadvantaged
users, thus alleviating the problem of data sparsity. Never-
theless, due to the significant data sparsity issue among dis-
advantaged users, the effectiveness of the intra-group stage
might be constrained. Therefore, (2) in the inter-group stage,
we further enable each disadvantaged user to learn from sim-
ilar advantaged users who have been well-trained in the rec-
ommendation model. We propose the novel inter-group op-
timal clustering mechanism to explore the similarities be-
tween disadvantaged and advantaged users based on their
shared interactions with items. Subsequently, we minimize
the distance of embeddings between advantaged users and
their similar disadvantaged users, aiming to narrow the train-

ing gap between these two user groups. In the evaluation
phase, we define the Best UOF and the Worst UOF for a rec-
ommendation model, with different levels of recommenda-
tion accuracy. We emphasize that the optimal fair direction
for a recommendation model is to achieve the Best UOF.
However, attaining the ideal Best UOF in real-world scenar-
ios is not feasible. Therefore, we introduce the 𝜉-UOF met-
ric, which assesses the gap between the existing model and
the model with Best UOF. 𝜉-UOF takes into account both
the fairness between advantaged and disadvantaged users
and the accuracy of the recommendation model. This met-
ric aims to strike a balance between fairness and accuracy,
providing a comprehensive evaluation of the UOF issue.

We have conducted extensive experiments based on four
backbone models on three widely used real-world datasets.
The experimental results demonstrate that II-GOOT outper-
forms State-Of-The-Art (SOTA) methods in addressing the
UOF issue. Moreover, we substantiate that the proposed 𝜉-
UOF has the ability to identify different cases of UOF, which
are overlooked by the existing metric.

We summarize our contributions as follows: (1) We pro-
pose the II-GOOT framework to address the root cause of
the UOF issue in the training phase. (2) We introduce the
novel 𝜉-UOF metric, providing a comprehensive evaluation
of the UOF issue in recommendation models in the evalua-
tion phase. (3) We conduct extensive experiments to demon-
strate the efficiency of II-GOOT and the effectiveness of 𝜉-
UOF.

Related Work
Fair Recommendation
Fairness among different stakeholders in recommendation
systems has attracted considerable attention in recent years.
Considering the subject of fairness, fairness in recommender
systems can be decoupled into user fairness, item fairness,
and provider fairness (Deldjoo et al. 2023).

The ultimate goal of fair recommendation is to mitigate
disparities among different subject groups. For user fairness,
many works strive to provide similar users with similar rec-
ommendation results, e.g., ranking accuracy (Deldjoo, Bel-
login, and Di Noia 2021), diversity, coverage (Melchiorre
et al. 2021), under-ranking (Gorantla, Deshpande, and Louis
2021), and selection rate (Sühr, Hilgard, and Lakkaraju
2021). For item fairness, similar items should receive
equal exposure regardless of sensitive attributes (Raste-
garpanah, Gummadi, and Crovella 2019; Deldjoo et al.
2021b; Dash et al. 2021) or past exposure (Biega, Gum-
madi, and Weikum 2018), like the typical cold-start scene.
For provider fairness, providers with more history interac-
tions may be recommended more often than the rest (Ferraro
2019; Gharahighehi, Vens, and Pliakos 2021), leading to
the superstar effect. Exposure disparity caused by the corre-
spondence between providers and items (Sühr, Hilgard, and
Lakkaraju 2021) and private characteristics (Shakespeare
et al. 2020) should also be mitigated to create an equal mar-
ket.

In this paper, we focus on the rarely explored fairness is-
sue among users with different activity levels, i.e., the UOF
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problem. Different from existing work (Li et al. 2021; Rah-
mani et al. 2022; Wen et al. 2022), we dive into the training
process to mitigate the learning gap between advantaged and
disadvantaged user groups and propose a novel metric.

Optimal Transport
Optimal transport has garnered significant attention due to
its excellent ability to match between two distributions or
spaces. Concerning OT as a field of mathematics, a broad
range of literature is available (Villani et al. 2009; Santam-
brogio 2015; Figalli and Glaudo 2021). Notably, (Santam-
brogio 2015) unified the two classical formulations of OT:
Monge formulation and Kantorovich formulation. Recent
advances in accelerating OT computation have unveiled its
potential in Machine Learning. Computation of Wasserstein
distances and Wasserstein Barycenters was greatly sped up
by (Cuturi 2013; Cuturi and Doucet 2014).

