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Abstract

The next set recommendation aims to predict the items that
are likely to be bought in the next purchase. Central to this
endeavor is the task of capturing intra-set and cross-set cor-
relations among items. However, the modeling of cross-set
correlations poses challenges due to specific issues. Primar-
ily, these correlations are often implicit, and the prevailing
approach of establishing an indiscriminate link across the en-
tire set of objects neglects factors like purchase frequency and
correlations between purchased items. Such hastily formed
connections across sets introduce substantial noise. Addi-
tionally, the preeminence of high-frequency items in numer-
ous sets could potentially overshadow and distort correlation
modeling with respect to low-frequency items. Thus, we de-
voted to mitigating misleading inter-set correlations. With a
fresh perspective rooted in causality, we delve into the ques-
tion of whether correlations between a particular item and
items from other sets should be relied upon for item repre-
sentation learning and set prediction. Technically, we intro-
duce the Counterfactual Correlation Inference framework for
next set recommendation, denoted as CoreRec. This frame-
work establishes a counterfactual scenario in which the rec-
ommendation model impedes cross-set correlations to gen-
erate intervened predictions. By contrasting these intervened
predictions with the original ones, we gauge the causal impact
of inter-set neighbors on set prediction—essentially assessing
whether they contribute to spurious correlations. During test-
ing, we introduce a post-trained switch module that selects
between set-aware item representations derived from either
the original or the counterfactual scenarios. To validate our
approach, we extensively experiment using three real-world
datasets, affirming both the effectiveness of CoreRec and the
cogency of our analytical approach.

Introduction
In retail and e-commerce contexts, it is customary for pa-
trons to make multi-item acquisitions within a single trans-
action, often termed a ’purchase set.’ Such sets acquired
sequentially may unveil inherent interdependencies. Conse-
quently, it becomes instinctive to discern users’ inclinations
and fathom their underlying motives by scrutinizing their
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Figure 1: Our objective is to forecast succeeding sets from a
given sequence of sets. Our investigation reveals that lever-
aging homogeneous information within the sets to establish
connections inadvertently inflates the occurrence of high-
frequency objects. To address this, we propose the incor-
poration of heterogeneous information and causal graphs,
which effectively rectify the bias stemming from the ampli-
fied prevalence of high-frequency objects.

historical purchase sets. This scrutiny can then pave the way
for anticipatory forecasting of ensuing purchase sets.

Prior research (Hu and He 2019; Jung et al. 2021; Li
et al. 2023; Qin, Wang, and Li 2021; Sun et al. 2020; Wang
et al. 2020; Yu et al. 2022a, 2023, 2022b) has predominantly
focused on investigating intra-set and inter-set correlations
among items. This endeavor aims to enhance the represen-
tation of items, facilitating a more nuanced understanding
of user preferences. Notably, Yu et al. introduced tempo-
ral graphs to establish connections among items within the
same set, thereby modeling intra-set relationships (Yu et al.
2020). In a similar vein, Sun et al. utilized a co-transformer
framework to aggregate item representations at both intra-
set and inter-set levels (Sun et al. 2020).

In spite of the progress achieved in existing studies, there
exist two pivotal concerns that impede the precise model-
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ing of item correlations. Firstly, inter-set correlations, lack-
ing inherent labels, remain implicit. This could lead mod-
els to erroneously connect unrelated items, possibly as-
similating spurious correlations within item representation
learning. Secondly, among individual users, numerous high-
frequency items recurrently appear across historical sets. For
instance, as illustrated in Figure 1(a), items such as “napkin”
and “gauze mask” are pervasive but not necessarily corre-
lated, unlike less frequent items like “laptop” and “headset”.
Notably, the dominance of high-frequency items due to their
extensive co-occurrence might distort correlation modeling,
particularly affecting low-frequency items. Consequently,
the inadvertent absorption of misleading correlations dur-
ing item representation learning can lead to susceptibility
in the accuracy of recommending the next set—potentially
suppressing low-frequency items in such recommendations.
Given the continuous real-time refinement of real-world rec-
ommendations through user interactions, this phenomenon
can trigger the Matthew effect and consequent performance
degradation (Wang et al. 2021a).

Our objective is to mitigate spurious inter-set correlations.
A pivotal aspect of this objective involves scrutinizing the
impact of potentially correlated items on both item-level rep-
resentation learning and prediction. This scrutiny inherently
entails estimating the causal effects of correlations on the
prediction of subsequent sets. To accomplish this, we adopt
the causal graph framework (Feng et al. 2021; Jr. 2005;
Wang et al. 2021b; Wei et al. 2021; Zhang et al. 2021a,b) to
delineate the causal relationships within the context of the
next set recommendation (depicted in Figure 4).

The crux of our approach involves creating a counterfac-
tual scenario for each item after an intervention. In this sce-
nario, inter-set correlations are effectively obstructed, com-
pelling the model to depend solely on intra-set correlations
for item representation learning. Through this, we can ascer-
tain the causal effect of inter-set correlations by comparing
the predictions made under standard conditions with those
made in the post-intervention situation.

Technically, we propose a Counterfactual Correlation
Inference framework, namely CoreRec, which operates at
the intersection of counterfactual analysis and correlation in-
ference. CoreRec is designed to dissect and harness inter-set
correlations in a controlled manner, enabling us to illuminate
causal relationships within complex systems. The frame-
work employs two distinct weighted graphs: a regular graph
capturing regular inter-set correlations and an intervened
graph with these correlations strategically suppressed (de-
picted in Figure 1). Furthermore, CoreRec invokes a causal
intervention that perturbs the aggregation mechanism, com-
pelling the model to pivot towards utilizing the inherent
intra-set correlation attributes of individual items. To opera-
tionalize this, we introduce a switch module that judiciously
toggles between the intervened and regular item representa-
tions, taking into account multifaceted determinants such as
causal influence and prediction reliability.

