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Abstract

Logical anomalies (LA) refer to data violating underlying
logical constraints e.g., the quantity, arrangement, or com-
position of components within an image. Detecting accu-
rately such anomalies requires models to reason about var-
ious component types through segmentation. However, cu-
ration of pixel-level annotations for semantic segmentation
is both time-consuming and expensive. Although there are
some prior few-shot or unsupervised co-part segmentation
algorithms, they often fail on images with industrial object.
These images have components with similar textures and
shapes, and a precise differentiation proves challenging. In
this study, we introduce a novel component segmentation
model for LA detection that leverages a few labeled samples
and unlabeled images sharing logical constraints. To ensure
consistent segmentation across unlabeled images, we employ
a histogram matching loss in conjunction with an entropy
loss. As segmentation predictions play a crucial role, we pro-
pose to enhance both local and global sample validity de-
tection by capturing key aspects from visual semantics via
three memory banks: class histograms, component composi-
tion embeddings and patch-level representations. For effec-
tive LA detection, we propose an adaptive scaling strategy
to standardize anomaly scores from different memory banks
in inference. Extensive experiments on the public benchmark
MVTec LOCO AD reveal our method achieves 98.1% AU-
ROC in LA detection vs. 89.6% from competing methods.

Introduction
In industrial images, defects can be categorized into two
main types: structural and logical anomalies (Bergmann
et al. 2022). Structural anomalies (e.g., cracks and con-
tamination) occur in localized regions often absent in nor-
mal data, whereas logical anomalies refer to data that does
not adhere to underlying logical constraints, e.g., compo-
nent composition and arrangement. Herein, effective detec-
tion requires the consideration of long-range dependencies
within and across images.

Existing research on anomaly detection (AD) for indus-
trial images has primarily focused on unsupervised ap-
proaches that aim to learn the distribution of normal data
and detect outliers as anomalies. This has resulted in state-
of-the-art models that have reported impressive scores ex-
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Figure 1: Comparison of approaches at a conceptual level.
(A) The anomaly detection (AD) model is directly trained
using images. (B) Our proposed method guides part segmen-
tation models using a few labeled samples to accurately seg-
ment components and then uses the segments for AD. (C)
Examples of logical anomalies show the importance of se-
mantically segmenting components for detection.

ceeding 99% (Roth et al. 2022). This high score can be at-
tributed to the nature of public benchmarks (e.g., MVTec
AD (Bergmann et al. 2019) and MTD (Huang et al. 2020)),
which predominantly comprises structural anomalies, result-
ing in models with much lower performance when targeting
logical anomalies (Bergmann et al. 2022).

To address logical AD, current methods implicitly con-
sider global dependencies among multiple components for
effective detection, as described in Fig. 1A. For example,
(Bergmann et al. 2022) proposed a hybrid feature recon-
struction model, while (Tzachor, Hoshen et al. 2023) intro-
duced a histogram-based density estimation model. Despite
these advancements, performance is constrained by the in-
ability to accurately differentiate various components. For
more accurate logical AD, it is essential to semantically seg-
ment the product’s components, as they often exhibit similar
features (e.g., peaches vs. mandarins in Fig. 1C). This task
is closely related to co-part segmentation (Hung et al. 2019),
as normal samples’ similar components follow pre-defined
logics. However, existing unsupervised methods (Hung et al.
2019; Gao et al. 2021) often fail to precisely segment such
components since they cannot distinguish similar features
without relying on supervised guidance.
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A more effective approach could involve guiding part seg-
mentation using a set of labeled images by employing man-
ufacturers’ prior knowledge about the individual elements
required for product assembly as shown in Fig. 1B. How-
ever, creating pixel-level annotations for numerous training
images is a costly and labor-intensive task. While few-shot
segmentation methods have made impressive advances to re-
duce the number of labeled samples (Wang et al. 2023; Hong
et al. 2022), they equally fail to segment different parts that
have similar textures or shapes. To this end, we introduce a
novel part segmentation model tailored to distinguish com-
ponents in industrial images using few labeled images and
several unlabeled images. Specifically, we utilize positional
features for prediction and minimize a histogram matching
loss for unlabeled images, ensuring each image maintains a
consistent number of pixels per class. The combination of
different losses enables the model to accurately segment el-
ements across the images.

