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Abstract

Virtual Reality (VR) has emerged due to advancements in
hardware and computer graphics. During the pandemic, con-
ferences and exhibitions leveraging VR have gained atten-
tion. However, large-scale VR conferences, face a signifi-
cant problem not yet studied in the literature – displaying
too many irrelevant users on the screen which may negatively
impact the user experience. To address this issue, we formu-
late a new research problem, Social-Aware VR Conference
Group Display Configuration (SVGD). Accordingly, we de-
sign the Social Utility-Aware VR Conference Group Forma-
tion (SVC) algorithm, which is a 2-approximation algorithm
to SVGD. SVC iteratively selects either the P-Configuration
or S-Configuration based on their effective ratios. This en-
sures that in each iteration, SVC identifies and chooses the
solution with the highest current effectiveness. Experiments
on real metaverse datasets show that the proposed SVC out-
performs 11 baselines by 75% in terms of solution quality.

Introduction
Virtual Reality (VR) has experienced a surge in adoption
as industries increasingly utilize it to promote products and
enhance services (Mileva 2022; Ning et al. 2021). During
the COVID-19 pandemic, VR conferences and exhibitions
gained popularity as in-person events are constrained by
travel restrictions and social distancing policies. To support
virtual gatherings, various metaverse platforms have been
exploited. For instance, the ACM SIGKDD 2020 confer-
ence used vFair’s 3D platform for a virtual conference. Meta
Horizon Workrooms offers advanced features like persistent
whiteboards and mixed-reality pass-through functions, en-
abling users to collaborate in a virtual space (Meta 2023).
Spatial allows users to customize their 3D virtual space for
immersive galleries or exhibitions (Spatial 2023). Mozilla
Hubs provides spatial audio and media-sharing functions
for socializing with custom avatars in a virtual space (Hubs
2023). Engage replicates face-to-face interactions, accom-
modating up to 5,000 live virtual reality users for events,
training, and education (ENGAGE 2023). However, these
platforms lack the support for personalized display, e.g.,
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highlighting important nearby users in Head-Mounted Dis-
plays (HMDs), especially in crowded conference environ-
ments.

Current VR social apps lack personalization, which dis-
plays all users uniformly in the virtual environment and ne-
glects the potential benefits of customization. This curbs the
social interactions in VR conferences and diminishes user
satisfaction due to three drawbacks. D1) Obstructed View.
In crowded virtual spaces, users often struggle to find friends
or individuals of interest because nearby strangers obstruct
their views. D2) Lack of Customization. The presence of
undesirable strangers in proximity to a target user may lead
to undesirable interactions. D3) Overload. In large-scale
VR exhibitions/conferences, individuals may become over-
whelmed by the abundance of participants for interactions
or, conversely, become disinterested due to the lack of so-
cial connections. These three disadvantages, in combination,
lead to VR-induced Social Isolation, where users may strug-
gle to connect with individuals they are interested in or so-
cially close to, resulting in reduced interactions and satis-
faction. An effective solution to this issue is Personalized
Display, which allows users to selectively enable or disable
the rendering of other users.

In VR environments, different users are not required to
view the same set of individuals. Prior studies demonstrate
that tailoring user displays in VR enhances social experi-
ences (Pluto 2018). However, existing VR customization re-
search mainly revolves around analyzing factory safety mea-
sures in computer vision and data mining, aiming to recom-
mend items to users (Lacko 2020; Ko et al. 2020). These
research overlook personalization factors among users. A
personalized display enables the VR-based social metaverse
with the following advantages. A1) Social Relationships.
Enabling two users to see each other in the metaverse can
enhance their satisfaction, fostering a feeling of shared pres-
ence (Bulu 2012). Thus, displaying a group of socially-
close friends on an individual’s VR screen could be advan-
tageous (Pluto 2018). A2) Personal Preferences. Person-
alized displays, aligning with users’ preferences, enhance
satisfaction; for example, some users prefer seeing promi-
nent scholars or conference organizers at AAAI, while oth-
ers anticipate connecting with colleagues sharing their re-
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User Configuration Ranking ku

Andy
Personal preferences Bella Carl Faye Eddy Dora 1Social utilities Eddy Faye Bella Dora Carl

Bella
Personal preferences Faye Carl Andy Eddy Dora 2Social utilities Eddy Dora Andy Faye Carl

Carl
Personal preferences Andy Dora Eddy Bella Faye 1Social utilities Faye Bella Eddy Andy Dora

Dora
Personal preferences Andy Eddy Bella Faye Carl 2Social utilities Faye Bella Eddy Carl Andy