Extensive experiments are conducted to validate the ef-
fectiveness of our framework. Our CoreRec achieves state-
of-the-art performance on three commonly used datasets. In
particular, CoreRec achieves 61.46 PHR@20 and 47.28 Re-

call@20 on the JD dataset (vs. ETGNN: 56.52 PHR@20 &
38.12 Recall@20), which increased by 8.74% and 22.77%
respectively compared with the ETGNN.

In summary, our contributions are three-fold as follows:

• We identify two critical issues that hinder accurate inter-
set correlation modeling, and formulate the causal graph
of correlation-based next set recommendation.

• We propose a novel framework named CoreRec, which
constructs two weighted graphs and a switch module, to-
gether formulating counterfactual inference and achiev-
ing adaptive inter-set correlation modeling.

• We conduct extensive experiments on three real-world
datasets and the experimental results strongly demon-
strate that CoreRec outperforms all the baseline methods.

Related Work
Next Set Prediction is increasingly receiving attention in
recommendation system research (Hu et al. 2020; Li et al.
2023; Qin, Wang, and Li 2021; Yu et al. 2023). Especially,
Rendle et al. (Rendle, Freudenthaler, and Schmidt-Thieme
2010) proposed a classical method to recommend the next
basket. It learns both sequential behaviors and personal
tastes, based on personalized transition graphs over under-
lying Markov chains. Recently, Yu et al. (Yu et al. 2020)
adopted a method that learns element relationships based
on a set-level co-occurrence graph and uses attention-based
temporal dependency learning for the next set prediction.
However, previous methods lack a meticulous examination
of the authenticity of these presumed associations. To ad-
dress this gap, we introduce a discerning switch model im-
bued with counterfactual techniques, which critically evalu-
ates the essentiality of these associations.
Causality-aware Model Prediction. Causal inference finds
extensive utility across a spectrum of machine learning do-
mains. In the context of recommendation, the realm of
causal inference (Pearl 2009) predominantly centers on miti-
gating diverse biases intrinsic to user feedback. This encom-
passes addressing position bias (Joachims, Swaminathan,
and Schnabel 2017; Shengyu et al. 2023; Wang et al. 2021c;
Zhang et al. 2021c), countering clickbait-related concerns,
and alleviating popularity-induced bias. For example, Saito
et al. calculated exposure propensity for individual user-item
pairs and employed sample re-weighting to tackle the chal-
lenge of non-random missing data (Saito et al. 2020). Never-
theless, the existing methods heavily lean on the precision of
propensity estimation, often grappled by elevated propensity
variance. Consequently, we focus on the switch techniques
that are frequently enlisted as a subsequent remedy.

Problem Formalization
Let U =

{
u1, · · · , u|U |

}
denote a collection of users,

V =
{
v1, · · · , v|V |

}
denote all the available items, and

E ∈ R|V |×d denote the embedding matrix of all items. We
use Ŝi =

[
v1i , v

2
i , · · · , vt|Ŝi|

]
to denote a user’s historical in-

teraction and organize temporal sets Si =
[
s1i , s

2
i , · · · , sti

]
by treating items bought in the same timestamp as a set, in
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which sti =
{
v1, v2, · · · v|sti|

}
represents a set interacted by

the user ui at time t. For a user, given the user’s historical
interaction temporal sets Si, the goal is to predict the next
set according to the historical records, that is,

st+1
i = F (Si,W) , (1)

where W represents the trainable parameters.

Approach
Previous methods often employed fixed item-associations to
formulate predictions. However, this rigid approach, char-
acterized by predetermined artificial associations, hinders
adaptability to data-specific nuances. CoreRec introduces a
dynamic solution by training the switch model to grasp dis-
tinct item associations inherent in each dataset, thus yield-
ing data-adaptive item representations. CoreRec comprises
Graph-based Item Representation Learning and Switch De-
signed by Counterfactual Intervention. The method begins
by constructing two graphs to delineate standard and post-
intervention conditions. Next, a switch model is trained
through causal reasoning on historical sequences. This cul-
minates in the prediction of forthcoming sets, anchored in
the item representation selected by the switch mechanism.

Graph-based Item Representation Learning
We designed two weight graphs: the regular graph encom-
passing connections among items intra and inter-set, and
the intervened graph encompassing solely the intra-set con-
nections. During the item representation learning process,
we comprehensively incorporate factors like purchase time
intervals, long- and short-term sequences.

Time Interval Matrices for Graph Construction. To re-
inforce the user’s recently active interest representation, we
extract a short-term sequence from the long-term original
sequence and then obtain two input sequences. We use the
SL
i = [s1i . . . s

t/2
i . . . sti] to denote the long-term sequence,

and use the SS
i = [s

t/2
i . . . sti] to denote the extracted short-

term sequence. Our investigation reveals that the sets with
extended time intervals display a comparatively diminished
correlation. Capitalizing on this discernment, we formulate
a time interval matrix to encapsulate the influence of tempo-
ral gaps between items. Note that the distance between two
items in the same set is 0, and the distance between items in
set sji and set ski can be denoted as |j − k|.