We integrate accurate part segmentation in our novel
AD method, PSAD (Part Segmentation-based Anomaly
Detection). Specifically, PSAD detects local and global de-
pendencies of elements by relying on memory banks for
class histograms, component composition embeddings, and
patch-level representations. To obtain a unified anomaly
score from the different scaled outputs of the memory banks,
we propose an adaptive strategy to re-scale anomaly scores
using scores from training data. We evaluate the proposed
method on a public dataset consisting of both logical and
structural AD with five categories. We report results with
higher AUROC compared to state-of-the-art not only in log-
ical AD, but also in structural AD. Our contributions can be
summarized as follows:

• We propose a novel anomaly detection method PSAD
that employs 3 different memory banks by utilizing vi-
sual features and semantic segmentation.

• We propose a new part segmentation method that is su-
pervised by a limited number of labeled images with reg-
ularization using logical constraints shared across unla-
beled images.

• We propose an adaptive scaling method to aggregate
anomaly scores with different scales.

• Our method achieves state-of-the-art performance in
both logical and structural anomaly detection.

Related Works
Anomaly Detection in Industrial Images: In literature, ex-
isting anomaly detection (AD) methods often train models
to first learn the distribution of normal data and then detect
outliers as anomalies. These methods can be broadly cat-
egorized into reconstruction, self-supervision, and density
estimation-based models.

Reconstruction-based methods learn to reconstruct nor-
mal input samples and determine the anomaly score based
on the difference between inputs and the reconstruction
(Lee, Lee, and Song 2022; Liu et al. 2023b; Tien et al. 2023).
Self-supervised methods create synthetic abnormal samples
and use them to train a classifier. For instance, CutPaste (Li

et al. 2021) and DRAEM (Zavrtanik et al. 2021) generate ab-
normal samples for learning abnormality. Density estimation
methods first extract features from normal samples using
pre-trained models and then compare them with test sam-
ple features to compute anomaly scores (Roth et al. 2022;
Jiang et al. 2022; Hyun et al. 2023). We note that existing
methods focus on utilizing local features since most bench-
marks mainly contain structural anomalies rather than logi-
cal anomalies.

Following the release of the first dataset comprising logi-
cal anomalies (Bergmann et al. 2022), several unsupervised
methods have been proposed. GCAD (Bergmann et al. 2022)
trains local and global models that reconstruct pre-trained
image features based on local and global dependencies. SIN-
BAD (Tzachor, Hoshen et al. 2023) extracts a set of or-
derless elements and randomly projects element features to
compute a histogram, with anomaly scores obtained via den-
sity estimation. ComAD (Liu et al. 2023a) applied K-Means
clustering on pre-trained features to segment multiple com-
ponents within an image. However, performance was limited
because a precise discrimination of different components is
challenging.

We observe that product manufacturers are aware of the
logical constraints on various components and this prior
knowledge can be leveraged for AD. In this paper, we intro-
duce a novel method PSAD using density estimation and se-
mantic segmentation to precisely differentiate components.
However, PSAD doesn’t demand many labeled images due
to our proposed few-shot segmentation method.