Eddy
Personal preferences Faye Carl Dora Bella Andy 2Social utilities Andy Bella Carl Faye Dora

Faye
Personal preferences Dora Andy Carl Eddy Bella 2Social utilities Dora Carl Bella Eddy Andy

Table 1: Personal preferences ranking, social utilities rank-
ing, and display limitation ku for each user

search interests. A3) Limited Display Slots. To address is-
sues D2 and D3, a limited number of users may be selected
for VR displays based on personal preferences and social re-
lationships. Users can specify their preferred number of dis-
play slots, enabling them to see those they are interested in
or have close social relationships with. Allocating restricted
display slots per user efficiently resolves issue D1 by en-
abling prioritization of interactions with preferred individu-
als, thus averting overcrowding. However, achieving a deli-
cate balance between social connections and personal pref-
erences while limiting the number of displayed individuals
presents a challenge.

Motivated by the advantages A1, A2, and A3, we propose
a new approach, named Social-Aware VR Conference Group
Display Configuration (SVGD), to address the issues D1,
D2, and D3. Given users’ social networks, personal prefer-
ences, and social utilities (the likelihood of two users having
active and joyful interactions.), SVGD seeks to identify the
ideal personalized display configuration for each user within
confined slots, maximizing overall user satisfaction.

Example 1. (Motivating Example). Fig. 1 presents an illus-
trative example. Given a social network G = (V,E) of six
VR users, as shown in Fig. 1(a), where the hollow user im-
ages next to each user indicate the number of slots in her VR
display, and a solid user image represents an occupied slot.
Table ?? presents the personal preferences rankings, social
utilities rankings, and display limitations of each user. The
User column lists the users. The Configuration column out-
lines the configuration factors, and the Ranking column in-
dicates the priority of other users to each individual. The ku
column denotes the number of slots available in each user’s
VR display. In Figs. 1(b), 1(c), and 1(d), we present three
different approaches to configure each user’s VR display
(called configuration hereafter).

i) Preference-based configuration (e.g., conventional
friend recommendation). The top-ku users of interest to
each user are configured based on personal preferences. Fig.
1(b) represents the ”sees-in-VR” graph of this preference-
based configuration, where an arrow from user x to user y
indicates that x sees y in her VR display. In an example,

Andy has a display slot number ku of 1. Despite having a
high social utility with Eddy, in the preference-based con-
figuration, Andy sees Bella, who is ranked the highest by
Andy’s personal preferences. Similarly, Bella has a ku of 2
and sees Faye and Carl, the top-ranked individuals according
to her personal preferences. In this configuration, each user
sees ku users during the VR conference, but they do not see
each other. This configuration only considers A2 (personal
preferences) and neglects A1 (social relationships), leading
to limited interaction among users during the VR conference
and worsening the issue of VR-induced Social Isolation.

ii) Social-based configuration (e.g., conventional cohe-
sive group extraction). Fig. 1(c) represents the ”sees-in-
VR” graph of this social-based configuration. A two-way ar-
row between two users indicates that they can see each other
in the VR display, while a blue user picture indicates that
both users have high social utilities. While this configura-
tion promotes social interactions during the VR conference,
it comes at the cost of individual preferences. For instance,
Andy may desire to see Bella, but due to their significant
social distance, Bella is not displayed, despite Andy’s inter-
est. Conversely, Bella, with a display slot count of 2 (ku),
can see Dora and Eddy, who are ranked higher according
to her social utilities. This social-based configuration pri-
marily considers aspect A1 (social relationships) but over-
looks aspect A2 (personal preferences), potentially leading
to decreased user satisfaction. This reduces users’ satisfac-
tion and neglects the crucial purpose of VR conferences: to
meet and get acquainted themselves with new people.

iii) Preferences and socially balanced configuration.
This configuration’s ”sees-in-VR” graph is presented in Fig.
1(d). For instance, Dora sees Eddy due to her high personal
preferences for Eddy, and she also sees Faye since they have
a high social utility ranking between them. Likewise, Bella
sees Faye as she has a strong personal preference for her,
while Bella and Andy see each other due to their relatively
high social utility and personal preferences rankings. This
configuration, which takes into account A1, A2, and A3
(limited display slots), enhances user satisfaction and mit-
igates VR-induced Social Isolation.

