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Abstract
The Entity Set Expansion (ESE) task aims to expand a hand-
ful of seed entities with new entities belonging to the same
semantic class. Conventional ESE methods are based on mono-
modality (i.e., literal modality), which struggle to deal with
complex entities in the real world such as (1) Negative entities
with fine-grained semantic differences. (2) Synonymous enti-
ties. (3) Polysemous entities. (4) Long-tailed entities. These
challenges prompt us to propose novel Multi-modal Entity
Set Expansion (MESE), where models integrate information
from multiple modalities to represent entities. Intuitively, the
benefits of multi-modal information for ESE are threefold:
(1) Different modalities can provide complementary informa-
tion. (2) Multi-modal information provides a unified signal
via common visual properties for the same semantic class or
entity. (3) Multi-modal information offers robust alignment
signals for synonymous entities. To assess model performance
in MESE, we constructed the MESED dataset which is the first
multi-modal dataset for ESE with large-scale and elaborate
manual calibration. A powerful multi-modal model Multi-
Expan is proposed which is pre-trained on four multimodal
pre-training tasks. The extensive experiments and analyses
on MESED demonstrate the high quality of the dataset and
the effectiveness of our MultiExpan, as well as pointing the
direction for future research. The benchmark and code are
public at https://github.com/THUKElab/MESED.

Introduction
The Entity Set Expansion (ESE) task aims to expand a hand-
ful of seed entities with new entities belonging to the same
semantic class based on the given candidate entity vocabulary
and corpus(Zhang et al. 2020; Li et al. 2022a). For example,
given {Washington D.C., Chicago, Los Angeles}, ESE tries
to retrieve other entities with the target semantic class US
Cities, such as New York, NYC, Boston. ESE plays a sig-
nificant role in knowledge mining and benefits a variety of
downstream NLP and IR applications (Chen, Cafarella, and
Jagadish 2016; Li et al. 2023b).

Conventional ESE methods are based on mono-modality
(i.e., literal modality), which typically suffer from limited
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1) Negative entities with fine-grained semantic differences share 
semantics on textual context
Example 1: …, Florida which is located in the southeastern region …
Explanation: US states which has semantic overlap with US cities 
as they are both located in somewhere might be retrieved incorrectly.
2) Context-sensitive Synonymous entities 
Example 2: … take a vacation to SEA with …
Example 3: … The Big Apple never fails to amaze me …

Explanation: whether abbreviations and nicknames refer to cities can’t
be determined without clear textual clues, resulting in the neglect.

3) Polysemous entities
Example 4: … Washington State government has announced that …
Explanation: features of entities with common tokens are close due to 
the inherent characteristics of PLMs which may result in wrong retrieval.

Example 5: … Pateros with 667 population in 2010 was established …
4) Long-tailed entities

Explanation: model can’t comprehend long-tail entities due to paucity of 
textual information about entities, resulting in their failure to be retrieved.

Mono-modal Expansion

Visual Clues

Multi-modal
Expansion

Figure 1: An example of tricky entities that a mono-modal
ESE model cannot handle.

information and sparse representation. Taking expanding US
Cities as an example, the mono-modal ESE methods strug-
gle to deal with complex entities in the real world from the
following perspectives:

• Negative entities with fine-grained semantic differ-
ences refer to entities that belong to the same coarse-grained
semantic class as target class. These entities share semantics
on textual context and are consequently challenging to be
differentiated in detail. For instance, when expanding US
Cities, it’s inevitable to expand entities with the same par-
ent class (i.e., US Location), such as Florida and Texas
that are also located in the US.

• Synonymous entities mean entities have a variety of
aliases. The ESE model can readily understand common
aliases, while failing to comprehend these context-sensitive
aliases (Henriksson et al. 2014; Schumacher and Dredze
2019) such as abbreviations and nicknames, since ascertain-
ing the meaning of them necessitates explicit textual cues.
For example, SEA only means Seattle in certain contexts,
potentially leading to the omission of its retrieval.

• Polysemous entities, which stand for possible ambigu-
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ity of a textual mention referring to multiple entities. Since
pre-trained language models learn semantics through word
co-occurrence (Kenton and Toutanova 2019; Lauscher et al.
2020), entities comprising the same tokens are inherently
closer. For example, the L2 distance from Washington, D.C.
to Washington State is instead smaller than the distance to
many other cities like Austin (8.89 vs. 10.02 we measured).
As a result, entities merely with the same textual tokens may
be wrongly retrieved.

• Long-tailed entities represent low-frequency entities
in the corpus, such as obscure place names. Due to the inade-
quate textual description, the representation of these entities
is frequently too sparse, posing a challenge to their retrieval.