When using multiple anomaly scores and aggregating
them, previous works simply add the scores (Tsai et al.
2022) or manually set hyper-parameters to scale them (Liu
et al. 2023a). However, these approaches may degrade per-
formance when the multiple scores follow different distribu-
tions or the hyper-parameters are incorrectly set (Table 3).
Even if (Bergmann et al. 2022) attempted to normalize two
distinct anomaly scores without defining hyper-parameters,
they utilized a validation dataset to determine the statistics
of these scores, potentially sacrificing valuable training data.
Instead, we propose an adaptive scaling of the scores that
solely relies on the training data by treating each sample as
a test sample.
Object Part Segmentation: As part segmentation is vital
for logical AD, one can train a supervised model for ob-
ject part segmentation (Chen et al. 2014). However, due to
costly pixel labeling, unsupervised models (Sra and Dhillon
2005) that can learn arbitrary segmentation using a col-
lection of unlabeled images are preferable. (Hung et al.
2019) proposed an end-to-end segmentation model with pre-
trained CNN features using semantic consistency and ge-
ometric concentration losses. Later, (Siarohin et al. 2021)
and (Gao et al. 2021) trained a segmentation model using a
part-assembly procedure that reconstructs a target image by
transforming parts of a source image. Though viable alterna-
tives for industrial image segmentation, learning objectives
based on geometric concentration or affine transformations
are not generally applicable in industrial images since multi-
ple objects can appear in distant positions (e.g., mandarins in
‘breakfast box’ and hexagonal nuts in ‘screw bag’ in MVTec
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Figure 2: Illustration of PSAD (Part Segmentation-based Anomaly Detection). During training depicted in the blue box, 3
different memory banks are constructed using normal images. The anomaly score of a test image is computed by finding its
nearest neighbor (NN search) and adaptive scaling.

LOCO dataset (Bergmann et al. 2022)). In addition, models
often under- or over-segment object parts as the labels are ar-
bitrarily optimized. In this paper, we instead propose a new
part segmentation model that can segment components in
various industrial images using only few labeled samples.
Few Shot Semantic Segmentation: Few-shot segmenta-
tion (FSS) has been proposed to overcome the data-hungry
nature of deep learning models with different approaches
employing generated or augmented images (Mondal, Dolz,
and Desrosiers 2018), generative models (Tritrong et al.
2021; Han et al. 2022; Baranchuk et al. 2021), meta-learning
(Hong et al. 2022; Kim et al. 2023), transductive inference
(Boudiaf et al. 2021), and foundation models (Wang et al.
2023). In general, FSS models employing pre-trained gen-
erative models report good part segmentation, especially on
several well-aligned images such as face or car. However,
generative model training is challenging and requires sev-
eral samples to guarantee good performance. Note that our
method is closely related to the transductive approach RePRI
(Boudiaf et al. 2021) that uses a fixed pre-trained backbone
and trains a pixel classifier with several regularization losses.
During inference, only the classifier (prototype-based) is up-
dated with few samples. While impressive, training is regu-
larized by the initial segmentation which may be often noisy.
Thus, we instead update the backbone and the classifier with
a histogram matching loss to better utilize logical constraints
shared across normal images.

Methods
Problem Setting Unsupervised anomaly detection (AD)
aims to train a model that can identify abnormal data from
a set of normal data {X1, ..., XNtrain} where Ntrain is the
number of data and their labels are all assigned as 0 (nor-
mal). The model is trained to distinguish between normal
and abnormal test data, predicting labels as 0 (normal) or 1
(anomalous).

To detect logical anomalies (LA), accurate part segmen-
tation has to be preceded. In this process, the class of each
component is defined by the manufacturer as each normal
image contains a predetermined number of specific parts

appearing in predefined locations. Consequently, variations
in the object’s location may lead to different classes, even
for the same object (e.g. ‘pushpins’ and ‘splicing connec-
tors’ in Fig. 4). Instance segmentation differs from seman-
tic segmentation, as predefined class labels are not assigned
to the instances. Since constructing pixel-level annotations
of lots of images is labor-intensive, we assume that only a
scarce number of labeled images {X l,i ∈ RW×H×3, Y l,i ∈
RW×H×NC}NLi=1 and a substantial set of unlabeled images
{Xu,j}NUj=1 are provided for training. Here, NL, NU , and
NC represent the numbers of labeled images, unlabeled im-
ages, and classes, respectively. The model is optimized to
reduce a combination of supervised losses for X l and unsu-
pervised losses for Xu.