The SVGD problem is distinct from conventional friend
recommendation and personalized recommendation ap-
proaches (Cheng et al. 2019; Chen et al. 2017; Zhao et al.
2016; Bagci and Karagoz 2016; Lin et al. 2017), as well as
cohesive group extraction in social networks (Lu et al. 2022;
Al-Baghdadi and Lian 2020; Ma et al. 2022; Sanei-Mehri
et al. 2021; Dong et al. 2021; Yang et al. 2021, 2012a). Con-
ventional friend recommendation focuses on suggesting po-
tential friends based on preferences, without considering the
impact of other users’ configurations in a VR setting. Co-
hesive group extraction in social networks aims to identify
socially-close friends but does not incorporate the inclusion
of strangers based on user preferences or interests, which
could hinder the formation of new friendships. More impor-
tantly, the SVGD problem allows the rendering of different
users on individual VR displays, setting it apart from so-
cial/preferences group queries and group recommendations.

In summary, conventional research does not consider sev-
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Empty k
u

slots in the input data 
User connections

Andy Bella

Carl

DoraEddy

Faye

(a) Input social network

Viewing preferred individuals
Fulfilling with the k

u
slots

Andy Bella

Carl

DoraEddy

Faye

(b) Personal preferences-only

Andy Bella

Carl

DoraEddy

Faye

Reciprocated viewing of individuals
Both users have high social utility

(c) Social relationships-only

Socializing with preferred users

Andy Bella

Carl

DoraEddy

Faye

Both users have high social utility

(d) Our idea

Figure 1: An illustrative example of preference-based, social-based, and balanced configuration

eral factors particularly important in VR conferences, in-
cluding i) personal preferences, ii) the impact of other users’
configurations on user satisfaction in VR, iii) co-display
among users (two users appear in each other’s VR displays),
iv) handling over-crowding in VR events, and v) different
users to be rendered on different users’ VR displays. For in-
stance, the user recommendation approaches maximize in-
dividual users’ personal preferences and satisfaction, but it
neglects ii), iii), iv) . Similarly, group formation and recom-
mendation tend to find socially-close friends, but they do not
consider the inclusion of strangers and overlook i), ii), iv),
and v). Therefore, previous approaches cannot be applied
directly to the SVGD problem studied in this paper.

In this paper, we prove the NP-hardness of the SVGD
problem and propose a 2-approximation algorithm, named
Social Utility-Aware VR Conference Group Formation
(SVC). This algorithm addresses the challenges posed by
personal preferences and social relationships within limited
VR display slots. We introduce the concept of SVD util-
ity to quantify user satisfaction and propose the SVD ku-
configuration, where ku represents the maximum number of
users displayable in a user’s VR setup. We evaluate the SVC
algorithm on real datasets. The results demonstrate the ef-
fectiveness of our approach.

The paper’s contributions are summarized as follows.
• We present the new notion of SVD ku-configuration un-

der the context of VR conferences and formulate a new
research problem, Social-Aware VR Conference Group
Display Configuration (SVGD). SVGD aims to identify
an SVD ku-configuration that facilitates social interac-
tions without sacrificing users’ individual preferences.

• We analyze the NP-hardness of SVGD and propose a
2-approximation algorithm, named Social Utility-Aware
VR Conference Group Formation (SVC).

• We conducted extensive experiments on 5 real datasets.
The results indicate that SVC significantly outperforms
other baselines in terms of solution quality and efficiency.

Related Works
VR applications. A wide spectrum of VR applications have
emerged recently, such as online VR shopping (Ko et al.
2020), friend-making (Raber, Schommer, and Krüger 2019),
social interactions in VR (McVeigh-Schultz, Kolesnichenko,
and Isbister 2019), and social VR in edge computing (Wang

et al. 2018a). We envisage that the proposed SVGD prob-
lem helps users obtain a better VR group conference experi-
ence by selecting a suitable set of users for their VR display
with the maximum personal preferences and social utilities.
To the best of our knowledge, similar functions are not cur-
rently available in VR conference products on the market
(Meta 2023; Spatial 2023).

Dense subgraph extraction. Extracting dense subgraphs
in social networks has been actively studied for decades,
e.g., (Shen et al. 2015; Lu et al. 2022; Al-Baghdadi and Lian
2020; Ma et al. 2022; Chen et al. 2018a; Shen et al. 2017;
Hsu, Shen, and Yan 2019). However, they cannot be applied
directly to our VR conference scenario due to the following
reasons. i) The limited number of slots in the VR display
(allowed to vary for each user) is not considered, and differ-
ent users can be rendered on different users’ VR displays. ii)
The important notion of co-display is not incorporated, and
many users might suffer from VR-induced Social Isolation.
iii) The users’ personal preferences and social utilities are
not jointly examined, causing poor interactions between the
users in the VR conference.