The aforementioned situations lead to the advent of Multi-
modal Entity Set Expansion (MESE), where we integrate
information from multiple modalities to represent entities
and expand them to target semantic classes.

MESE can overcome the limitations of mono-modal ap-
proaches by leveraging multiple sources of information. The
benefits of MESE include the following: Firstly, multi-modal
information can complement the information provided by
texts (especially for short texts), thereby enhancing model to
comprehensively understand entities. Secondly, multi-modal
information can serve as a cohesive signal that unites se-
mantic classes based on shared visual properties or char-
acteristics. For instance, when dealing with Comic Book
Characters, the background and style of images can serve
as uniform features of the comic book characters, distin-
guishing them from hard negative semantic class Movie
Characters. Third, multi-modal information can facili-
tate the resolution of polysemous entities and provide clues
for the alignment of synonymous entities. In addition, we
argue that multi-modal information is particularly beneficial
to rarely used synonymous entities or long-tail entities, as en-
tities of lower frequencies tend to be more concrete concepts
with stable visual representations.

Regrettably, despite the availability of diverse multi-modal
data types (Li et al. 2023a; Yu et al. 2023a,c; Cheng et al.
2023a,b,c), there is currently no multi-modal dataset struc-
tured based on fine-grained semantic classes. To address this
gap, we have constructed a large-scale, manually annotated
MESE dataset called MESED, comprising 14,489 entities
sourced from Wikipedia and 434,675 image-sentence pairs.
To the best of our knowledge, MESED is the first multi-modal
dataset for ESE with large-scale and elaborate manual cali-
bration. MESED features several elements to accentuate the
challenges of ESE. Firstly, we meticulously crafted a seman-
tic class schema that consists of 26 coarse-grained and 70
fine-grained classes, with fine-grained classes that are mutu-
ally ambiguous (e.g., Chinese actors versus US actors) being
assigned as hard negative classes for each other. Furthermore,
synonymous and polysemous entities are added to amplify
confusion between entities. Additionally, to evaluate mod-
els’ capability in comprehending sparse entities, uncommon
semantic classes were deliberately included.

In experiments, conventional text-based models, as well
as emerging GPT-3.5, and various visual and multi-modal
baseline models are evaluated. We also propose a power-

ful multi-modal model MultiExpan trained with four self-
supervised multi-modal pre-training tasks that we designed,
including masked entity prediction, contrastive learning, clus-
tering learning, and momentum distillation.

To summarize, the main contributions are as follows:
• We present a novel Multi-modal Entity Set Expansion

(MESE) task, which expands entities in multiple modalities.
• We first release a large-scale human-annotated MESE

dataset called MESED, which is challenging as its fine-
grained semantic classes and ambiguous candidate entities.

• We provide strong multi-modal baseline models Multi-
Expan and explore diverse self-supervised pre-training objec-
tives for representation learning of multi-modal entities.

• Extensive experiments demonstrate the effectiveness
of our MultiExpan and provide direction for future research.

Task Formulation
Definition 1 Multi-modal Entity Set Expansion (MESE).
The inputs of MESE are a small set S = {e1, e2, ..., ek}
that contains several seed entities describing a certain se-
mantic class and a vocabulary V of candidate entities.
Besides, a corpus D containing the multi-modal contexts
{ei, (ti1, vi1), ..., (tin, vin)} for each entity ei is given, in which
tin is a sentence comprising ei and (tin, v

i
n) forms an image-

sentence pair. It is of note that arbitrary modality may be
lacking in a given context.

Dataset Construction
In this section, we demonstrate the MESED construction pro-
cedure. Several factors, including the coverage and ambiguity
of semantic classes, as well as the relevance between images
and entities are considered to ensure the quality of MESED.

Data Collection
There are two ways to construct a multi-modal ESE dataset.
The first straightforward approach is to first collect the image-
sentence pairs and label the entities in the sentences. Then,
for each semantic class, human annotators traverse the entire
large-scale entity vocabulary once to pick up the correspond-
ing entities. Although plenty of public datasets are available
with massive image-sentence pairs, the labour cost of such
a bottom-up manner is prohibitive. We therefore adopt the
more practical top-down approach to constructing MESED.
That is, the semantic classes and the corresponding entities
are constructed first, and then the text and visual contexts
corresponding to the entities are collected in turn.
Step 1. Semantic Classes and Entities Collection Wikipedia
has compiled a vast list of entities corresponding to semantic
classes1, which are organized in a hierarchical structure. We
pick a selection of semantic classes with certain principles
(discussed in next Section) and crawl the corresponding enti-
ties. In addition, numerous entities randomly sampled from
Wikipedia pages are appended to the entity vocabulary as
negative entities. Further, polysemous and synonymous enti-
ties are also added to the vocabulary as hard negative entities
and hard positive entities, respectively.