Overview Our proposed PSAD (Part Segmentation-based
Anomaly Detection) consists of two parts: semantic part
segmentation and AD using part segmentation. For part seg-
mentation, we design a model to distinguish multiple com-
ponents based on visual and positional features (Fig. 3). A
visual feature extractor and a pixel classifier are jointly op-
timized with a few labeled images and logical constraints
shared across numerous unlabeled images. For AD with
part segmentation, the segmentation model applied to nor-
mal samples is leveraged to construct three distinct memory
banks (Fig. 2). In particular, (1) a class histogram memory
bank Mhist that records the quantity and arrangement of
each component to assess the relative abundance of different
components within the images. (2) a component composi-
tions memory bank Mcomp that helps determine the validity
of various compositions of components to identify anoma-
lies that arise from unexpected or irregular component ar-
rangements. Finally, (3) a memory bank Mpatch specifically
designed for patch-level features to capture fine-grained de-
tails within the image.

From these memory banks, we generate three different
anomaly scores, each of which has a different scale and dis-
tribution. To effectively compare and combine the scores,
we perform adaptive scaling using statistics obtained from
the training data to ensure scores can be reliably compared
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Figure 3: Proposed part segmentation model that predicts
segmentation utilizing visual and positional features.

across different scales.

Part Segmentation Using Limited Annotations
The segmentation model consists of a feature extractor fθ
and a pixel classifier gϕ, with fθ(X) being a feature map
having the same size as input X . Since the object’s loca-
tion is important, the pixels’ coordinate c ∈ RW×H×2 and
fθ(X) are concatenated as input for gϕ. During training,
given model prediction probability p = gϕ(fθ(X)⊕ c), pa-
rameters θ and ϕ are optimized via:

L = LDice + λ1LCE + λ2LH + λ3Lhist, (1)

where each λ is a hyper-parameter. For labeled images X l,
our model relies on cross-entropy loss LCE and dice similar-
ity loss LDice. Note that prediction on unlabeled images Xu

may be uncertain, especially with limited X l. A common
approach to handle this is by incorporating an entropy loss
LH to reduce uncertainty (Wang et al. 2022). Nonetheless,
minimizing LH with only a few labeled images can lead to
unexpected training outcomes and potentially degrade accu-
racy. To mitigate this, we propose a histogram matching loss
Lhist to ensure consistency in segmenting each part with an
equal number of pixels. We randomly select a label Y l from
{Y l,i}NLi=1 and compare the class-level volume with predic-
tions pu from unlabeled images:

Lhist =
1

NC

NC∑
n=1

∥∥∥∥∥∥ 1

WH

∑
w,h

Y l
w,h,n − 1

WH

∑
w,h

puw,h,n

∥∥∥∥∥∥
(2)

While model parameters are updated to reduce uncertain
predictions under the constraints from LCE , LDice, and
Lhist, the model also learns consistent segmentation on nu-
merous unlabeled images based on both the visual and posi-
tional similarity of each component.

Handling Multiple Types of Products In industrial im-
age datasets, products may be composed of various subtypes
(e.g. ‘juice bottle’ and ‘splicing connector’ in the MVTec
LOCO AD dataset). In such cases, it is necessary to ensure
that X l and Xu belong to the same product type for the com-
parison in Lhist. To classify Xu without human annotation,
we compare unlabeled and labeled images in latent space

and find the nearest labeled image for each unlabeled im-
age. Specifically, we extract global-average-pooled features
from the images using a pre-trained encoder before training
the segmentation model. Each Xu’s type is determined as
the type of the nearest labeled images in the latent space.
Subsequently, X l and Xu of the same type can be used to-
gether in Lhist. As a result, our model can effectively handle
datasets that contain multiple types of products.

Anomaly Detection Using Part Segmentation
Our proposed PSAD follows a density estimation approach
(Defard et al. 2021) in which normal data features are stored
in a memory bank M = {ek}NM

k=1, with NM denoting the
number of elements in M. To determine the anomaly score
s of a test sample etest, we find its nearest neighbor among
elements in M:

s = argmin
e∈M

∥etest − e∥2 . (3)

Patch-level density-based methods (Roth et al. 2022; Jiang
et al. 2022) have proven to be effective in detecting struc-
tural anomalies by focusing on local features. However, log-
ical anomalies often arise when multiple components appear
together to form a single product or entity.