For arbitrary nodes vjn ∈ sji and vkm ∈ ski , the time inter-
val value is defined as δn,m, which is negatively correlated
with the distance, i.e.,

δn,m = |S∗
i | − |j − k|, (2)

where S∗
i ∈ {SL

i , S
S
i } denotes long-term or short-term

sequence of user i, and |S∗
i | denotes the total number of

sets in current sequence. Therefore, the time-interval matrix
is naturally constructed according to {δn,m}. Specially, we
consider the time-interval values for the set-self and all the
2-set pairs, which results in C2

|S∗
i |
+1 time-interval matrices

{Ti,k}, where Ck
n represents the number of k-combinations

from a given set of n elements. Finally, we average all
of these time-interval matrices and normalize it w.r.t its
maximum value to obtain the time-interval matrix Ti,

Regular Graphs Construction. We take the sequence that
contains three sets as an example, as is shown in Figure 3.
First, we define the purchase frequency of item vi as:

fvi
= Dvi

/
∑
vj∈Ŝi

Dvj
, (3)

where Dvi denotes the number of interactions in sequence
for item vi. Then, we divide the items into high-frequency
items and low-frequency items with ε as a threshold:

vi,∗ =

{
vhighi,∗ if fvi > ε,

vlowi,∗ otherwise.
(4)

We connect the items in the same set and also connect all the
low-frequency items vlowi,∗ between any two different sets.
We count the number of co-occurrence pairs to obtain the
co-occurrence matrix Cregular

i for the regular graph. Then,
the weighted matrix for the regular graph can be obtained,

Wregular
i = Normmax

(
Cregular

i

)
+ λTi ⊙ (Cregular

i > 0), (5)

where ⊙ indicates element-wise product, Cregular
i denotes

the co-occurrence matrix of the intervened graph, and Ti

denotes the time interval matrix. The hyper-parameter λ can
control the contribution of the time interval matrix. Finally,
we add self-connection to the weighted matrix and construct
a regular graph concerning the weighted matrix.

Intervened Graphs Construction. We connect all the items
in the same set and obtain three fully connected graphs. Then
we combine the same items from different graphs and ob-
tain the co-occurrence matrix Cinter

i . The weighted matrix
Winter

i is obtained by integrating the co-occurrence matrix
Cinter

i and the time-interval matrix Ti,

Winter
i = Normmax

(
Cinter

i

)
+ λTi ⊙ (Cinter

i > 0), (6)

where ⊙ indicates element-wise product, and the hyper-
parameter λ control the scale of the time interval matrix.
We further analyze the variation of hyper-parameter values
λ in the experimental part. We also add self-connection for
each item appearing in sequence, which helps to reduce
information loss. In this way, we construct an intervened
graph with weights from the weighted matrix.

GNNs for Feature Encoding. We perform GNNs on the
above two types of weighted graphs. Let Gi = (Vi, Ei) de-
notes the graph with a weighted matrix W ∈ R|Vi|×|Vi|,
where Vi denotes the items in Si and Ei denotes the edges
in Gi. Each item in graph Gi is linearly combined according
to the attention score. Let N (m) be the set of neighborhood
nodes of vm, and hN (m) denotes the neighborhood repre-
sentation, i.e.,

hN (m) =
∑

vn∈N (m)

π (vm, vn)hvn
, (7)
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The ‘Fusion Func.’ is stated as Eq. (6) and Eq. (5)

.

where π (vm, vn) estimates the importance weight of differ-
ent neighbors. We implement π (vm, vn) as follows,

π (vm, vn) = Relu (w1 [(hvm
⊙ hvn

) ∥ŵmn]) , (8)

where ∥ indicates concatenation operation, ŵmn denotes the
weight of edges in graph, w1 denotes trainable parameters.

We concat the item representation hvm
and its neighbor-

hood representation hN (m) to obtain the final sequence of
item’s representation Ri = {hvm

| m = 1, . . . , |Ŝi|}

Next Set Prediction. From the above two weighted graphs,
we can obtain two sequences of the item’s representation,
rregulari,∗ and rinteri,∗ , we then employ the post-trained switch
to choose one sequence of item’s representation Ri. Existing
methods usually utilize set embedding by pooling operation,
but it will cause information loss, so we directly use the se-
quence of the item’s representation Ri as input. We perform

the self-attention to capture temporal dependency,

Zi = softmax

(
(RiWq) · (RiWk)

⊤
√
dk

)
· (RiWv) , (9)

where Wq ,Wk and Wv are trainable parameters. Then we
empoly Zi to update the item original embedding matrix Ei,

Eupdate
i,I(j) = Ei,I(j) + Zi,j , (10)

where I(·) is a function that maps items vi,j to its corre-
sponding index in Ei. In Equation (10), the item represen-
tations are updated according to both the co-occurrence re-
lationships and the temporal dependency of the items. We
maintain the original representations for all other items. The
probabilities of each item appearing in the subsequent set
can be computed based on the current state,

ŷi = sigmoid
(
Eupdate

i ·wo + bo

)
, (11)

where wo ∈ Rd and bo ∈ R are trainable parameters to
provide the final prediction result. When training, predicting
the next set could be treated as a multi-label learning prob-
lem (Ghamrawi and McCallum; Yu et al.; Zhang and Zhou;
Zhang and Zhou), so we adopt the loss function with L2 reg-
ularization technique as follows.

L = −
1

N

N∑
i

1

|V |

|V |∑
j

y
j
i log

(
ŷ
j
i

)
+

(
1 − y

j
i

)
log

(
1 − ŷ

j
i

)
+ γ∥W∥2, (12)

where N denotes the number of training samples, yi and ŷi
denote the ground truth and the predicted appearing possi-
bility in the next set of user ui, and γ is a hyper-parameter
to control the importance of L2 regularization.