Many attempts have been made to utilize OT to im-
prove some downstream tasks in natural language process-
ing (Asano, Rupprecht, and Vedaldi 2019; Chen et al. 2019),
transfer learning (Flamary et al. 2016; Courty et al. 2017;
Damodaran et al. 2018; Xu et al. 2020), adversarial learn-
ing (Arjovsky, Chintala, and Bottou 2017), neural architec-
ture search (Yang, Liu, and Xu 2023), and recommendation
systems (Liu et al. 2021, 2022a; Liu, Fang, and Wu 2023).

As the user embeddings in collaborative filtering models
can be seen as a kind of latent space, in this paper, we apply
OT to match between users in the latent space. The matching
results are then utilized to enhance the training process.

Methodology
In this section, we introduce the proposed II-GOOT frame-
work to solve the UOF issue in the training phase of rec-
ommendation models.

Problem Formulation
We use U and I to represent the user set and the item set.
We divide users into disadvantaged user group D and advan-
taged user group A based on their interaction numbers ac-
cording to (Li et al. 2021; Rahmani et al. 2022). Users with
more interactions are more likely to be advantaged. We de-
note the initial average recommendation performance (e.g.,
HitRatio, NDCG) of these two groups of users as 𝑃D and
𝑃A with 𝑃A > 𝑃D in most cases. In this paper, we aim
to narrow the gap in the recommendation performance be-
tween D and A to achieve UOF and maintain the overall
recommendation performance simultaneously.

Overview
In this section, we proposed a novel Intra- and Inter-GrOup
Optimal Transport framework, namely II-GOOT to solve
the UOF issue in the training phase. II-GOOT is a general
framework that can be integrated with any recommendation
models (i.e., backbone models) to achieve UOF. The over-
all architecture of the framework is depicted in Figure 2,
and it is divided into two key stages: the intra-group stage
and the inter-group stage. (1) The intra-group stage aims to

address the data sparsity problem encountered by disadvan-
taged users, thereby enhancing the modeling process for this
group. To achieve this, we divide the disadvantaged users
into two distinct groups and introduce the intra-group Op-
timal Transport (OT) to explore one-to-one similarities be-
tween these groups. Consequently, each pair of disadvan-
taged users can share their training samples, effectively mit-
igating the data sparsity issue. (2) In the inter-group stage,
we introduce the novel inter-group optimal clustering mech-
anism to explore the similarities between advantaged and
disadvantaged users. This step enables disadvantaged users
to learn from their similar advantaged counterparts, further
enhancing the training process for the disadvantaged group.
By employing these two stages, we successfully reduce the
training gap between advantaged and disadvantaged users,
thereby mitigating the root cause of the UOF issue.

Intra-Group Stage

In this stage, we aim to alleviate the data sparsity problem of
disadvantaged users. As depicted in Figure 2, firstly, we uti-
lize the intra-group optimal transport mechanism to explore
one-to-one similarities among disadvantaged users. Then,
we enable disadvantaged users to share their training sam-
ples with their most similar users.
Intra-Group Optimal Transport. To ensure users with
limited training samples can benefit from those with more
extensive training data, we sort the disadvantaged users
based on their interactions with items and divide them into
two subgroups G1 and G2. Each subgroup comprises half of
the disadvantaged users (i.e., |G1 | = |G2 |) with users in G1
having fewer interactions with items compared to those in
G2. The primary goal of the intra-group optimal transport
is to ascertain users’ similarities based on their interactions
with items. We achieve this objective in several steps:

Firstly, we construct one-hot interaction embeddings 𝐻 ∈
{0, 1} |U |× |I | of users, where 𝐻𝑖 𝑗 = 1 indicates that U𝑖 has
interacted with I𝑗 , and 𝐻𝑖 𝑗 = 0 otherwise. We denote one-
hot embeddings of G1 and G2 as 𝐻G1 and 𝐻G2 , respectively.