Class Histogram Memory Bank The first memory bank
Mhist focuses on quantifying the number of components
for each class through a class histogram. Given normal im-
ages and their corresponding segmentation, we construct a
histogram that represents the distribution of pixels among
different classes. The histograms are then stored in Mhist

and respective anomaly scores are predicted using Eq.(3).

Component Composition Memory Bank It is worth not-
ing that solely relying on Mhist cannot verify whether
the components are combined correctly or not. To address
this, we introduce a component composition memory bank
Mcomp that stores feature compositions of different parts
within an image. After a feature map w = hψ(X) is ex-
tracted using a pre-trained encoder hψ , the segmentation
map allows us to define a class embedding as an averaged
feature vector of pixels belonging to each class. A concate-
nation of these class embeddings is saved in Mcomp to ef-
fectively capture visual features of each component and their
compositions within the image. The anomaly score is pre-
dicted using Eq.(3).

Patch Representation Memory Bank Finally, we con-
struct memory bank Mpatch by storing patch-level repre-
sentations to detect fine-grained features following estab-
lished approaches (Defard et al. 2021; Roth et al. 2022):
Mpatch =

⋃Ntrain
k=1 {hψ(Xk)l}NPl=1, where hψ(X

k)l is the
lth patch representations extracted from Xk and NP denotes
the number of patches. The anomaly score of Xtest is pre-
dicted as: s = max

e∈{hψ(Xtest)l}
NP
l=1

min
e′∈Mpatch

∥∥e− e′
∥∥2.

Aggregating Anomaly Scores of Different Scales Con-
sidering the distinct scales and distributions of the mem-
ory banks, it is essential to set appropriate hyperparam-
eters for each anomaly score as arbitrarily configuring a
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single hyperparameter can negatively impact overall accu-
racy. To mitigate this, our solution is scaling s based on
the anomaly scores of training data in each memory bank.
In particular, we derive a set of anomaly scores denoted
as Strain = {s1, ..., sNM} from the training data by treat-
ing each data point ek as a test sample. We then construct
the memory bank using all other training samples exclud-
ing ek as follows: sk = min

e∈M,e̸=ek

∥∥ek − e
∥∥2. In the context

of Mhist and Mcomp, e stands for a class histogram and
a component composition embedding derived from a data
sample, respectively. However, for Mpatch, sk is defined in
a different way as multiple elements are saved from a data
sample as: sk = max

e∈{hψ(Xk)l}
NP
l=1

min
e′∈M′

patch

∥∥e− e′
∥∥2, where

M′
patch =

⋃Ntrain
m=1,m ̸=k{hψ(Xm)l}NPl=1.

We define a normalized anomaly score considering the
statistics of Strain as ŝM = s/max{s1, ..., sNM}. This
adaptive scaling approach improves accuracy and robustness
in detecting anomalies. The final anomaly score is defined as
a sum of three anomaly scores from different memory banks:
s = ŝMhist

+ ŝMcomp
+ ŝMpatch

, facilitating both structural
and logical anomaly scoring.
Implementation Details: We use a pre-trained Wide
ResNet101 (Zagoruyko and Komodakis 2016) for initializ-
ing the parameters of the segmentation model fθ. Among 4
convolutional blocks in fθ, features extracted from the first
3 blocks are resized to the size of input X and concatenated
to obtain v ∈ RW×H×(256+512+1024). Labeled images were
augmented following (Buslaev et al. 2020). For training, we
used an AdamW optimizer with a learning rate 0.001 and
batch size of 5 per iteration on an NVIDIA RTX A5000 GPU
workstation. The model was first trained for 50 epochs us-
ing only LCE and LDice. After warming up with the super-
vised loss, the model is trained using Eq.(1) for additional
50 epochs. As LDice is usually larger than the other losses,
hyper-parameters λ1, λ2, and λ3 were set as 10. hψ has Wide
ResNet101 as the visual feature encoder and a 3×3 average
pooling operation following the setting of PatchCore (Roth
et al. 2022) which is one of the state-of-the-art models pro-
posed for detecting structural anomalies.