1https://en.wikipedia.org/wiki/List of lists of lists
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Step 2. Entity-Labeled Sentences Collection We crawl
Wikipedia articles containing abundant entity mentions with
human-annotated hyperlinks2 that uniquely identify an entity.
Since the entities crawled in Step 1 contain hyperlinks, we
can utilize these hyperlinks to associate the entities with the
respective sentences and convey the textual information to
the entities.
Step 3. Related Images Collection In this step, images cor-
responding to the entities or sentences are acquired through
Google Image search engine. To remove the distraction of
extraneous content in sentence, keywords in the sentence
are extracted with KeyBERT (Grootendorst 2020). We stitch
them with the entity name and semantic class as the search
query, and obtain the top 10 images of the search results.
Step 4. Images Re-ranking One of the 10 images needs to
be selected as the visual information of the entity. An ideal
image should reflect the content of the sentence and contain
the entity simultaneously. With both aspects in mind, a simple
but effective image re-ranking algorithm was devised to select
the most appropriate image vi for sentence ti and entity e:

score(vi, ti, e) = αCLIP-IMG(vi)⊙ CLIP-TEXT(ti)

+(1− α) max
oji∈Obj(vi)

(cos sim(oji , Img(e)))

(1)

The first term measures the relevance of image vi and sen-
tence ti, which is what CLIP excels at. The second leveraged
FasterRCNN (Ren et al. 2015) to detect objects Obj(vi) in
image and calculate their similarity to typical image Img(e)
of entity in the Wikipedia Infobox. The second determines
whether the entity appears in the image or not. We take the
image with the highest score as the one corresponding to the
sentence ti and entity e and leave the exploitation of multiple
images for future research.

Human Calibration and Annotation
The dataset automatically generated after the above steps is
inevitably noisy. Especially in Steps 3 and 4, A mismatch
between images and sentences may exist. To improve the
quality of images while verifying the effectiveness of the
re-ranking algorithm, we hired human annotators who were
required to evaluate the relevance of images to sentences
and entities, categorized into three categories: relevant to
both (R/T E&S), relevant to only the sentence (R/T S), and
irrelevant to both (IR). For images that are irrelevant to both
after re-ranking, the annotators need to select a new image.

From Table 1, we observe that the re-ranking algorithm
significantly improves the relevance of images to both text
and entities, compared to using the Top 1 image returned
by the search engine directly. The inter-annotator agreement
measured by Fleiss’s Kappa (Fleiss 1971) all exceeded 0.8,
demonstrating the reliability of the annotation results. The
strategy using the Top 1 image has the highest image diversity
(measured by the inverse of the average cosine similarity of
image embeddings) due to the introduction of substantial
irrelevant images. Whereas the first term of the re-ranking
algorithm guarantees the relevance of images and sentences

2E.g., https://en.wikipedia.org/wiki/Earth

while also avoiding a singular selection of typical images
of the entity, potentially ensuring that there is no significant
decrease in image diversity.

Strategy R/T E&S (%) R/T S (%) IR (%) Kappa Diversity

Top 1 52.7 14.8 32.5 0.842 1.813

Re-ranking 78.1 15.2 6.7 0.862 1.792

Annotation 80.8 19.2 0 0.858 1.798

Table 1: Relevance of images between entities and sentences
when using different strategies to process images.

Analysis of MESED

MESED is the first multi-modal ESE dataset with meticulous
manual calibration. It consists of 14,489 entities collected
from Wikipedia, and 434,675 image-sentence pairs. The 70
fine-grained semantic classes in MESED contain an average
of 82 entities with a minimum of 23 and a maximum of 362.
Each fine-grained class contains 5 queries with three seed
entities and 5 queries with five seed entities. MESED may
not feature the largest total number of candidate entities, but
we believe that the number of entities is not a key factor in
measuring the quality of a dataset. Most candidate entities
in previous datasets are randomly selected negative entities,
which are significantly different from the target entities and
do not enhance the challenge of the dataset.

Wiki APR CoNLL ONs MESED
# Classes 8 3 4 8 70
Granularity Coarse Coarse Coarse Coarse Fine
# Queries / Class 5 5 1 1 10
# Seed / Query 3 3 10 10 3/5
# Entities 33K 76K 6K 20K 14K
# Sentences 973K 1043K 21K 144K 434K
Multi-Modal % % % % !

Table 2: Comparison of ESE datasets.