Personalized recommendation. Personalized recom-
mendations are widely used in E-commerce, suggesting
products based on user preferences and browsing his-
tory (Chen et al. 2017; Liao et al. 2018; Zhao et al. 2022).
However, these approaches fail to jointly consider the per-
sonal preferences and social interactions. In SVGD, both
personal preferences and social interactions are crucially
considered, accounting for diverse users displayed on differ-
ent VR screens. This distinction sets the problem apart from
social/preferences group queries (which identify identical
users for the entire group)(Yang et al. 2012a) and group rec-
ommendations (which suggest the same items for all users).

Problem Formulation and Hardness Result
Given a directed social network G = (V,E), where V rep-
resents the set of users and edge set E specifies their social
relationships, we first introduce Social-Aware VR Confer-
ence Display with ku-configuration (SVD ku-configuration),
which configures the limited display slots of users in a large-
scale VR conference event.

Definition 1. Social-Aware VR Conference Display with
ku-configuration (SVD ku-configuration). Given ku dis-
play slots specified for user u to display other users in a VR
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conference, an SVD ku-configuration is a collection of sets
A = {Au|∀u ∈ V }, where a set Au, corresponding to user
u, contains at most ku other users that appear in user u’s VR
display.

For a large-scale VR conference, each user u sees at most
ku other users to avoid the overcrowded view. As a conse-
quence, some users may not be rendered in a specific user’s
VR display due to the limited display slots. With the defi-
nition of SVD ku-configuration in hand, we now introduce
co-display as follows.

Definition 2. Co-display (u ↔ v) and I(u, v). Let u ↔ v
denote that users u and v appear in each other’s VR dis-
play, i.e., v ∈ Au and u ∈ Av . In this case, u ↔ v is
referred to as a co-display. We employ a binary indicator
function I(u, v) = 1 to indicate this co-display relationship,
i.e., I(u, v) = 1 if u ↔ v, and I(u, v) = 0, otherwise.

Since the VR display slot is limited for each user, users
u and v might not see each other, i.e., I(u, v) = 0, and
they cannot have social interactions. Previous studies (Wang
et al. 2018b; Gao et al. 2018) indicate that a user’s satisfac-
tion in a group activity is affected by two important factors:
personal preferences and social utilities. Therefore, to ad-
dress the above issue and enhance social interactions, it is
important to consider personal preferences and social utili-
ties jointly in our problem formulation.

Specifically, given a pair of users u and v in a social net-
work G = (V,E) with (u, v) ∈ E, let p(u, v) ≥ 0 denote
the personal preference of u on v when v is rendered in u’s
VR display, and let τ(u, v) ≥ 0 denote the social utility for
u against v, i.e., how likely u believes that u and v would
have active and joyful interactions (Lai et al. 2019; Shuai
et al. 2013). Please note that p(u, v) (τ(u, v)) and p(v, u)
(τ(v, u)) may be different. The assignment of personal pref-
erences and social utilities can be done either by the user
themselves, obtained through the use of social-aware recom-
mendation models (Sankar et al. 2021; Fan et al. 2019), or
inferred by event recommendation models (Liao et al. 2018;
Yang et al. 2023).

Given the above definitions and following (Ko et al. 2020;
Wang et al. 2018b; Chen and Yang 2022; Tong, Meng, and
She 2015), we define the SVD utility, which integrates per-
sonal preferences and social utilities and acts as a metric
for a proper configuration of other users appearing on each
user’s VR display.

Definition 3. SVD utility (wAu(u, v)). Given an SVD ku-
configuration A = {A1, A2, ..., A|V |}, the SVD utility of
user u on user v ∈ Au combines personal preference and
social utility,

wAu
(u, v) = (1− λ) · p(u, v) + λ · τ(u, v) · I(u, v), (1)

where λ ∈ [0, 1] is a weighting factor, which can be di-
rectly set by a user or implicitly learned from existing mod-
els (Zhao, McAuley, and King 2014; Liao et al. 2018).

An alternative approach for incorporating preferential and
social factors is to employ an end-to-end machine learning

approach, generating user and item representations and us-
ing a neural network aggregator to compute overall user sat-
isfaction (Cao et al. 2018). However, this approach demands
an algorithm to generate potential configurations for ranking
and relies heavily on substantial training data to fine-tune the
aggregator’s parameters. In contrast, prior research (Wang
et al. 2018b; Liao et al. 2018; Zhao, McAuley, and King
2014) has shown that a blend of preferential and social fac-
tors, combined with assigned or learned weights, can effec-
tively evaluate user satisfaction. Various objective functions,
such as wAu(u, v) = min(p(u, v), τ(u, v)), wAu(u, v) =
max(p(u, v), τ(u, v)), and wAu(u, v) = p(u, v) · τ(u, v),
yield subpar solutions and user satisfaction. In specific con-
texts, min and max solely consider personal or social fac-
tors. Moreover, when either min or product is exceedingly
low for either p or τ , the outcomes might not favor a partic-
ular individual despite deserving consideration in real sce-
narios. Hence, akin to (Wang et al. 2018b; Ko et al. 2020),
we frame the SVD utility as a weighted fusion of aggregated
personal preferences and social utilities, governed by the pa-
rameter λ.