Secondly, we extract the optimal transport matrix by
solving the Monge-Kantorovich Problem (Bogachev and
Kolesnikov 2012) to explore similar user pairs between G1
and G2. Considering ℎG1 and ℎG2 are two variables re-
spectively sampled from 𝐻G1 and 𝐻G2 . Then, the Monge-
Kantorovich Problem is defined as follows:

Problem 1 (Monge-Kantorovich Problem) Given the
transport cost matrix 𝐶 ∈ R | G1 |× | G2 |

+ , the objective of the
Monge-Kantorovich Problem is to find the joint probability
𝑊 ∈ R | G1 |× | G2 |

+ that minimizes the total transport cost:

𝑑𝐶 (𝐻G1 , 𝐻G2 ) = min
𝑊

∫
𝐻G1×𝐻G2

𝐶 (ℎG1 , ℎG2 )𝑑𝑊 (ℎG1 , ℎG2 ).
(1)

Here, 𝑊𝑖 𝑗 indicates the possibility of transporting U𝑖 in G1
to U 𝑗 in G2, which reflects the similarity between U𝑖 and
U 𝑗 . To identify the most similar user in another group for a
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Figure 2: The overall framework of II-GOOT. In the intra-group stage, we enable each disadvantaged user to share training
samples with his/her most similar disadvantaged user to mitigate the data sparsity problem. In the inter-group stage, we let
disadvantaged users learn from advantaged users to further narrow the training gap between them.

given user, we introduce a constraint on 𝑊 :

| G1 |∑︁
𝑖=1

| G2 |∑︁
𝑗=1

𝑊𝑖 𝑗 = 1,

𝑊𝑖 𝑗 ∈
(
0,

1
|G1 |

)
,

| G1 |∑︁
𝑖=1

𝑊𝑖 𝑗 =
1

|G1 |
,

| G1 |∑︁
𝑗=1

𝑊𝑖 𝑗 =
1

|G1 |
,

(2)

where 𝑊𝑖 𝑗 =
1

| G1 | indicates that U 𝑗 is the most similar user
in G2 for U𝑖 , and vice versa.

However, solving the Monge-Kantorovich Problem can
be time-consuming, with a worst-case time complexity of
𝑂 ( |G1 |3). To overcome this, we introduce the sinkhorn di-
vergence (Cuturi 2013) to smooth the objective with an en-
tropic regularization:

𝑑 𝜖
𝐶 (𝐻

G1 , 𝐻G2 ) = min
𝑊

∫
𝐻G1×𝐻G2

𝐶 (ℎG1 , ℎG2 )𝑑𝑊 (ℎG1 , ℎG2 )

+ 𝜖 ·
| G1 |∑︁
𝑖=1

| G2 |∑︁
𝑗=1

𝑊𝑖 𝑗 (log(𝑊𝑖 𝑗 ) − 1).

(3)

The derived new objective can be efficiently solved through
Sinkhorn’s matrix scaling algorithm with a complexity of
𝑂 ( |G1 | · |G2 |) (Cuturi 2013). We introduce the detailed op-
timization process for Equation (3) in Appendix A.

Thirdly, we construct the cost matrix 𝐶 based on cosine
similarities between 𝐻G1 and 𝐻G2 :

𝐶𝑖 𝑗 =
𝐻

G1
𝑖

· 𝐻G2
𝑗

|𝐻G1
𝑖

| × |𝐻G2
𝑗
|
. (4)

Therefore, 𝐶 can reflect the initial similarities between each
user and give additional constraints to the probability mea-
sure. By calculating 𝑊 in Equation(3) based on 𝐶, we can
explore the one-to-one similar user pairs between G1 and G2.
Sharing Training Samples. During the training process of
the backbone recommendation model, we enable similar
users in G1 and G2 to share their training samples to miti-
gate the data sparsity problem of disadvantaged users based
on the result of 𝑊 . For example, if 𝑊𝑖 𝑗 = 1

| G1 | , then U𝑖 in
G1 and U 𝑗 in G2 will train together.