We ensured that the MESED was challenging from multi-
ple perspectives: (1) We meticulously designed the schema of
semantic classes, which consists of three layers of granularity.
Fine-grained semantic classes that belong to the same parent
class have semantic overlap, making them hard negative se-
mantic classes for each other. (2) We included entities sharing
words with the target entities obtained through the BM25-
based Wikipedia search engine, as hard negative entities in
the candidate word list. (3) We assessed the model’s ability
to expand synonymous entities by obtaining the entity’s syn-
onyms via Wikidata SPARQL and replacing a portion of the
entity with synonyms having an edit distance greater than
5 from it. Due to space constraints, more detailed analysis
and experiments on MESED are placed in the appendices
in the Supplementary Material, and they are highly rec-
ommended to the reader.
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Figure 2: The training framework of the multi-modal entity
representation phase.

Methods
Overall Framework
We describe the proposed MultiExpan method for MESE,
which expands the initial entity set with multi-modal con-
texts. Inspired by the previous ProbExpan (Li et al. 2022b),
we divide MultiExpan into two steps: multi-modal entity
representation phase and entity expansion phase. In the first
phase, we design a multi-modal entity-level encoder whose
output is the probability distribution of masked span over
candidate entities. The entity is represented as the average
of the predicted entity distributions for all sentences con-
taining it. Four multi-modal self-learning pre-training tasks
are proposed to refine the entity representation. In the sec-
ond phase, MultiExpan obtains the target entities according
to the similarities of the probabilistic representation of the
entities. We note that MultiExpan is proposed to provide a
robust multi-modal baseline and to explore the effectiveness
of different pre-training tasks.

Multi-modal Entity Representation
Multi-modal encoder first processes text and images sepa-
rately with self-attention Transformer, then combines them
for deep cross-modal interaction.

Text Firstly, to handle the text information, we replace en-
tity mentions in sentences with [MASK] to construct the
inputs for text modality. Concerning the contextual text
T = {w1, w2, ..., wL1

} with masked entity mention, we di-
rectly use 12 layers of Transformer initialized by BERTBASE
(Kenton and Toutanova 2019) to obtain the textual context’s
embeddings:

Ŵ = {ŵ1, ŵ2, ..., ŵL1
} = BERTBASE(T ) (2)

where L1 is the max length of tokens in the sentences.
Image Secondly, we deal with the image information. Dif-

ferent from the regional features and grid features widely
used in the field of image feature extraction, the patch fea-
tures we adopt are simple yet efficient. We transform each
image into a fixed shape and determine the size of each patch,
divide each image into 36 patches I = {i1, i2, ..., iL2

}, and
use the backbone Resnet to extract patch features:

{v1, v2, ..., vL2
} = Flat(Resnet(I)) (3)

where L2 is the number of patches and Flat(·) indicates the
flatting function that reshapes the patch features extracted
from Resnet into one dimensional.

Since the patch features will cause the loss of position
information during segmentation, we add a learnable posi-
tion embedding P = {p1, p2, ..., pL2

} in order to mark the
position information of each patch. Both patch features and
position embeddings are combined through pair-wise add.

Finally, we build a 3-layer transformer architecture as im-
age encoder in the visual information processing:

V̂ = {v̂1, v̂2, ..., v̂L2} = EncoderV (Flat(Resnet(I))⊕P )
(4)

Cross-modal fusion After obtaining the information of
the two modalities, the hidden states {h1, h2, ..., hL} are ob-
tained through the concatenation of text features and visual
features: concat(Ŵ , V̂ ). Then we feed it into a 3-layer trans-
former for interaction and fusion between modalities so that
the image-text pairs are fully aligned:

{ĥ1, ĥ2, ..., ĥL} = Encodercross({h1, h2, ..., hL}) (5)

where L = L1 + L2 and the structure of the transformer is
the same as the above-mentioned visual encoder.

A classification head f is attached behind the multi-modal
encoder. After getting the hidden state of the mask position,
the embedding vector is transformed into the probability
distribution of the masked entity over the possible candidate
entities by MLP and Softmax function:

ŷ = f(ĥ[MASK]) = Softmax(MLP (ĥ[MASK])), ŷ ∈ RVe

(6)
in which Ve is the size of candidate entities vocabulary.

Four self-supervised pre-training objectives are proposed
for the training. The multi-modal encoder iteratively opti-
mizes the four objectives:

Masked entity prediction loss With respect to the masked
entity prediction task, the model takes images and the masked
sentences as input and obtains the entity probability distri-
bution ŷ of the masked position as described above. Cross-
entropy loss with label smoothing is applied to allow the
model to learn the underlying semantics of entities:

Lmask = − 1

N

N∑
i

Ve∑
j

yi[j] · (1− η) · log(ŷi[j])

+(1− yi[j]) · η · log(1− ŷi[j])

(7)

where the ground truth y is the one-hot vector and N is the
batch size. η is the smoothing factor that prevents entities
sharing semantics with the target entity from being overly
suppressed.