Experiments
Experimental Setting: We evaluated our method on MVTec
LOCO AD dataset (Bergmann et al. 2022), the only bench-
mark for detecting logical anomalies to the best of our
knowledge. This dataset consists of 5 categories (break-
fast box/juice bottle/pushpins/screw bag/splicing connec-
tors). For each category, 351/335/372/360/360 normal im-
ages were used for training and 275/330/310/341/312 im-
ages for testing following the setting of the comparison
methods. Test data is categorized into good, structural
anomaly (SA), and logical anomaly (LA). For the segmen-
tation task, we used 5 labeled images since existing FSS
models show more stable accuracy on the 5-shot setting. If
the products have multiple types (e.g., 3 types within ‘juice
bottle’ and ‘splicing connectors’), we created a labeled im-
age for each type, thereby employing a total of 3 labeled

images. State-of-the-art AD methods including PatchCore
(Roth et al. 2022), RD4AD (Deng and Li 2022), DRAEM
(Zavrtanik et al. 2021), AST (Rudolph et al. 2023), ST
(Bergmann et al. 2020), ComAD (Liu et al. 2023a), GCAD
(Bergmann et al. 2022), SINBAD (Tzachor, Hoshen et al.
2023), and SLSG (Yang et al. 2023) are used as comparison
methods. The models are evaluated on SA and LA detection
separately. We resized all images so that the number of pix-
els on the longer side among width and height is 512. The
area under the ROC curve (AUROC) is used as a metric fol-
lowing previous works (Roth et al. 2022).
Comparison with State-of-the-art Methods: Table 1 lists
the AUROC for LA and SA detection of methods trained and
tested on MVTec LOCO AD dataset. Existing methods de-
signed to focus on local features (e.g., PatchCore, RD4AD,
DRAME, AST, ST) have lower scores in LA, as they can
not capture the global dependencies among multiple com-
ponents in the image, despite showing better scores in SA
detection. While recent methods for detecting LA (e.g. Co-
mAD, GCAD, SINBAD, SLSG) show improvements over
those focusing on local features, they still fail to precisely
distinguish between different components within the image.
On the other hand, our proposed PSAD shows significant
gains over others (i.e. +8.5 avg AUROC score across 5 cate-
gories in LA detection). Notably, we achieved a 99.3% AU-
ROC score in the ’screw bag’ category, while the highest
accuracy among the other methods in this category was only
80.1%. In addition, our proposed method also showed the
best average score in SA detection. These results show that
using semantic information can be beneficial for detecting
both LA and SA. As a result, our proposed method obtained
the best AUROC scores in both tasks.
Qualitative Comparison of FSS Methods: In Fig. 4, we
show a qualitative comparison of different segmentation
models on MVTec LOCO AD dataset. When we applied
unsupervised co-part segmentation models SCOPS (Hung
et al. 2019) and Part-Assembly (Gao et al. 2021), we ob-
tained arbitrary segmentation results that can not discrim-
inate between different components that are supposed to
be segmented into different classes. In some cases, Part-
Assembly failed to obtain proper results, as they focus on
single-body objects. We also evaluated various state-of-the-
art FSS models: a meta-learning-based model VAT (Hong
et al. 2022), a foundation model SegGPT (Wang et al. 2023),
and a transductive model RePRI (Boudiaf et al. 2021). VAT
and RePRI, each with ResNet-101 backbone pre-trained on
PASCAL-5i dataset (Shaban et al. 2017) showed poor per-
formance in most cases. This is due to (1) frozen encoder
during training, (2) encoder pre-trained on different domain
data, and (3) models relying on inaccurate/noisy initial pre-
dictions. Though SegGPT showed relatively good results in
some categories such as ‘juice bottle’, it showed limited per-
formance when multiple components have similar textures
but different classes. For example in Fig. 4, SegGPT fails to
distinguish the left and right parts of ‘splicing connectors’
and the short and long bolts in ‘screw bag’, as they share
similar textures. The limitations of existing FSS methods are
mainly attributed to training models with existing segmen-
tation datasets that do not necessitate considering position
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Category PatchCore RD4AD DRAEM ST AST GCAD SINBAD ComAD SLSG PSAD