Switch Designed by Counterfactual Intervention
In recommendation systems, the item correlation across
diverse datasets varies significantly, shaped by the unique
attributes of the generating users. However, previous ap-
proaches have been restricted to employing static patterns
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Figure 4: Cause-effect view of set recommendation.

for designing and establishing associations between items.
These methods struggle to flexibly grasp the distinct data
structures. To address this limitation, we advocate for
an approach where the choice of item representation is
informed by a switch model trained on historical datasets.

Causal Graph. The underpinning causal relationships
among variables are elegantly captured through a causal
graph, as illustrated in Figure 4. In the context of our study,
we conceptualize the inference of the next set prediction
framework within the framework of a causal graph. This rep-
resentation encapsulates four key variables:

• X , which denotes the item representation from the graph
based on the intra-set correlations.

• H , which denotes the inter-set information.
• X̄ , which denotes final item representation.
• Y , which denotes the prediction result.

The final item representation X̄ is directly affected by the
intra-set item representation X and the inter-set information
H . Existing set prediction methods can be divided into two
categories. One approach simply aggregates item embed-
dings into set embeddings for prediction, directly utilizing
the information within the set, in which, the intra-set infor-
mation X between items directly impacts the results Y . The
other approach uses a sequence of item embeddings for pre-
diction, considering both intra- and inter-set information. As
the inter-set information between items is introduced only
when updating item embeddings for prediction, there is no
direct effect between H and Y . Moreover, the temporal sets
prediction result Y is directly affected by the final item rep-
resentation X̄ , which is represented as X̄ −→ Y .

Causal Intervention. We utilize causal interven-
tion (Galles and Pearl 2013; Mueller, Li, and Pearl 2021;
Pearl 2012) to assess the causal effect of inter-set informa-
tion on the prediction (i.e., the causal effect of H = h).
This method entails assigning an instance to a treatment
variable deliberately. In our causal graph described earlier,
the causal effect denoted as e is precisely defined as:

e = f(x, h | θ̂)− f(x, do(H = ∅) | θ̂)
= f(x, h | θ̂)− f(x, ∅ | θ̂)
= ŷ − ŷh,

(13)

where the term do(H = ∅) denotes a forceful causal in-
tervention, assigning a reference status of H . This interven-
tion yields a post-intervention prediction f(x, h | θ̂) (see

Algorithm 1: CoreRec Training
Input: Training data set sequence Strain

Output: θ̂, the parameter for GNN(·); η̂, the parameter for g(·)
1: Optimize Eq.(11) with Strain, obtain θ̂; ▷ Training GNN
2: Construct data D, including regular and intervened cases
3: Calculate causal effect e; ▷ Causal Intervention
4: Optimize Eq.(17), obtain η̂; ▷ Training Switch Model
5: Return θ̂ and η̂;

Algorithm 2: CoreRec Inference

Input: Testing data set sequence Stest, parameter θ̂ and η̂
Output: Binary prediction results for each item y

1: Extract feature through GNN(θ̂) with Stest; ▷ Encoding
2: Calculate f(x, h | θ̂); ▷ Regular prediction
3: Calculate f(x, ∅ | θ̂); ▷ Post-intervention prediction
4: Calculate causal effect e;
5: Calculate final item embedding through Eq.(15) with η̂;
6: Return final classification y ▷ Final prediction

Figure 4(c)). As H lacks a predecessor, f(x, do(H = ∅) |
θ̂)& = f(x, ∅ | θ̂), expressed as ŷh. Intuitively, this post-
intervention prediction signifies the outcome if the inter-set
information is absent from the target item representation. We
contend that e offers insights into selecting a more expres-
sive item representation for the target item.

Switch Model. We train the set prediction model with the
regular graph and the intervened graph respectively. To con-
struct the training data, we calculate the ground truth accord-
ing to the correctness of ẑ and ẑh, where ẑ = argmax ŷ and
ẑh = argmax ŷh, see Figure 2 (d).

Then we train the switch model by fixing the parame-
ters of GNNs with the two item representations rregulari,∗ and
rinteri,∗ , and the causal effect e. We devise the switch model
as a multi-layer perceptron to make wise choices between
rregulari,∗ and rinteri,∗ ,

ri,∗ =

{
rregulari,∗ , p̂ ≥ κ,
rinteri,∗ , p̂ < κ,

p̂ = g
(
rregulari,∗ , rinteri,∗ , e | η

)
,

(14)
where g(·) represents a binary classifier parameterized by
η. The classifier’s output, denoted as p̂, guides the decision-
making process, with κ serving as the decision threshold.

The training of the switch model is thus formulated as:

η̂ = min
η

∑
(x,p)∈D

l(p̂, p), (15)

where p and p̂ denote the ground truth and the predicted ap-
pearing possibility.