Here, wAu
(u, v) is a directional utility from user u to a

user v in her configuration, ∀u ∈ V . The users selected
in user u’s configuration appear in user u’s VR display, but
user u may not be in their configurations. Hence, SVD utility
wAu(u, v) is a directional utility. The SVD utility wAu(u, v)
incorporates both the personal preference p(u, v) and social
utility τ(u, v). The social utility τ(u, v) takes effect only
when the co-display condition holds, i.e., u ↔ v holds
(I(u, v) = 1). This is because users u and v can interact
only when they see each other in their own VR displays.

In this paper, we formulate the Social-Aware VR Confer-
ence Group Display Configuration (SVGD) problem to con-
figure suitable users in every user’s VR display by identi-
fying the best SVD ku-configuration. Here, SVGD includes
two additional constraints: i) Personal preference constraint
θ, which requires that for a user u, any user v rendered in
u’s VR display must have a personal preference at least θ,
i.e., p(u, v) ≥ θ, ∀u ∈ V, v ∈ Au. Following (Hsu, Shen,
and Chang 2020; Hsu, Lan, and Shen 2018), the above con-
straint aims to meet the minimum required personal pref-
erences to prevent users from becoming extremely dissatis-
fied. In SVGD, this personal preference constraint (referred
to as preference constraint hereafter) avoids rendering users
that receive a low personal preference; ii) Display slot ku
for all u ∈ V , which specifies the maximum number of
other users that can be rendered on user u’s VR display, to
prevent too many people being rendered on users’ VR dis-
plays, making the displays too crowded1. Here, even if two
users’ social utilities are low, e.g., previously unknown to
each other, they may still want to see each other on their VR
displays if they have a high preference. Therefore, we do not
set the social utility constraint in our problem. Please note
that SVGD allows each user to see different surrounding

1The constraint ku can be modified to a weighted constraint
to account for users’ varying weights based on their proximity to
each other such that the sum of the weights of all the users in a
given user’s configuration does not exceed ku.
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users, which makes the problem different from traditional
group query and group recommendation problems. As men-
tioned in Section , there are three disadvantages, D1, D2,
and D3 in current VR, and it is not feasible to let everyone
see each other. Therefore, we employ A1 and A2 to cus-
tomize the display for each user (addressing D2 and D3),
and use A3 to avoid the user’s display being overcrowded
(addressing D1). Moreover, we define the total SVD utility
of A as

∑
u∈V

∑
v∈Au

wAu
(u, v), which is the summation

of the utility values of each user u and the other users in
u’s VR display, i.e., Au. Here, wAu(u, v) is the SVD utility
defined in Definition 3.

Specifically, the SVGD problem is formulated as follows.

Problem.: Social-Aware VR Conference Group Display
Configuration (SVGD).
Given: A social network G = (V,E), personal preference
p(u, v) for all u, v ∈ V , social utility τ(u, v) for each di-
rected edge (u, v) ∈ E, weighting parameter λ, personal
preference constraint θ, and display slot ku, ∀u ∈ V .
Objective: To find an SVD ku-configuration A∗ that max-
imizes the total SVD utility:

∑
u∈V

∑
v∈Au

wAu
(u, v),

where each set Au ∈ A∗ contains at most ku other users
(ku can vary for each individual), and for each v in Au, its
personal preference for u is at least θ.

An alternative objective is to maximize users’ exposure,
aiming for each user to appear in the displays of the largest
possible number of other users on average. However, this ob-
jective does not consider the preferences factor, leading to
poor potential interactions. Another potential problem for-
mulation is to maximize the social utilities while requiring
the personal preferences to be at least θ (the personal pref-
erence constraint). However, this formulation lacks the flex-
ibility to cover various VR conference scenarios and cater
to varying user intentions. Our problem formulation permits
adjusting these two trade-off parameters to fit different sce-
narios.

Theorem 1. SVGD is NP-hard.

Proof. We prove this theorem by reducing it from the Ex-
act Cover by Three Sets problem (Cormen et al. 2022). The
complete proof is shown in Appendix A.