Inter-Group Stage
In this stage, we enable disadvantaged users to learn from
their similar advantaged users, thereby reducing the train-
ing gap between these two user groups. While the intra-
group stage helps mitigate data sparsity among disadvan-
taged users, it alone may be insufficient to address the UOF
issue due to the limited training samples available for disad-
vantaged users. Therefore, as shown in Figure 2, firstly, we
propose a novel inter-group optimal clustering mechanism
to explore similar disadvantaged users for each advantaged
user. Then, disadvantaged users will learn from the corre-
sponding similar advantaged user to receive better recom-
mendation results.
Inter-Group Optimal Clustering. To explore 𝑛-to-one
similarities among disadvantaged users and disadvantaged
users, we propose the novel inter-group optimal clustering
mechanism. In this approach, each advantaged user acts as
a cluster center, while disadvantaged users are considered
nodes to be clustered around these centers. To achieve this
goal, we need to solve the following Monge-Kantorovich
problem smoothed with the sinkhorn divergence:

𝑑 𝜖
𝐶 (𝐻

D , 𝐻A) = min
𝑋

∫
𝐻D×𝐻A

𝑀 (ℎD , ℎA)𝑑𝑋 (ℎD , ℎA)

+ 𝜖

|D |∑︁
𝑖=1

|A |∑︁
𝑗=1

𝑋𝑖 𝑗 (log(𝑋𝑖 𝑗 ) − 1),

(5)

where 𝑀 ∈ R |𝐷 |× |𝐴|
+ is the cost matrix, similar to 𝐶. ℎD and

ℎA are two embeddings sampled from 𝐻D and 𝐻A , respec-
tively. The above problem aims to find similarities between
disadvantaged and advantaged users. To achieve our objec-
tive of clustering each disadvantaged user into a specific ad-
vantaged user, we design a restriction of 𝑋 as follows:

|D |∑︁
𝑖=1

|A |∑︁
𝑗=1

𝑋𝑖 𝑗 = 1,

𝑋𝑖 𝑗 ∈ {0, 1
|D| },

|D |∑︁
𝑖=1

𝑋𝑖 𝑗 =
1
|A| ,

|A |∑︁
𝑗=1

𝑋𝑖 𝑗 =
1
|D| .

(6)

By restricting
∑ |A |

𝑗=1 𝑋𝑖 𝑗 =
1

|D | , we ensure balanced clusters
and avoid too many disadvantaged users being clustered to-
gether, which will cause over-smoothing of features. After
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solving the above optimization problem, we can get 𝑋 which
represents the clustering result. For example, 𝑋𝑖 𝑗 =

1
|D | in-

dicates that D𝑖 belongs to the cluster centered with A 𝑗 .
Embedding Training. During the training of the backbone
recommendation model, we enable disadvantaged users to
learn from advantaged users by enhancing the cohesion of
each cluster. We calculate the inter-group loss as follows:

𝐿𝑖𝑛𝑡𝑒𝑟 =

|D |∑︁
𝑖

| |𝐸D𝑖
− 𝐸T𝑖 | |2, (7)

where T𝑖 represents the clustering center of D𝑖 , 𝐸 represents
the user embedding. By minimizing 𝐿𝑖𝑛𝑡𝑒𝑟 , disadvantaged
users can learn from their similar advantaged users, and the
distributions of disadvantaged users and advantaged users
will be closer, which will improve the recommendation per-
formance of disadvantaged users.
Theorem 1 Let H be a hypothesis space of recommenda-
tion models with ℎ ∈ H . Let 𝑅D (ℎ) and 𝑅A (ℎ) be the ex-
pected error in user group D and A, 𝑅̂A (ℎ) be the empiri-
cal estimate of 𝑅A (ℎ):

𝑅D (ℎ) ⩽ 𝑅̂A (ℎ) + 𝑑H (D,A) + 𝛾, (8)

where 𝛾 is a constant.
Theorem 1 tells us that, to obtain a recommendation

model with a small 𝑅D (ℎ), it is necessary to minimize the
H -divergence 𝑑H (D,A) together with 𝑅̂A (ℎ). As pointed-
out by (Ben-David et al. 2006), a strategy to control H -
divergence is to find two user groups that are as indistin-
guishable as possible. Therefore, by aligning distributions
of disadvantaged and advantaged users to be similar, we can
improve the recommendation performance of disadvantaged
users and narrow the performance gap. The proof of Theo-
rem 1 can be found in Appendix B.