LA

Breakfast Box 74.8 66.7 75.1 68.9 80.0 87.0 96.5 91.1 - 100.0
Juice Bottle 93.9 93.6 97.8 82.9 91.6 100.0 96.6 95.0 - 99.1
Pushpins 63.6 63.6 55.7 59.5 65.1 97.5 83.4 95.7 - 100.0
Screw Bag 57.8 54.1 56.2 55.5 80.1 56.0 78.6 71.9 - 99.3
Splicing Connectors 79.2 75.3 75.2 65.4 81.8 89.7 89.3 93.3 - 91.9
Average (LA) 74.0 70.7 72.0 66.4 79.7 86.0 88.9 89.4 89.6 98.1

SA

Breakfast Box 80.1 60.3 85.4 68.4 79.9 80.9 87.5 81.6 - 84.9
Juice Bottle 98.5 95.2 90.8 99.3 95.5 98.9 93.1 98.2 - 98.2
Pushpins 87.9 84.8 81.5 90.3 77.8 74.9 74.2 91.1 - 89.8
Screw Bag 92.0 89.2 85.0 87.0 95.9 70.5 92.2 88.5 - 95.7
Splicing Connectors 88.0 95.9 95.5 96.8 89.4 78.3 76.7 94.9 - 89.3
Average (SA) 89.3 85.1 87.6 88.4 87.7 80.7 84.7 90.9 91.4 91.6
Average 81.7 77.9 79.8 77.4 83.7 83.4 86.8 90.1 90.3 94.9

Table 1: Performance comparison of the proposed model PSAD against state-of-the models on MVTec LOCO AD dataset. LA
and SA denote logical and structural anomalies, respectively. Boldface represents the best score.

Models LA SA
SCOPS (Hung et al. 2019) 82.5 90.2
Part-Assembly (Gao et al. 2021) 80.3 85.6
SegGPT (Wang et al. 2023) 88.7 87.2
VAT (Hong et al. 2022) 79.2 87.8
RePRI (Boudiaf et al. 2021) 83.6 88.4
Ours (Lsup) 95.9 89.6
Ours (Lsup + LH) 96.3 90.0
Ours (Lsup + LH + Lhist) 98.1 91.6

Table 2: Average AUROC scores of our proposed PSAD us-
ing different FSS models.

Mhist Mcomp Mpatch AS LA SA
✓ 94.2 71.1

✓ 90.9 85.4
✓ 73.9 89.3

✓ ✓ ✓ 96.8 87.6
✓ ✓ ✓ ✓ 98.1 91.6

Table 3: Average AUROC scores of our proposed PSAD us-
ing different combinations of memory banks. ‘AS’ stands for
adaptive scaling.

or length comparisons. As most meta-learning FSS models
are focused on discriminating classes based on texture and
shape, they equally show limited accuracy on industrial im-
ages which may have multiple similar components belong-
ing to different classes.

When we trained our model using only supervised losses
for labeled images, we obtained better results in ‘pushpins’
and ‘splicing connectors’ but poor predictions in other cate-
gories despite using LH. For example, it failed to discrimi-
nate between the short and long bolts in ‘screw bag’. How-
ever, when Lhist was employed, accurate segmentation re-
sults were obtained on various types of products. This shows
that using Lhist with the other loss functions is more benefi-
cial to obtain consistent segmentation by leveraging logical
constraints.
Anomaly Detection Using Different Segmentation Mod-
els: Based on the segmentation results, we also check

whether accurate segmentation correlates with AD perfor-
mance. Table 2 shows the average AUROC scores of our
methods using different segmentation models. FSS (Seg-
GPT, VAT, and RePRI) and unsupervised models (SCOPS
and Part-Assembly) showed low performance in LA detec-
tion, as they under-perform in segmenting some categories’
data such as ‘pushpins’. Nevertheless, it is worth noting that
their LA detection scores are higher than the score of our
baseline PatchCore. This shows that leveraging even imper-
fect segmentation can be beneficial for LA detection.