EXPERIMENTS
To evaluate the effectiveness of the proposed method, we
conduct experiments on three real-world datasets:

TaFeng (TF)1: The TaFeng dataset is a public dataset
that contains a Chinese grocery store transaction data from

1www.kaggle.com/chiranjivdas09/ta-feng-grocery-dataset
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Method K=20 K=40 K=60 K=80
PHR NDCG Recall PHR NDCG Recall PHR NDCG Recall PHR NDCG Recall

Ta
Fe

ng
TOP 35.45 9.21 10.17 44.65 10.24 13.09 52.77 11.32 16.77 57.82 11.98 19.03

DeepFM 46.18 12.37 16.68 57.48 14.04 22.57 62.38 14.45 23.82 65.98 14.73 24.46
Sets2Sets 49.86 13.56 17.79 61.01 14.94 23.44 70.45 15.78 25.15 72.02 16.65 27.33
DSNTSP 60.01 16.40 21.50 68.69 18.56 26.57 70.90 19.42 28.54 72.05 19.57 29.65
DNNTSP 62.77 16.45 22.13 69.70 18.09 26.96 72.67 19.43 29.37 74.25 19.44 31.14
ETGNN 62.45 16.47 21.06 69.73 18.67 27.13 71.88 19.52 29.65 73.92 19.53 31.29
CoreRec 62.38 16.91 22.27 70.39 18.73 27.45 74.46 19.70 30.59 76.34 20.22 32.30

improv.(%) -0.63 2.67 0.63 0.95 0.32 1.18 2.46 0.92 3.17 2.81 3.32 3.23

T a
oB

ao

TOP 3.99 0.35 0.50 5.03 0.39 0.71 6.71 0.46 0.98 8.39 0.51 1.11
DeepFM 22.09 2.98 2.71 27.61 3.27 3.71 29.90 3.37 4.34 31.57 3.44 4.71
Sets2Sets 23.95 3.62 4.83 31.29 4.21 6.62 34.43 4.56 7.75 35.63 4.77 8.41
DSNTSP 29.76 4.66 6.04 39.71 5.06 7.69 45.73 5.25 8.61 48.83 5.40 9.33
DNNTSP 29.69 4.70 5.83 41.50 5.39 8.29 47.16 5.88 9.95 49.68 6.16 10.97
ETGNN 32.52 5.60 6.24 42.87 5.78 8.45 47.93 6.12 10.23 50.01 6.42 11.32
CoreRec 36.05 6.07 7.63 46.33 6.73 10.48 49.68 7.11 11.63 50.94 7.34 12.30

improv.(%) 10.85 8.39 26.3 8.07 16.44 26.4 3.65 16.18 16.8 1.86 14.33 12.1

Ji
ng

D
on

g

TOP 21.87 6.48 14.19 31.77 8.17 21.46 35.42 8.76 24.21 40.10 9.43 27.73
DeepFM 40.57 15.02 23.85 49.34 16.40 27.84 55.34 17.50 34.47 56.26 17.85 35.91
Sets2Sets 48.96 17.71 34.12 54.69 21.37 40.28 59.03 22.97 46.05 60.33 23.58 48.04
DSNTSP 50.52 24.36 38.51 64.45 25.09 46.59 69.21 25.54 48.84 71.72 26.39 55.15
DNNTSP 53.12 22.06 36.36 65.10 24.52 46.00 67.70 25.71 50.08 71.87 26.87 56.45
ETGNN 56.52 24.26 38.12 67.11 25.78 47.97 69.83 27.11 52.38 73.43 27.43 57.83
CoreRec 61.46 28.37 47.28 70.31 30.51 55.36 76.04 31.82 61.11 78.13 32.45 64.05

improv.(%) 8.74 16.46 22.77 4.77 18.35 15.41 8.89 17.37 16.67 6.41 18.30 10.76

Table 1: Comparisons with methods on Top-K performance. Note that the bold values indicate the best score, and the underlined
value means the best among the baselines. The improvement (%) of our CoreRec is based on the score with an underline.

November 2000 to February 2001. We remove users whose
purchase time is less than 10 days.

TaoBao (TB)2: This dataset is a subset of Taobao user be-
havior data (Zhu et al.) that contains behaviors including
click, purchase, adding item to the shopping cart and item
favoring. We select all purchasing behaviors.

Jingdong (JD)3: The JingDong dataset contains user ac-
tion records from February 1, 2018, to April 15, 2018. We
remove users whose purchase time is less than 5 days.

For the readers’ convenience, we provide the statistics of
the three datasets in Table 2.

Data items sets users cate
TF 21,858 76,251 8,816 1,954
TB 242,111 34,642 4,827 5,070
JD 41,212 270,397 2,011 6

Table 2: Statistic information after pre-processing on three
datasets. Note that “I/S” indicates the average ratio of items
to sets, and “S/U” is the average ratio of sets to users.

Implementation Details. We treat all the items bought in
the same order as a set and divide each dataset into train,
validation, and test sets across users with ratios of 80%,
10%, and 10%. For evaluation, we generate a ranking list

2tianchi.aliyun.com/dataset/dataDetail?dataId=649
3jdata.jd.com/html/detail.html?id=8

of top-K items from the output and K is from 10 to 100,
with an interval of 10. The epoch is set to 100, 300, and 500
on Tafeng, Taobao, and JD datasets respectively. We adopt
Adam (Kingma and Ba) with a learning rate set to 0.001
as the optimizer in the experiment. In addition, the hidden
dimension and batch size are set to 32 and 64. Furthermore,
λ in Eq. (6) and in Eq. (5) are set to 0.4, and γ in Eq. (12) is
set to 0.8. Besides, we set the short sequence whose length is
1/2 of the original sequence. We use PyTorch (Paszke et al.)
to implement our model and train it on 4 GeForce GTX
1080Ti GPUs. Regarding the metrics, we leverage Personal
Hit Ratio@K (PHR@K), Normalized Discounted Cumula-
tive Gain@K (NDCG@K), and Recall@K, to evaluate the
performance of temporal set prediction.