Approximation Algorithm For SVGD
In this section, we present the Social Utility-Aware
VR Conference Group Formation (SVC) algorithm, a 2-
approximation algorithm for SVGD. A simple greedy ap-
proach falls short of achieving a guaranteed performance
bound. For instance, the preference-based configuration (il-
lustrated in Fig. 1) solely accounts for A2 (personal prefer-
ences), while the social-based setup only considers A1 (so-
cial relationships), leading to compromised user satisfaction.

The SVC algorithm efficiently tackles the SVGD problem
by assigning near-optimal configurations to users to max-
imize SVD utility. It employs a Quantified Social Benefit
Network (QSB network) to accommodate two selection

strategies: Personal Preference Attention Configuration (P-
Configuration) and Social utilities Aware Configuration (S-
Configuration). During the configuration, the QSB network
integrates social utilities and personal preferences into the
original graph, using directed edges for P-Configurations
and undirected edges for S-Configurations.

Next, in the Configuration Comparison stage, the effec-
tive SVD utility ratio between the two configurations is com-
pared in order to determine the sequence of users to be in-
cluded in the configuration. A superlative sequence is cre-
ated for each user’s configuration, ensuring that the util-
ity obtained by each user’s choice of the configuration de-
creases iteratively. This ensures a better utility to be ex-
tracted earlier.

Detailed Algorithm Design
Effective SVD utility with P/S-Configuration. To facilitate
the effective design of P-Configuration and S-Configuration,
we first extend the SVD utility defined in Equation (1), and
propose the concept of effective SVD utility to capture the in-
crement of SVD utility when executing P-Configuration or
S-Configuration. For a user u in a P-Configuration, when
user v is added to Au, the effective SVD utility with P-
Configuration of user u is denoted as ∆(u → v). Similarly,
the concept of effective SVD utility with S-Configuration of
users u and v is denoted as ∆(u ↔ v). The S-Configuration
involves two users u and v, i.e., SVC selects user u into Av

and selects user v into Au simultaneously.
Effective SVD utility ratio with P/S-Configuration (Ef-

fective P/S ratio). To enable SVC to identify appropriate
users to include in a user u’s VR display set Au, we first
present the effective SVD utility mentioned above. We de-
fine the effective SVD utility ratio with P/S-Configuration,
the effective SVD utility normalized by the number of se-
lected users whose ku are not full, in order to find the ef-
fective SVD utility increment when adding a user to another
user’s display slots under both configurations. The effective
SVD utility ratio with P-Configuration (referred to as effec-
tive P-Configuration ratio for short) of users u on v is de-
noted as ρ(u → v). The effective SVD utility ratio with S-
Configuration (referred to as effective S-Configuration ratio
for short) of users u and v is denoted as ρ(u ↔ v). The two
effective ratios are critical because the display slots are lim-
ited. By measuring the normalized increment of SVD utility
in user selections, SVC effectively identifies the candidates
that result in better solutions with limited display slots.

Construction of Quantified Social Benefit Network.
Given the input social network G = (V,E), with i) per-
sonal preference constraint θ, ii) display slot ku, ∀u ∈ V ,
SVC embeds the social utilities and personal preferences
into the original graph and constructs the QSB network. The
SVD utility containing only personal preferences is embed-
ded in the two weighted directed edges between each pair of
users, and the sum of SVD utilities between two users with
personal preferences and social utilities is embedded as a
weighted undirected edge between users. We present an ex-
ample in Appendix C. Upon performing the configuration,
the edge weights between the selected users are updated to
preserve the approximation ratio.
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SVC maintains a collection S = {Su | u ∈ V } of user
sets. Each set Su ∈ S represents the users selected by SVC
to appear in the VR display of user u. Initially, SVC gener-
ates a collection Aθ = {Aθ

u | u ∈ V } of potential sets. Each
set Aθ

u ∈ Aθ contains only the users who satisfy the prefer-
ence constraint, i.e., Aθ

u = {v | p(u, v) ≥ θ, ∀v ∈ V }, to
filter out impossible user selections. Subsequently, SVC iter-
atively selects the P-Configuration or S-Configuration with
the greater effective ratio. This approach ensures that the
user selected in each iteration represents the current best so-
lution. After each selection, SVC updates the corresponding
ρ(·) accordingly.