We combine 𝐿𝑖𝑛𝑡𝑒𝑟 together with the recommendation
loss 𝐿𝑢𝑡𝑖𝑙𝑖𝑡 𝑦 of the backbone model to achieve fairness and
maintain the overall recommendation performance simulta-
neously:

𝐿 = 𝐿𝑢𝑡𝑖𝑙𝑖𝑡 𝑦 + 𝐿𝑖𝑛𝑡𝑒𝑟 . (9)
Through the intra-group stage and the inter-group stage,

we enhance the training process for disadvantaged users and
effectively address the root cause of the UOF issue. It’s im-
portant to highlight that both the intra-group optimal trans-
port and the inter-group optimal clustering processes can be
executed ahead of the actual model training. Therefore, the
II-GOOT framework is time-efficient.

A Novel Metric: 𝜉-UOF
In this section, we solve the limitations of UOF research in
the evaluation phase by introducing a novel metric.

Existing UOF
User-Oriented Fairness (UOF) is a kind of group fair-
ness (Dwork et al. 2012; Hardt, Price, and Srebro 2016), that
strives to establish equitable treatment for both advantaged
and disadvantaged users within a recommendation model.
Given M that indicates a metric (e.g., NDCG and HitRatio)

that can evaluate the recommendation performance, UOF is
defined as follows (Li et al. 2021; Rahmani et al. 2022):
Definition 1 (User-Oriented Fairness (UOF))

E[M(A)] = E[M(D)] . (10)

UOF aims to offer users with different activity levels the
same recommendation performance, which is usually im-
possible in real-world RS. Therefore, researchers (Li et al.
2021; Rahmani et al. 2022) always calculate the difference
in average recommendation performance for different user
groups to evaluate the fairness of a model:
Definition 2 (The UOF metric)

M𝑈𝑂𝐹 (A,D) =
���� 1
|A|

|A |∑︁
𝑖=1

M(𝐴𝑖) −
1
|D|

|D |∑︁
𝑖=1

M(𝐷𝑖)
����.
(11)

However, the above M𝑈𝑂𝐹 only evaluates the recommen-
dation performance gap between advantaged and disadvan-
taged users, overlooking whether recommendation results
are satisfying. For instance, if both groups receive equally
poor recommendations, the model would still be considered
favorable according to M𝑈𝑂𝐹 . Such a metric may encour-
age recommendation models to achieve fairness at a low ac-
curacy level.

Our Proposed 𝜉-UOF
To address the limitations and provide a comprehensive
evaluation, we propose our metric, referred to as 𝜉-UOF,
which takes both fairness and accuracy into account. To be-
gin with, we define the Best UOF and the Worst UOF of a
recommendation model as Figure 1(b) shows:
Definition 3 (The Best UOF)

E[M(A)] = E[M(D)] = 𝑃A . (12)

Definition 4 (The Worst UOF)
E[M(A)] = E[M(D)] = 𝑃D . (13)

Clearly, if a recommendation model achieves the Best UOF,
it can provide a fair recommendation result with high ac-
curacy. Genuine fairness entails enhancing the recommen-
dation outcomes for disadvantaged users in order to nar-
row the recommendation gap between them and advantaged
users, i.e., the Best UOF. It does not involve reducing the
recommendation quality of advantaged users to match the
lower level experienced by disadvantaged users, i.e., the
Worst UOF. Nevertheless, attaining the ideal Best UOF is
impractical within real-world recommender systems due to
limitations in training samples. Therefore, we define 𝜉-UOF,
which evaluates the gap between a recommendation model
and the model with Best UOF.
Definition 5 (𝜉-UOF)

𝜉 ⩾M𝑈𝑂𝐹 (A,D) = |A|
|U|𝑚𝑎𝑥

{
0, 𝑃A − 1

|A|

|A |∑︁
𝑖=1

M(𝐴𝑖)
}

+ |D|
|U|𝑚𝑎𝑥

{
0, 𝑃A − 1

|D|

|D |∑︁
𝑖=1

M(𝐷𝑖)
}
,

(14)
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where the majority user group (i.e., disadvantaged users)
contributes more to the value of 𝜉-UOF. A smaller value of
𝜉 indicates a fairer model, and when 𝜉 = 0, it signifies that
a model has achieved the Best UOF and even surpassed it.
Through 𝜉-UOF, we encourage recommendation models to
achieve the Best UOF and provide satisfying recommenda-
tion results for both advantaged and disadvantaged users. We
conduct experiments in section to further analyze the limi-
tations of the existing metric and advantages of 𝜉-UOF.