Comparison
To demonstrate the effectiveness of CoreRec, we compare
it with six competing baselines, including DeepFM (Guo
et al.), Sets2Sets (Hu and He), DSNTSP (Sun et al.),
DNNTSP (Yu et al.), and ETGNN (Yu et al.). To en-
sure fair comparison, we use the same setting for all meth-
ods and train all models from scratch. The experimental
results are summarized in Table 1. ETGNN demonstrates
a significantly enhanced performance in contrast to TOP,
DeepFM, Sets2Sets, DSNTSP, and DNNTSP. Nonetheless,
our novel CoreRec outperforms the ETGNN. Notably, the
JingDong and Taobao datasets encompass a broader spec-
trum of items, characterized by a pronounced disparity be-
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TaFeng K=50 K=100
PHR NDCG Recall PHR NDCG Recall

w/o s 72.67 18.78 28.75 77.33 20.21 33.43
w/o t 72.08 18.57 28.92 77.23 20.01 33.71

w/o Greg 71.78 18.59 28.45 75.94 19.96 32.94
w/o Ginter 72.18 18.54 28.85 76.53 19.91 33.39
w/o switch 72.06 18.67 28.59 76.43 20.13 33.12
CoreRec 73.07 19.26 29.15 77.33 20.74 34.06
TaoBao K=50 K=100

PHR NDCG Recall PHR NDCG Recall
w/o s 44.44 6.81 9.91 51.36 7.46 11.95
w/o t 46.54 6.19 10.33 52.62 6.87 12.56

w/o Greg 45.49 5.68 9.27 51.32 6.58 11.97
w/o Ginter 47.37 6.81 10.69 51.24 7.45 12.65
w/o switch 45.58 6.25 9.32 51.41 6.92 12.03
CoreRec 47.58 6.90 11.04 52.62 7.47 12.67
JingDong K=50 K=100

PHR NDCG Recall PHR NDCG Recall
w/o s 68.22 25.52 52.70 77.08 27.94 64.26
w/o t 70.31 25.39 55.64 77.08 30.84 64.18

w/o Greg 66.14 25.16 48.46 75.12 27.79 62.45
w/o Ginter 70.31 25.28 53.58 80.21 27.42 64.34
w/o switch 69.22 28.81 55.59 76.02 30.15 64.02
CoreRec 73.96 31.37 59.20 79.69 32.86 66.21

Table 3: Ablation study of CoreRec. s denotes short-term
sequence, t denotes time interval matrices, Greg denotes the
regular graph, Ginter denotes the intervened graph.

PHR@10 A B C D E F
DNNTSP 5.07 10.41 12.77 18.24 25.09 54.55
CoreRec 5.12 10.62 13.12 20.13 25.19 54.58

NDCG@10 A B C D E F
DNNTSP 2.28 3.97 3.94 6.84 9.01 29.12
CoreRec 2.41 4.05 4.10 7.28 9.11 28.89

Recall@10 A B C D E F
DNNTSP 2.89 7.16 7.58 11.33 16.54 45.55
CoreRec 3.03 7.24 7.76 12.08 16.60 45.27

Table 4: The performance varies on different purchase fre-
quency groups on Tafeng.

tween low-frequency and high-frequency items. This dis-
tinction accentuates the susceptibility to spurious correla-
tions. Consequently, our model excels on the JingDong and
Taobao datasets by mitigating such spurious correlations
through the utilization of the switch module, as illustrated
in Table 1. Furthermore, the data presented in Table 3 un-
derscores the more discernible impact of incorporating time
interval matrices on the JingDong dataset.

Ablation Study
To investigate the efficacy of key modules in CoreRec, we
consider several model variants and obtain the conclusions:
1) Impact of the Short Sequence. Table 3 shows that
short-term sequences help to achieve better performance.
Because the short-term sequence represents the user’s recent
active interests. 2) Impact of the Time Interval Matrices.
We consider that two sets with small time intervals have a
strong correlation, while two sets with large time intervals
have a weak correlation. Table 3 shows that time interval
matrices are effective. 3) Impact of the Regular Graph.
The regular graph not only explores the items’ intra-set
correlation but also considers the items’ purchase frequency

81.2% 12.4%
CA B

4.9% 2.1%
D E F

0.9%

0.2%

A B C D E F
(a) The relative improvement of CoreRec in each group compared with DNNTSP

(b) The proportion of the number of items in each group

0.130.05 0.14 0.08
0.21

0.08 0.16
0.35

0.18
0.44

0.75

0.1 0.1 0.06

- 0.23

0.03

- 0.28

1.89
PHR
NDCG
Recall

Figure 5: We divide items into groups based on items’ pur-
chased frequency. ‘A’(0-20) group contains items purchased
0-20 times, and for easy to write, ‘B’(20-50), ‘C’(50-100),
‘D’(100-200), ‘E’(200-500), ‘F’(500+).

and items’ inter-set correlation, which are effective on the
whole. 4) Impact of the Intervened Graph. The intervened
graph connects the items in the same set, which formulates
a counterfactual situation. From Table 3, we can learn that
items’ intra-set correlations are also effective on the whole.
5) Impact of the Post-trained Switch Module. Switch mod-
ule aims is to determine whether to aggregate information
across sets. Compared with the undifferentiated aggregation
method, using the switch can dynamically select the more
appropriate representation for each item.