Contrastive learning loss Contrastive learning provides
clearer semantic boundaries of semantic classes through
drawing the representation of the same semantic class en-
tities closer and the representation of different semantic class
entities further apart (Li et al. 2022d,c). We generate the
positive and negative entities for each semantic class from
the expanded list obtained in the previous iteration. The enti-
ties ranked in the top Kpos positions are defined as positive
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entities, while the entities ranked from Lneg to Uneg are con-
sidered negative entities. The samples from positive/negative
entities are paired to form positive/negative sample pairs. For
a mini-batch of size N , each sample x2i−1 forms 2N−1 pairs
with others, among which we pair x2i−1, x2i to be positive
and define other 2N − 2 pairs to be negative.

Since directly performing contrastive learning on the
hidden features ĥ[MASK] may cause information loss, we
plugged in a two-layer MLP pcon(·) behind multi-modal en-
coder to map the hidden features to a normalized subspace
via zi = pcon(ĥ[MASK]), where zi ∈ RD and D is the di-
mension of subspace. The pair-wise similarity is measured
by dot product:

s(zi, zj) = zi · z⊤j , i, j ∈ [1, 2N ] (8)

The contrastive learning loss that concentrates on hard neg-
ative entities is applied. For a given sample zi (suppose it
forms a positive pair with zj), the loss is defined as:

li = − log
es(zi,zj)/t

es(zi,zj)/t +R−
i

, (9)

R−
i = max(

−(2N − 2) · τ · es(zi,zj)/t + R̃−
i

1− τ+
, e−

1
t ) (10)

R̃−
i =

(2N − 2)
∑

k:k ̸=i̸=j e
(1+β)·s(zi,zk)/t∑

k:k ̸=i̸=j e
β·s(zi,zk)/t

(11)

where τ, β, t are hyperparameters, representing class prior
probability, hard negative entity concentration level, and tem-
perature. The contrastive loss in a batch is computed as:

Lcon =
2N∑
i=1

li (12)

Clustering learning loss Similar to contrastive learn-
ing, clustering learning attracts positive semantic class pairs
and repels negative semantic class pairs. We employ an al-
ternative projection head, denoted as pclu, to map the in-
put sample xi onto a semantic class subspace, resulting
in ci = pclu(ĥ[MASK]). The dimension M of ci corre-
sponds to the number of clusters, namely the number of
target semantic classes. Each element of the feature indi-
cates the probability that it belongs to a particular seman-
tic class. We posit that a semantic class can be character-
ized by the probabilistic responses of a batch of entities
towards it. Formally, let C = [c1, · · · , c2i−1, · · · , c2N−1] ∈
RN×M denotes the class probability distribution un-
der samples {x1, · · · , x2i−1, · · · , x2N−1}, and C ′ =
[c2, · · · , c2i, · · · , c2N ] for samples {x2, · · · , x2i, · · · , x2N}.
The positive clustering pairs are formed by the semantic
classes represented by the same columns of matrices C and
C ′, due to the fact that the entities x2i−1 and x2i, correspond-
ing to each element of these column vectors, are positive
sample pairs originating from the same semantic class. For
brevity, we denote the i-th column of C as ĉ2i−1 and ĉ2i for
the i-th column of C ′. Similarly, dot product is adopted to
quantify the similarity between ĉi and ĉj :

ŝ(ĉi, ĉj) = ĉ⊤i · ĉj , i, j ∈ [1, 2M ] (13)

For each semantic class ĉi, the clustering loss l̂i is computed
in the same way as contrastive loss defined in Equation (9)-
(11), which distinguishes ĉi from other 2M − 2 semantic
classes except its positive counterpart ĉj . The clustering loss
is finally calculated as:

Lclu =
2M∑
i=1

l̂i (14)

Momentum distillation loss The image-sentence pairs in
our MESED are collected from the web, often accompanied
by noise, which causes the collected images may be weakly
related to the sentences, or the extended entities belonging to
the semantic class are not included in ground truth. To allevi-
ate the above problems, we introduce momentum distillation
learning. During training, a momentum version of the model
is slowly updated by exponentially shifting the momentum
factor m: θt ← mθt + (1−m)θs and the momentum model
is used to generate pseudo-labels as additional supervision,
preventing the student model overfitting to noise.

The momentum distillation loss is expressed as the KL di-
vergence between the pseudo entities probability distribution
ỹ generated by the momentum model and the predicted ŷ of
the multi-modal encoder at current iteration:

Lmod = −
m∑
i=1

ỹilog(ỹi)− ỹilog(ŷi)) (15)

Entity Expansion
The entity is represented as the average of the predicted en-
tity distributions for all sentences containing it. The semantic
class is represented by the weighted average of entities in
current expansion set and the weight is dynamically main-
tained by window search algorithm. In this way, candidate
entities with similar distribution are placed in the current set
measured by KL divergence.