Specifically, if ρ(x ↔ y) < ρ(u → v), SVC per-
forms a P-Configuration and identifies the user v ∈ Aθ

u
and the corresponding Su that maximizes the effective P-
Configuration ratio ρ(u → v). SVC then adds user v to
Su. To find ρ(u → v), i) if user u is not in Av , then
∆(u → v) = (1 − λ) · p(u, v), because in this case
I(u, v) = 0, indicating that user u does not appear in user
v’s VR display. ii) Otherwise, if user u is already in Av , then
∆(u → v) = (1− λ) · p(u, v) + λ · (τ(u, v) + τ(v, u)), be-
cause users u and v establish the co-display relationship and
I(u, v) = 1, and thus λ · (τ(u, v) + τ(v, u)) is included in
∆(u → v). Please note that p(v, u) is excluded here as it has
previously been introduced in a P-Configuration ∆(v → u).
Then, the effective P-Configuration ratio ρ(u → v), which
is ∆(u→v)

1 , where the 1 in the denominator indicates that
only 1 user, i.e., user v, is selected at this iteration. Next,
after a P-Configuration that adds v to Su, SVC updates
ρ(v → u) to (1−λ)·p(v, u)+λ·(τ(u, v)+τ(v, u)) and sets
ρ(u ↔ v) to 0, because the SVD utility of v on u increases
and v can no longer be selected for u by an S-Configuration.

In previous iterations, a user may have chosen another
user based on a high effective P-Configuration ratio. How-
ever, it is possible that the social utilities between these two
users are greater than other users’ P-Configuration. There-
fore, the social utilities between the users who have previ-
ously made a P-Configuration needs to be examined to en-
sure that the current selection is still the best option, i.e., the
largest ratio. In addition, the process of edge update is also
important, since it involves one-way and opposite selections
to partition the globally optimal solution. One-way selection
refers to the situation whether a user u chooses another user
v, whereas the opposite selection refers to user v selecting
user u. With one-way selection, we partition the global op-
timal solution into two segments, with one segment chosen
by SVC, while the other is not.

Similarly, to carry out an S-Configuration, SVC iden-
tifies two users x and y that maximize the effective S-
Configuration ratio ρ(x ↔ y) so as to add users x and y
to Sy and Sx, respectively. The calculation of ρ(x ↔ y)
is based on the effective SVD utility with S-Configuration
∆(u ↔ v), which is the SVD utility increment when user u
is selected into Av and user v is selected into Au simultane-
ously. Therefore, ∆(u ↔ v) = (1−λ)·(p(u, v)+p(v, u))+
λ · ((τ(u, v) + τ(v, u))). In this case, I(u, v) = 1, and the
co-display relationship between users u and v thereby holds.
Then, ρ(u ↔ v) = ∆(u↔v)

2 because 2 users (i.e., users u and

v) are chosen for Av and Au, respectively. After performing
an S-Configuration of x and y, SVC also needs to update the
effective SVD utility. In this case, SVC sets ρ(x → y) and
ρ(y → x) to 0, as x and y can no longer be selected for each
other. The updating of edge weights in the S-Configuration
is used to prevent redundant selection. Since x and y are al-
ready in the configuration of each other, if the weights are
not updated in time, redundant P-Configurations may be ex-
ecuted in the future, which impacts the efficiency.

Next, in each iteration, SVC adds new users to the col-
lection S by performing either a P-Configuration or S-
Configuration with the greater effective ratio. If the number
of users in a set Su for a user u reaches the limit of ku dis-
play slots, SVC stops adding users to that set. If all the sets
in S are full or no more users can be selected, SVC stops
and returns S as the final solution A∗. We present a running
example and the pseudocode in Appendix D.

Analysis of Approximation Ratio of SVC
In this section, we prove that SVC is a 2-approximation al-
gorithm. The core idea is that, given any optimal solution
O, the selected users can be viewed as a sequence of single-
user selections with a descending order based on the effec-
tive SVD utility, i.e., {uO

1 , u
O
2 , ...}. This is because the opti-

mal solution is the result with the highest total SVD utility,
the configuration with a high SVD utility must be selected
firstly. For the proposed SVC, it also selects a sequence of
users {u1, u2, ...} with P/S-Configurations. We prove that
the effective SVD utility of uO

i being less or equal to two
times the effective SVD utility for each user ui must hold.
In other words, the effective SVD utility ratio with P/S-
Configuration is bounded by two on the selected users of
SVC. The time complexity of SVC is O(max∀u(ku) · |V | ·
log(|E|)).
Theorem 2. SVC is a 2-approximation algorithm to SVGD
with a time complexity O(max∀u(ku)|V | · log(|E|)).

Proof. The detailed proof is presented in Appendix E.

In real applications, ku is usually small, e.g., ku < 100,
enabling SVC to find the solution efficiently. Moreover, the
size of users V in the VR scenarios is much smaller than
the number of users V in each dataset in Section , because
it only encompasses the individuals participating in the VR
event. Therefore, SVC is very efficient in practical scenarios.