Performance Vary on Purchase Frequency. Initial anal-
ysis of the data reveals a prevalent long-tail distribution in
item frequency across multiple scenarios. This distribution
raises concerns about low-frequency suppression, wherein
items appearing in a limited number of sets establish fewer
connections, resulting in diminished recommendations. To
address this challenge, our CoreRec offers a viable solution.
Insights drawn from our analysis, as depicted in Figure
X and Table Y, highlight that items with fewer than 500
purchases (encompassing Groups A, B, C, D, and E) con-
stitute a substantial majority (99.8%). In this context, our
proposed CoreRec surpasses DNNTSP in performance for
these items. Conversely, for items exceeding 500 purchases,
CoreRec performs comparably to DNNTSP.

Conclusion
In this study, we delve into the detrimental impact of spu-
rious inter-set correlations on model performance. These
correlations often emerge from the confluence of high-
frequency items and extraneous noise. To address this chal-
lenge, we introduce CoreRec, an innovative framework de-
signed to mitigate these spurious inter-set correlations. Cor-
eRec draws upon the principles of causal intervention, man-
ifested through two distinct graphs: an intervened graph and
a regular graph. By incorporating a purpose-built switch,
CoreRec adeptly navigates between post-intervention pre-
dictions and original predictions. Extensive experimentation
across three benchmark datasets robustly demonstrates the
effectiveness of our proposed CoreRec framework.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8667



Acknowledgements
This work was supported by the National Natural Science
Foundation of China (No. 62337001, 62376243, 62037001),
Young Elite Scientists Sponsorship Program by CAST
(2021QNRC001)

References
Feng, F.; Huang, W.; He, X.; Xin, X.; Wang, Q.; and Chua,
T. 2021. Should Graph Convolution Trust Neighbors? A
Simple Causal Inference Method. In Diaz, F.; Shah, C.;
Suel, T.; Castells, P.; Jones, R.; and Sakai, T., eds., SIGIR
’21: The 44th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, Virtual
Event, Canada, July 11-15, 2021, 1208–1218. ACM.
Galles, D.; and Pearl, J. 2013. Testing Identifiability of
Causal Effects. CoRR, abs/1302.4948.
Ghamrawi, N.; and McCallum, A. 2005. Collective multi-
label classification. In Proceedings of the 14th ACM inter-
national conference on Information and knowledge manage-
ment, 195–200.
Guo, H.; Tang, R.; Ye, Y.; Li, Z.; and He, X. 2017. DeepFM:
A Factorization-Machine based Neural Network for CTR
Prediction. In Sierra, C., ed., Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelli-
gence, IJCAI 2017, Melbourne, Australia, August 19-25,
2017, 1725–1731. ijcai.org.
Hu, H.; and He, X. 2019. Sets2sets: Learning from se-
quential sets with neural networks. In Proceedings of the
25th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, 1491–1499.
Hu, H.; He, X.; Gao, J.; and Zhang, Z. 2020. Modeling Per-
sonalized Item Frequency Information for Next-basket Rec-
ommendation. In Huang, J.; Chang, Y.; Cheng, X.; Kamps,
J.; Murdock, V.; Wen, J.; and Liu, Y., eds., Proceedings of
the 43rd International ACM SIGIR conference on research
and development in Information Retrieval, SIGIR 2020, Vir-
tual Event, China, July 25-30, 2020, 1071–1080. ACM.
Joachims, T.; Swaminathan, A.; and Schnabel, T. 2017. Un-
biased learning-to-rank with biased feedback. In Proceed-
ings of the tenth ACM international conference on web
search and data mining, 781–789.
Jr., H. E. K. 2005. Judea Pearl, Causality, Cambridge Uni-
versity Press (2000). Artif. Intell., 169(2): 174–179.
Jung, S.; Park, Y.; Jeong, J.; Kim, K.; Kim, H.; Kim, M.; and
Kwak, H. 2021. Global-Local Item Embedding for Tem-
poral Set Prediction. In Pampı́n, H. J. C.; Larson, M. A.;
Willemsen, M. C.; Konstan, J. A.; McAuley, J. J.; Garcia-
Gathright, J.; Huurnink, B.; and Oldridge, E., eds., RecSys
’21: Fifteenth ACM Conference on Recommender Systems,
Amsterdam, The Netherlands, 27 September 2021 - 1 Octo-
ber 2021, 674–679. ACM.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Li, M.; Jullien, S.; Ariannezhad, M.; and de Rijke, M. 2023.
A next basket recommendation reality check. ACM Trans-
actions on Information Systems, 41(4): 1–29.