As the expansion process is not the focus of this work, we
use window search and entity re-ranking algorithm from the
ProbExpan (Li et al. 2022b) and will not repeat them here.

Experiments
Experiment Setup
Compared Methods We compare three categories of models,
the first is the traditional text-based ESE approach, including
SetExpan (Shen et al. 2017), CaSE (Yu et al. 2019), CG-
Expan (Zhang et al. 2020), ProbExpan (Li et al. 2022b)
and GPT-3.5. Of the above models, SetExpan, CaSE are
the traditional statistical probability-based approaches, and
CGExpan and ProbExpan are the most advanced methods
based on pre-trained language model BERT. We also eval-
uated vision-based models: VIT (Dosovitskiy et al. 2020),
BEIT (Bao et al. 2021) and image encoder of CLIP (CLIP-
IMG). For multi-modal expansion, we explored multi-modal
models with different structures comprising CLIP (Radford
et al. 2021) and ALBEF (Li et al. 2021). Both the above-
mentioned vision-based and multi-modal models are fur-
ther pre-trained via entity prediction tasks, analogous to the
method defined in Equation (7).
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Modality Method
∥Seed∥=3

MAP P Avg
@10 @20 @50 @100 @10 @20 @50 @100

T

SetExpan 26.10 20.98 15.83 13.91 34.25 29.58 24.25 22.96 23.48

CaSE 27.71 20.93 14.63 12.02 36.85 30.57 24.83 23.63 23.90

CGExpan 38.89 32.51 24.69 21.06 45.85 39.85 33.19 32.80 33.61

GPT-3.5 31.10 24.73 19.20 17.07 37.65 31.35 26.08 25.11 26.54

GPT+Name 42.12 35.32 26.83 23.21 52.32 41.23 35.89 35.73 36.58

ProbExpan 65.47 57.50 43.96 40.73 71.30 64.35 55.73 51.99 56.38

V
VIT 65.02 55.94 41.89 32.40 67.95 59.53 46.08 36.94 50.72

BEIT 68.45 58.58 43.59 33.69 71.70 62.13 47.60 37.66 52.93

CLIP-IMG 66.39 57.04 41.72 32.42 68.85 60.90 45.79 36.81 51.24

T+V

CLIP 76.41 65.75 49.58 40.08 79.20 69.53 53.10 43.66 59.66

ALBEF 83.55 75.46 63.02 54.47 86.60 79.15 68.03 61.12 71.43

Ours (MEP) 86.07 79.18 67.66 58.91 89.10 82.85 72.13 65.17 75.13

Ours (Full) 91.44 86.85 76.86 63.34 93.60 89.63 80.37 67.15 81.16

Modality Method
∥Seed∥=5

MAP P Avg
@10 @20 @50 @100 @10 @20 @50 @100

T

SetExpan 25.99 20.64 15.20 13.51 34.90 29.93 24.26 23.29 23.47

CaSE 32.01 24.63 17.99 14.58 41.50 34.75 28.83 27.03 27.67

CGExpan 38.86 31.49 23.54 20.23 45.55 38.28 31.88 32.15 32.75

GPT-3.5 31.79 25.46 20.12 19.94 39.40 33.13 28.67 30.45 28.62

GPT+Name 42.32 36.48 25.76 22.36 52.94 42.10 34.68 35.12 36.47

ProbExpan 66.29 59.31 48.90 42.51 73.15 66.78 58.51 54.54 58.75

V
VIT 62.29 55.43 41.30 31.54 68.20 58.93 45.61 35.91 49.90

BEIT 70.14 59.04 43.08 33.21 73.45 62.93 47.25 37.17 53.28

CLIP-IMG 67.67 57.28 41.41 31.86 70.40 60.80 45.25 35.94 51.33

T+V

CLIP 77.37 65.92 49.01 39.05 79.80 69.48 52.41 42.50 59.44

ALBEF 85.04 76.25 62.45 53.64 87.80 79.70 67.37 60.06 71.54

Ours (MEP) 87.77 79.96 67.24 57.62 90.90 83.55 71.41 63.41 75.23

Ours (Full) 92.67 87.27 75.70 61.36 94.30 89.68 78.56 64.46 80.50

Table 3: Main experiment results. Text-based, vision-based, and multi-modal expansion methods are evaluated.

Evaluation Metrics The objective of ESE is to expand the
ranked entity list based on their similarity to given seed enti-
ties in descending order. Following previous research (Zhang
et al. 2020; Li et al. 2022b; Yan et al. 2020), two widely used
evaluation metrics, MAP@K and P@K, are employed. The
MAP@K metric is computed as follows:

MAP@K =
1

|Q|
∑
q∈Q

APK(Rq, Gq) (16)

Here, Q is the collection for each query q. APK(Rq, Gq)
denotes the average precision at position K with the ranked
list Rq and ground-truth list Gq . P@K is the precision of the
top-K entities. In the experiment, queries with ∥Seed∥=3 and
5 are evaluated separately.