Experimental Results
Performance Evaluation
The detailed experiment setup is presented in Appendix I. To
evaluate the effectiveness and the efficiency of the proposed
SVC, we compare SVC with 12 various baselines on 5 real
datasets. i) Timik (Jankowski, Michalski, and Bródka 2017),
ii) Pokec (Takac and Zabovsky 2012), iii) Youtube (Yang
and Leskovec 2012), iv) SMMnet (Moraes and Cordeiro
2019), and v) Facebook (McAuley and Leskovec 2012).
The specifics of these datasets are described in Appendix
I. While there is no existing algorithm for the SVGD prob-
lem, we implement 12 baseline approaches. i) PER (Yang
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Figure 2: Results on four large-scale datasets

et al. 2012b), ii) SOC (Yang et al. 2012b), iii) RAND, iv)
MAXD (Behnezhad and Derakhshan 2020), v) KOAVG (Ko
et al. 2020), vi) SSGQ (Chen et al. 2018b), vii) BCC (Dong
et al. 2021), viii) COMUR (Chen and Yang 2022), ix)
GraFrank (Sankar et al. 2021), x) FSGSel (Shen et al. 2022),
xi) MAXGF (Shen et al. 2020), and xii) BF, which enumer-
ates all combinations to find the optimal solution. The base-
lines are introduced in Appendix H. We evaluate them by the
following metrics: i) total SVD utility, and ii) total execution
time. All algorithms are implemented in a server with an In-
tel Xeon W-2245 CPU with 128 GB RAM. Personal prefer-
ences and social utilities are assigned according to (Ko et al.
2020; Chen and Yang 2022).

Sensitivity tests and comparisons with optimal solu-
tions on the small dataset. To understand the performance
gap between the proposed approach and the optimal solu-
tion, we first compare the results on the small dataset, Face-
book. The results demonstrate that our algorithm outper-
forms other baselines. Moreover, we conduct additional sen-
sitivity tests on dataset Facebook with different λ, θ, ku, and
different inputs generated by Random, RevGNN (Li et al.
2021), GraphRec (Fan et al. 2019), and DGRec (Yang et al.
2023). Details of the experiments are shown in Appendix J.

Scalability and sensitivity tests on large networks.
Fig. 2 compares the total SVD utility on the four large so-
cial networks, Timik, Youtube, Pokec, and SMMnet. We set
λ = 0.7, θ = 0.1, and all users’ display slots ku = 25 by
default. Figs. 2(a) and 2(b) present the objective values and
execution time of the proposed SVC and other baselines. Be-
cause the numbers of users in these datasets are different, we
performed Z-Score Normalization (Patro and Sahu 2015) on
the results. The results illustrate that the proposed SVC out-
performs the other baselines in terms of solution quality and
efficiency.

Fig. 3 presents the sensitivity tests on the 3D VR meta-
verse social network dataset, Timik. In Figs. 3(a) and 3(b),
we compare the results with different values of ku =
{23, 25, 28, 30} and values of λ = {0.5, 0.6, 0.7, 0.8}. SVC
achieves the best performance over all the baselines. PER
and SOC do not perform well because they consider either
personal or social aspect only. MAXD employs the degree
of edges to create the configuration and thereby is difficult
to ensure that the chosen edges have a higher personal pref-
erence or social utility. KOAVG is designed to recommend
items to a group of users, and thereby ignoring users’ per-
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Figure 3: Sensitivity tests on the large-scale Timik dataset

sonal preferences. BCC and SSGQ do not pay special atten-
tion to personal preferences and do not guarantee that users
can see each other, leading to high social utility limitations.
GraFrank, COMUR, FSGSel, and MAXGF establish con-
figurations based on different factors, which might disre-
gard the important personal preferences and social utilities
in the process. Moreover, SVC outperforms other baselines
by 75% on average, while the p-values of SVC to the base-
lines are all less than 0.05, indicating that the SVD utility of
SVC is statistically greater than other baselines. Figs. 3(c)
and 3(d) present the execution time of the sensitivity test.
The value of λ only influences the calculation of the total
SVD utility, does not affect the execution time.

Conclusion
This paper explores the new research problem, SVGD, to
configure display slots for users in VR conferences by
jointly considering three important factors. We analyze the
hardness of SVGD and propose a 2-approximation algo-
rithm, named SVC, to tackle SVGD. In our experiments with
5 real datasets manifest that SVC surpasses other baseline
methods in both solution quality and efficiency. In our fu-
ture research, we plan to extend SVC for more generalized
scenarios, such as the user’s view being obstructed.
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