Experiments and Analysis
We conduct extensive experiments to answer the following
questions: Q1: Does II-GOOT outperform the existing meth-
ods in effectively addressing the UOF issue and enhancing
recommendation performance? Q2: Can 𝜉-UOF provide a
robust evaluation of the UOF issue? Q3: What is the respec-
tive impact of the intra-group and inter-group stages on the
performance of II-GOOT? Q4: How robust is the generaliz-
ability of the II-GOOT framework when subjected to varia-
tions in the categorization of advantaged and disadvantaged
users? Q5: Can II-GOOT narrow the training gap between
advantaged users and disadvantaged users?

Datasets and Experimental Settings
Dataset. We conduct our experiments on three public Ama-
zon datasets Beauty, Grocery & Gourmet Food (Grocery),
and Health & Personal Care (Health), which are widely
used to evaluate the UOF issue (Li et al. 2021). We give
a detailed description of the datasets in Appendix C.1.
Baselines and Backbone Models. We compare II-
GOOT with the SOTA methods UFR (Li et al. 2021) and
S-DRO (Wen et al. 2022). Besides, we choose four backbone
models, including MF (Koren, Bell, and Volinsky 2009),
NeuMF (He et al. 2017), VAECF (Liang et al. 2018), and
LightGCN (He et al. 2020) to evaluate the performance. We
give a detailed introduction of baseline models and back-
bone models in Appendix C.2.
Evaluation Protocols and Parameter Settings. We extract
the top 5% users as advantaged users according to their inter-
action numbers, leaving others as disadvantaged users. Be-
sides, we adopt Normalized Discounted Cumulative Gain
(NDCG) (Wang et al. 2013) and Hit Ratio (HR) (Waters
1976) to evaluate the recommendation performance (Li et al.
2021; Dai et al. 2022). Then, we utilize our proposed 𝜉-
UOF to evaluate the UOF level of a recommendation model,
with a lower value of 𝜉-UOF means a fairer performance.
We give detailed evaluation protocols and parameter settings
in Appendix C.3.

Overall Comparison (Q1, Q2)
We conduct extensive experiments on three public datasets.
The results are reported in Table 1.
To Answer Q1. The experimental results demonstrate that
II-GOOT outperforms all baselines with fairer recommenda-
tion results and higher overall performance. Compared with
original backbone models, II-GOOT particularly enhances
the training process for disadvantaged users. Since model

training involves both advantaged and disadvantaged users,
the accuracy of recommendations for advantaged users also
experiences an improvement. With both user groups being
more satisfied with recommendation results, II-GOOT effec-
tively fosters fairness in recommendation models, moving
closer to the Best Fair and enhancing the overall recommen-
dation performance. Compared with UFR, II-GOOT has the
ability to solve the root cause of UOF, i.e., the training bias
between advantaged and disadvantaged users. UFR aims to
narrow the recommendation gap between these two groups
of users by re-ranking recommendation results. Its effec-
tiveness is hindered by inadequate training of disadvantaged
users. Compared with S-DRO, II-GOOT solves the data spar-
sity problem of disadvantaged users by expanding the pool
of training samples. While S-DRO focuses solely on mini-
mizing the loss function for disadvantaged users alongside
advantaged users, its potential is curtailed by the limitation
of training data for the former group.
To Answer Q2. The experimental results prove that 𝜉-
UOF has the ability to identify different levels of fairness
and comprehensively evaluate the UOF issue. As shown in
Table 1, recommendation models closer to the Best UOF
have a lower value of 𝜉-UOF. This trend is reasonable since
by optimizing recommendation models to the Best UOF, dis-
advantaged users can receive more satisfying recommenda-
tion results and the recommendation gap between advan-
taged and disadvantaged users can be narrowed. Among
baseline models, UFR aims to simply ensure that both ad-
vantaged and disadvantaged users experience similar recom-
mendation performance, as shown in Equation (11). How-
ever, since the re-ranking method, UFR, cannot mitigate the
training bias during model training, it reduces the recom-
mendation quality of advantaged users to match the low
level experienced by disadvantaged users. For instance, in
the Beauty dataset, UFR reduces the NDCG value for ad-
vantaged users from 0.3046 to 0.1956 in the NeuMF model,
while the value for disadvantaged users shows a marginal in-
crease from 0.1861 to 0.1863. Such performance will lead to
dissatisfaction in both user groups and should not be encour-
aged. 𝜉-UOF recognizes it to be unfavorable with the high
metric value of 0.1178.