Main Experiment
The results of the main experiment are presented in Table 3,
from which we observe that: (1) The multi-modal methods
outperform the mono-modal methods in general. Remarkably,
our MultiExpan achieves superior performance solely by
employing masked entity prediction (MEP) task. Moreover,
the full version of MultiExpan achieves the best performance.

(2) In terms of the structure of multi-modal models, AL-
BEF and our MultiExpan exhibit deep modality interaction
through the Transformer, which is better suited for the ESE
task compared to the CLIP’s shallow modal interaction via
dot product similarity calculation. These results indicate that
deep modal interaction and fusion is a direction that can be
explored in the future.

(3) In terms of the vision-based models, BEIT excels in
leveraging finer-grained image semantics, such as object and
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background information, by pre-training on masked image
modeling. In contrast to the VIT model which learns the
overall image semantics through image classifying images in
the Image Net dataset, BEIT demonstrates better results in
entity understanding. Meanwhile, the image encoder of CLIP
also captures richer semantics than the VIT model owing to
its linkage with the text modality. However, relying solely
on image modality does not suffice to produce satisfactory
results, and the text modality still remains dominant.

(4) The increase of ∥Seed∥ does not necessarily translate to
an enhancement in overall performance. More seeds can de-
scribe the semantic classes more precisely and retrieve some
“must be correct” entities more safely, so MAP/P improves
when K is small (=10,20). However, more seed entities mean
a larger search space for semantic classes, necessitating a
more meticulous analysis of common entity properties than
the current model allows. This issue represents the persistent
challenge of semantic drift that confronts ESE models, so
MAP/P decreases when K is larger. Of course, increasing
∥Seed∥ helps disambiguate the query with entities belonging
to multiple classes. Such as in the semantic class Light Novel,
where some seed entities also are Manga, increasing ∥Seed∥
makes a gain of 17.5% average on all metrics.

(5) GPT-3.5 did not achieve satisfactory results, and was
even inferior to unsupervised CGExpan. Through meticulous
examination of GPT-3.5’s performance on specific semantic
classes, we discovered that model struggled with complex
classes (e.g., 108 Martyrs of World War II). We explicitly
instructed GPT-3.5 to reason about the class names first,
and then expand based on them. This modification, named
GPT+Name, exhibited a substantial improvement. This ap-
proach aligns with the idea of emerging chain-of-thought
reasoning (Wei et al. 2022) for large language models (Tou-
vron et al. 2023; Li et al. 2023c; Yu et al. 2023b), i.e., thinking
step by step. We suggest future research to explore the com-
bination of chain-of-thought and ESE tasks.

Pre-training Tasks Analysis
We compared the effects of different pre-training tasks on
MultiExpan. The masked entity prediction task enables the
model to learn the underlying semantics of entities, which is
further enhanced by the addition of three pre-training tasks.
The results presented in Table 4 demonstrate that each pre-
training task confers a gainful effect on the model. Notably,
we found that contrastive learning with hard negative entities
yields the greatest performance improvement for the model,
by providing clearer semantic boundaries. While clustering
learning brings comparable gains to contrastive learning at
MAP/P@K=10 and 20, it is less effective at larger K. This
is because contrastive learning operates directly on entities
and more directly aggregates target entities into tight clusters.
In contrast, momentum distillation learning brings a smaller
performance gain, which we believe is mainly attributed to
its ability to prevent overfitting in the presence of noisy data.
This observation underscores the high quality of the data
provided by MESED, particularly the accurate annotation of
entities in sentences.

Extensive experiments on the hyperparameters sensitivity
of the pre-training tasks are presented in Appendix, demon-

strating the robustness of MultiExpan to the parameters.

Modality Analysis
We also carry out analysis experiments on each modality to
answer the following questions.
Are the multiple modalities complementary?

T+V

T

V

15.17%

5.17%

4.01%

25.63%

18.69%

5.50%

2.47%

Figure 3: The contribution of each modality.