On the other hand, our model trained with Lsup (=
LCE + LDice) showed significantly improved scores even
if it is not as accurate as our final model. This shows that
our approach which jointly trains the encoder and classi-
fier utilizing image augmentations and positional informa-
tion is beneficial for segmenting industrial image data. When
we use LH and Lhist together, we obtained further im-
proved LA detection scores. Interestingly, the detection per-
formance of SA is also enhanced with the utilization of more
accurate segmentation results. These findings show the cru-
cial role of accurate segmentation in achieving precise AD.
Effect of Various Memory Banks And Adaptive Scal-
ing: Table 3 shows AD performance using different com-
binations of memory banks. When each memory bank is
employed alone, Mhist and Mcomp showed good perfor-
mance on LA detection but poor performance on SA detec-
tion, whereas Mpatch showed the opposite case. When we
add these anomaly scores from 3 different memory banks
without any scaling strategy, we obtained a better LA detec-
tion score and a degraded SA detection score. It is mainly
attributed to varying scales of anomaly scores depending on
memory banks. When we apply adaptive scaling, we ob-
tained the best scores in both LA and SA detection.

Figure 5 illustrates histograms of anomaly scores obtained
from various memory banks and the unified anomaly scores
after adaptive scaling. It shows that the scale of anomaly
scores varies across memory banks, implying the impor-
tance of scaling scores before aggregation. Notably, the
anomaly scores from the patch representation memory bank
are poor due to its reliance on local features. Nevertheless,
after normalizing each score and integrating them into a uni-
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Image SCOPS Part-Assembly SegGPT VAT RePRI Ours(𝓛𝒔𝒖𝒑) +𝓛𝓗 +𝓛𝒉𝒊𝒔𝒕
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Figure 4: Qualitative comparison of FSS models. Lsup (= LCE +LDice) denotes a supervised loss for labeled images. For the
unsupervised methods, such as SCOPS and Part-Assembly, we arbitrarily set the number of parts as 10.
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Figure 5: Histogram visualizations of anomaly scores from
different memory banks and the unified anomaly scores.

fied score, a clear discrimination between normal and abnor-
mal samples was observed. Overall, these findings highlight
the significance of adaptive scaling in improving the effec-
tiveness of AD using multiple memory banks.
Logical Anomaly Detection Using Less Training Sam-
ples: Table 4 lists the AUROC of LA detection using vary-
ing numbers of unlabeled images. Despite a slight decrease
in the average AUROC scores using less data, our approach

NM 100% 50% 25% 12.5%
Avg AUROC 97.4 97.1 96.6 96.2

Table 4: AUROC in LA detection of our proposed PSAD
using different numbers of normal images Ntrain. In this
experiment, a combination of Mhist and Mcomp is used.

still outperforms the other methods with the reduced dataset.
This finding underscores the significance of accurate seg-
mentation maps in enabling precise LA detection even with
limited data.

Conclusion

In this paper, we incorporate part segmentation into anomaly
detection (AD) to detect logical and structural anomalies. To
avoid constructing a large training dataset for segmentation,
we propose a new segmentation model that utilizes a few la-
beled images and logical constraints shared across normal
images. We also propose a novel AD method that involves
constructing 3 distinct memory banks based on the segmen-
tation. To generate a unified anomaly score from varying
scales of anomaly scores, we introduce an adaptive scaling
strategy. By doing so, our model could detect LA and SA,
and yields substantial improvements with minimal effort re-
quired from users. As future few-shot segmentation models
evolve to require fewer labeled images and produce better
results, our AD model will achieve more enhanced perfor-
mance with less effort from users.
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