Ablation Study (Q3)
In this section, we choose LightGCN as the backbone model
to demonstrate the effectiveness of the intra-group stage and
the inter-group stage. The experimental results are reported
in Table 2, with Intra and Inter indicating the model with
only the intra-group stage and the inter-group stage, respec-
tively. Both the intra-group stage and the inter-group stage
yield a fairer model, accompanied by a better overall rec-
ommendation performance. These outcomes underscore the
significance of enhancing the training process for disadvan-
taged users. Compared with the inter-group stage, the intra-
group stage offers a more substantial improvement. The rea-
son is that the key issue of insufficient training for disad-
vantaged users is the data sparsity problem. The intra-group
stage expands the pool of training samples, giving a more ef-
ficient solution. II-GOOT has the best performance, serving
as evidence that both stages play integral roles in achieving
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Beauty Grocery Health

Ove. Adv. Dis. 𝜉. Ove. Adv. Dis. 𝜉. Ove. Adv. Dis. 𝜉.

MF

NDCG

Original 0.152 0.266 0.146 0.114 0.176 0.320 0.168 0.144 0.171 0.341 0.162 0.170
UFR 0.158 0.154 0.158 0.109 0.171 0.191 0.170 0.149 0.162 0.163 0.162 0.179
S-DRO 0.159 0.266 0.153 0.108 0.180 0.316 0.172 0.141 0.170 0.342 0.161 0.171
II-GOOT 0.194* 0.271* 0.189* 0.073* 0.228* 0.350* 0.222* 0.093* 0.199* 0.347* 0.191* 0.143*

HR

Original 0.256 0.439 0.247 0.182 0.316 0.478 0.308 0.162 0.293 0.463 0.284 0.170
UFR 0.251 0.277 0.250 0.187 0.305 0.313 0.304 0.174 0.288 0.310 0.287 0.175
S-DRO 0.260 0.426 0.251 0.179 0.320 0.479 0.312 0.158 0.289 0.447 0.281 0.174
II-GOOT 0.286* 0.445* 0.278* 0.153* 0.364* 0.483* 0.358* 0.115* 0.322* 0.469* 0.315* 0.141*

NeuMF

NDCG

Original 0.192 0.305 0.186 0.113 0.200 0.344 0.193 0.144 0.196 0.359 0.188 0.162
UFR 0.187 0.196 0.186 0.118 0.200 0.292 0.196 0.144 0.192 0.231 0.190 0.167
S-DRO 0.196 0.311 0.190 0.109 0.200 0.331 0.193 0.144 0.207 0.352 0.199 0.152
II-GOOT 0.219* 0.323* 0.213* 0.087* 0.219* 0.351* 0.212* 0.125* 0.234* 0.391* 0.225* 0.127*

HR

Original 0.282 0.481 0.272 0.199 0.328 0.504 0.319 0.176 0.298 0.520 0.287 0.221
UFR 0.262 0.259 0.262 0.219 0.331 0.357 0.329 0.173 0.294 0.301 0.293 0.226
S-DRO 0.289 0.467 0.280 0.191 0.336 0.487 0.328 0.168 0.298 0.510 0.286 0.222
II-GOOT 0.321* 0.509* 0.311* 0.162* 0.356* 0.510* 0.348* 0.148* 0.349* 0.530* 0.340* 0.171*

VAECF

NDCG

Original 0.208 0.343 0.201 0.135 0.206 0.351 0.199 0.145 0.242 0.410 0.233 0.168
UFR 0.205 0.212 0.205 0.139 0.208 0.216 0.208 0.143 0.233 0.260 0.231 0.177
S-DRO 0.216 0.332 0.210 0.127 0.208 0.352 0.200 0.144 0.240 0.401 0.231 0.171
II-GOOT 0.228* 0.357* 0.221* 0.116* 0.235* 0.364* 0.228* 0.117* 0.261* 0.427* 0.252* 0.150*