Mueller, S.; Li, A.; and Pearl, J. 2021. Causes of Effects:
Learning individual responses from population data.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
et al. 2019. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information pro-
cessing systems, 32: 8026–8037.
Pearl, J. 2009. Causality. Cambridge university press.
Pearl, J. 2012. The Do-Calculus Revisited.
Qin, Y.; Wang, P.; and Li, C. 2021. The World is Binary:
Contrastive Learning for Denoising Next Basket Recom-
mendation. In Diaz, F.; Shah, C.; Suel, T.; Castells, P.; Jones,
R.; and Sakai, T., eds., SIGIR ’21: The 44th International
ACM SIGIR Conference on Research and Development in
Information Retrieval, Virtual Event, Canada, July 11-15,
2021, 859–868. ACM.
Rendle, S.; Freudenthaler, C.; and Schmidt-Thieme, L.
2010. Factorizing personalized markov chains for next-
basket recommendation. In Proceedings of the 19th inter-
national conference on World wide web, 811–820.
Saito, Y.; Yaginuma, S.; Nishino, Y.; Sakata, H.; and Nakata,
K. 2020. Unbiased recommender learning from missing-
not-at-random implicit feedback. In Proceedings of the 13th
International Conference on Web Search and Data Mining,
501–509.
Shengyu, Z.; Yunze, T.; Kun, K.; Fuli, F.; Jiezhong, Q.;
Jin, Y.; Zhou, Z.; Hongxia, Y.; Zhongfei, Z.; and Fei, W.
2023. Stable Prediction on Graphs with Agnostic Distribu-
tion Shifts. In The KDD’23 Workshop on Causal Discovery,
Prediction and Decision, 49–74. PMLR.
Sun, L.; Bai, Y.; Du, B.; Liu, C.; Xiong, H.; and Lv, W.
2020. Dual Sequential Network for Temporal Sets Predic-
tion. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information
Retrieval, 1439–1448.
Wang, W.; Feng, F.; He, X.; Wang, X.; and Chua, T. 2021a.
Deconfounded Recommendation for Alleviating Bias Am-
plification. In Zhu, F.; Ooi, B. C.; and Miao, C., eds., KDD
’21: The 27th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, Virtual Event, Singapore, Au-
gust 14-18, 2021, 1717–1725. ACM.
Wang, W.; Feng, F.; He, X.; Zhang, H.; and Chua, T. 2021b.
Clicks can be Cheating: Counterfactual Recommendation
for Mitigating Clickbait Issue. In Diaz, F.; Shah, C.; Suel,
T.; Castells, P.; Jones, R.; and Sakai, T., eds., SIGIR ’21:
The 44th International ACM SIGIR Conference on Research
and Development in Information Retrieval, Virtual Event,
Canada, July 11-15, 2021, 1288–1297. ACM.
Wang, W.; Feng, F.; He, X.; Zhang, H.; and Chua, T.-S.
2021c. Clicks can be cheating: Counterfactual recommen-
dation for mitigating clickbait issue. In Proceedings of the
44th International ACM SIGIR Conference on Research and
Development in Information Retrieval, 1288–1297.
Wang, Z.; Wei, W.; Cong, G.; Li, X.-L.; Mao, X.-L.; and
Qiu, M. 2020. Global Context Enhanced Graph Neural Net-
works for Session-based Recommendation. In Proceedings

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8668



of the 43rd International ACM SIGIR Conference on Re-
search and Development in Information Retrieval. ACM.
Wei, T.; Feng, F.; Chen, J.; Wu, Z.; Yi, J.; and He, X.
2021. Model-Agnostic Counterfactual Reasoning for Elim-
inating Popularity Bias in Recommender System. In Zhu,
F.; Ooi, B. C.; and Miao, C., eds., KDD ’21: The 27th
ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, Virtual Event, Singapore, August 14-18, 2021,
1791–1800. ACM.
Yu, L.; Liu, Z.; Zhu, T.; Sun, L.; Du, B.; and Lv, W. 2022a.
Modelling Evolutionary and Stationary User Preferences for
Temporal Sets Prediction. arXiv:2204.05490.
Yu, L.; Liu, Z.; Zhu, T.; Sun, L.; Du, B.; and Lv, W. 2023.
Predicting temporal sets with simplified fully connected net-
works. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, 4835–4844.
Yu, L.; Sun, L.; Du, B.; Liu, C.; Xiong, H.; and Lv, W. 2020.
Predicting Temporal Sets with Deep Neural Networks. In
Proceedings of the 26th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, 1083–
1091.
Yu, L.; Wu, G.; Sun, L.; Du, B.; and Lv, W. 2022b. Element-
guided Temporal Graph Representation Learning for Tem-
poral Sets Prediction. In Laforest, F.; Troncy, R.; Simperl,
E.; Agarwal, D.; Gionis, A.; Herman, I.; and Médini, L.,
eds., WWW ’22: The ACM Web Conference 2022, Virtual
Event, Lyon, France, April 25 - 29, 2022, 1902–1913. ACM.
Zhang, M.-L.; and Zhou, Z.-H. 2006. Multilabel neural net-
works with applications to functional genomics and text cat-
egorization. IEEE transactions on Knowledge and Data En-
gineering, 18(10): 1338–1351.
Zhang, M.-L.; and Zhou, Z.-H. 2013. A review on multi-
label learning algorithms. IEEE transactions on knowledge
and data engineering, 26(8): 1819–1837.
Zhang, S.; Yao, D.; Zhao, Z.; Chua, T.; and Wu, F. 2021a.
CauseRec: Counterfactual User Sequence Synthesis for Se-
quential Recommendation. In Diaz, F.; Shah, C.; Suel,
T.; Castells, P.; Jones, R.; and Sakai, T., eds., SIGIR ’21:
The 44th International ACM SIGIR Conference on Research
and Development in Information Retrieval, Virtual Event,
Canada, July 11-15, 2021, 367–377. ACM.
Zhang, S.; Yao, D.; Zhao, Z.; Chua, T.-S.; and Wu, F. 2021b.
Causerec: Counterfactual user sequence synthesis for se-
quential recommendation. In Proceedings of the 44th Inter-
national ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, 367–377.
Zhang, Y.; Feng, F.; He, X.; Wei, T.; Song, C.; Ling, G.; and
Zhang, Y. 2021c. Causal intervention for leveraging popu-
larity bias in recommendation. In Proceedings of the 44th
International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, 11–20.
Zhu, H.; Li, X.; Zhang, P.; Li, G.; He, J.; Li, H.; and Gai,
K. 2018. Learning tree-based deep model for recommender
systems. In Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining,
1079–1088.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8669