We present a Venn diagram illustrating the impact of dif-
ferent modalities on MESE, as depicted in Figure 3. T, V and
T+V represent ProbExpan, BEIT and our MultiExpan respec-
tively. The size of each circle corresponds to the proportion
of the top 100 ranked entities that belong to the ground truth,
and the intersection of the circles represents the overlap of
entities. Our analysis shows that the textual modality still
prevails over the visual modality. Whereas the visual modal-
ity is introduced as supplementary information, 15.17% of
the target entities in MultiExpan are sorted to a higher posi-
tion, while 5.17% of the entities that were originally correctly
expanded are excluded, due to the image noise.
Is it better to have multi-modal contexts of both seed and
candidate entities? During the inference phase, we sepa-
rately removed the textual and visual information from the
candidate or seed entities in MultiExpan. The resulting per-
formances are shown in the last 6 rows of Table 5, with
subscripts indicating the operations performed on seeds (s)
or candidates (c). Our results indicate that removing any part
of the modal information for any part of the entities is detri-
mental to the overall performance. However, when particular
modal information was removed from seed entities, it caused
severe performance degradation, whereas removing modal
information from candidate entities caused only a slight per-
formance loss. These findings suggest that modeling the se-
mantics of the seed entity set is more crucial than modeling
individual entities. Additionally, MultiExpan demonstrated a
decrease in performance when we removed the input text or
images during the pre-training phase, further demonstrating
its ability to effectively utilize multi-modal information.
What visual clues are provided by the visual modality? We
randomly sample 200 entities and determine that images can
provide essential visual clues, including (1) Objects, which
can augment the limited textual information by depicting the
entities themselves, (2) Scenes, which showcase the envi-
ronment where the entity exists to differentiate between the
target semantic class and the hard negative semantic class,
e.g., indoor vs. outdoor, water vs. land, (3) Properties, which
demonstrate the common traits of entities to align entities of
the same class, such as appearance of Cats, and (4) Other:
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Model MAP P Avg
@10 @20 @50 @100 @10 @20 @50 @100

MultiExpan (MEP) 86.07 79.18 67.66 58.91 89.10 82.85 72.13 65.17 75.13

+ Contrastive 90.71 86.58 75.58 62.69 93.35 89.60 79.23 67.10 80.61

+ Clustering 89.10 82.83 70.85 60.48 91.65 86.05 74.75 65.92 77.70

+ Distillation 86.97 80.48 68.30 59.43 89.85 83.65 72.34 65.23 75.78

MultiExpan (Full) 91.44 86.85 76.86 63.34 93.60 89.63 80.37 67.15 81.16

Table 4: Comparison of different pre-training tasks.

Model MAP P Avg
@10 @20 @50 @100 @10 @20 @50 @100

MultiExpan (MEP) 86.07 79.18 67.66 58.91 89.10 82.85 72.13 65.17 75.13

pre-train w/o T 65.97 57.87 42.84 33.39 70.45 62.50 48.85 39.70 52.70

pre-train w/o V 66.87 60.18 52.26 47.57 73.90 68.13 62.45 60.88 61.53

w/o Ts and Tc 20.67 18.32 13.13 9.66 27.80 26.10 21.54 18.17 19.42

w/o Ts 20.75 18.43 13.57 9.92 27.50 25.88 21.54 18.34 19.49

w/o Tc 85.45 77.99 66.53 56.58 88.10 81.95 71.17 62.68 73.81

w/o Vs and Vc 58.99 50.36 40.38 35.60 64.05 56.53 48.37 47.09 50.17

w/o Vs 60.44 51.95 41.92 37.18 65.05 57.55 49.25 47.67 51.38

w/o Vc 84.79 76.94 64.55 55.92 87.90 81.18 69.76 63.07 73.01

Table 5: Ablation study on modality absence.

Visual Clues Proportion P@100
ProbExpan MultiExpan

Object 46.3% 57.44 70.21
Scene 21.2% 67.44 72.09
Property 22.2% 66.66 80.00
Others 3.4% 61.90 76.19

Table 6: Model performance under different visual clues.

Other important visual clues. We annotate 200 entity images
with their corresponding visual clue types and assess Multi-
Expan’s capacity to leverage different visual clues. As Table
6 shows, all types of visual cues are beneficial to MESE, and
visual modalities mainly supplement the textual information
by highlighting objects in the images. In contrast, MultiEx-
pan utilizes scenes to a lesser extent as they represent more
abstract concepts.

Case studies, visual clues examples and detailed perfor-
mance on each semantic class can be found in Appendix.

Conclusion
In this paper, we introduce a novel task called Multi-modal
Entity Set Expansion (MESE), which aims to leverage multi-
ple modalities to represent and expand entities. The MESED
dataset is the first multi-modal dataset for ESE with fine-
grained semantic classes and hard negative entities. In ad-
dition, A powerful multi-modal model MultiExpan is pro-
posed which is pre-trained on four multimodal pre-training

tasks. MultiExpan achieves state-of-the-art results compared
to other mono/multi-modal models. In the future, we will
investigate the applicability of generative PLMs, such as
GPT-4, in addressing MESE task. MESED can also serve
as a reliable benchmark for assessing the multi-modal entity
understanding capacities of large PLMs.
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