HR

Original 0.324 0.528 0.313 0.204 0.350 0.529 0.340 0.179 0.323 0.555 0.311 0.232
UFR 0.320 0.322 0.320 0.208 0.345 0.368 0.343 0.185 0.314 0.356 0.312 0.241
S-DRO 0.334 0.529 0.323 0.194 0.357 0.527 0.348 0.173 0.328 0.560 0.316 0.227
II-GOOT 0.353* 0.537* 0.343* 0.175* 0.361* 0.541* 0.352* 0.169* 0.349* 0.562* 0.338* 0.206*

LightGCN

NDCG

Original 0.245 0.435 0.235 0.190 0.257 0.401 0.249 0.144 0.263 0.501 0.250 0.238
UFR 0.243 0.309 0.239 0.193 0.251 0.307 0.248 0.150 0.264 0.355 0.259 0.237
S-DRO 0.248 0.421 0.239 0.187 0.260 0.405 0.252 0.141 0.272 0.492 0.260 0.229
II-GOOT 0.286* 0.443* 0.278* 0.150* 0.289* 0.407* 0.283* 0.112* 0.309* 0.502* 0.299* 0.192*

HR

Original 0.375 0.625 0.362 0.250 0.393 0.622 0.380 0.230 0.376 0.633 0.362 0.257
UFR 0.368 0.404 0.366 0.257 0.396 0.441 0.394 0.226 0.383 0.419 0.381 0.250
S-DRO 0.376 0.602 0.365 0.249 0.414 0.620 0.403 0.208 0.387 0.639 0.374 0.246
II-GOOT 0.433* 0.641* 0.422* 0.193* 0.443* 0.628* 0.434* 0.180* 0.448* 0.637* 0.438* 0.185*

Table 1: Experimental result. Ove. indicates the overall recommendation performance. 𝜉. indicates the value of 𝜉-UOF. Adv.
indicates advantaged users. Dis. indicates disadvantaged users. The results of II-GOOT are highlighted in bold. The best results
are marked with *. The second-best results are underlined.

Beauty Grocery Health

Ove. 𝜉. Ove. 𝜉. Ove. 𝜉.

NDCG
Original 0.245 0.190 0.257 0.144 0.263 0.238
Intra 0.274 0.160 0.279 0.124 0.290 0.207
Inter 0.269 0.159 0.277 0.128 0.280 0.219
II-GOOT 0.286 0.149 0.289 0.112 0.309 0.192
HR
Original 0.375 0.250 0.393 0.230 0.376 0.257
Intra 0.420 0.214 0.424 0.191 0.425 0.205
Inter 0.410 0.220 0.420 0.193 0.417 0.212
II-GOOT 0.433 0.193 0.443 0.180 0.448 0.185

Table 2: Ablation study. Ove. indicates the overall recom-
mendation performance. 𝜉. indicates the value of 𝜉-UOF.

optimal outcomes.

Generalizability of II-GOOT (Q4)
We conduct experiments in Appendix D.1 to prove that II-
GOOT has strong generalizability in narrowing the recom-

mendation gap across various user distributions.

The Change in 𝐿𝑖𝑛𝑡𝑒𝑟 (Q5)
We conduct experiments in Appendix D.2 to prove that II-
GOOT has the ability to narrow the training gap between
advantaged and disadvantaged users.

Conclusion
This paper focuses on rarely studied User-Oriented Fairness
(UOF) in recommender systems, with the objective of re-
ducing the recommendation performance gap between ad-
vantaged and disadvantaged users. We address the UOF is-
sue in two phases of recommendation models. In the train-
ing phase, we propose an Intra- and Inter-GrOup Optimal
Transport (II-GOOT) framework. This framework effec-
tively narrows the training gap between advantaged and dis-
advantaged users through the intra-group stage and the inter-
group stage. In the evaluation phase, we propose a novel 𝜉-
UOF metric to give a comprehensive evaluation of the UOF
issue. We conduct extensive experiments on three real-world
datasets based on four backbone models, demonstrating the
efficiency of II-GOOT and the effectiveness of 𝜉-UOF.
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