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Abstract

Collaborative Filtering (CF) recommender models highly
depend on user-item interactions to learn CF representations,
thus falling short of recommending cold-start items. To
address this issue, prior studies mainly introduce item fea-
tures (e.g., thumbnails) for cold-start item recommendation.
They learn a feature extractor on warm-start items to align
feature representations with interactions, and then leverage
the feature extractor to extract the feature representations of
cold-start items for interaction prediction. Unfortunately, the
features of cold-start items, especially the popular ones, tend
to diverge from those of warm-start ones due to temporal
feature shifts, preventing the feature extractor from accurately
learning feature representations of cold-start items.
To alleviate the impact of temporal feature shifts, we consider
using Distributionally Robust Optimization (DRO) to en-
hance the generation ability of the feature extractor. Nonethe-
less, existing DRO methods face an inconsistency issue:
the worse-case warm-start items emphasized during DRO
training might not align well with the cold-start item dis-
tribution. To capture the temporal feature shifts and combat
this inconsistency issue, we propose a novel temporal DRO
with new optimization objectives, namely, 1) to integrate a
worst-case factor to improve the worst-case performance, and
2) to devise a shifting factor to capture the shifting trend of
item features and enhance the optimization of the potentially
popular groups in cold-start items. Substantial experiments
on three real-world datasets validate the superiority of our
temporal DRO in enhancing the generalization ability of cold-
start recommender models.

Introduction
Recommender systems are widely deployed to filter the
overloaded multimedia information on the web for meeting
users’ personalized information needs (He et al. 2017).
Technically speaking, Collaborative Filtering (CF) is the
most representative method (Koren, Bell, and Volinsky
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2009). In essence, CF methods learn the CF representations
of users and items from historical interactions and utilize
the learned CF representations to predict the users’ future
interactions. As content production capabilities continue to
advance, recommender systems face the challenge of ac-
commodating an increasing influx of new items (a.k.a. cold-
start items1). For example, 500 hours of video are uploaded
to YouTube every minute2. Since the new items lack his-
torical interactions and thereby have no CF representations,
traditional CF methods fail to effectively recommend these
cold items to users, disrupting the ecological balance of
recommender systems on the item side. In light of this, it
is essential to improve the cold-start item recommendation.

Prior literature has integrated item features, such as cate-
gories and thumbnails of micro-videos, for cold-start item
recommendation (Shalaby et al. 2022; Zhao et al. 2022).
These methods essentially learn a feature extractor that
encodes warm items (i.e., items in the training set) into
feature representations and utilizes feature representations to
fit the user-item interactions during training. For inference
for cold items, given the lack of CF counterparts, only
feature representations from the feature extractor are used to
estimate user preference. The key of this paradigm lies in de-
vising training strategies to align feature representations and
user-item interactions, which mainly fall into two research
lines. 1) Robust training-based methods (Volkovs, Yu, and
Poutanen 2017; Du et al. 2020) use both feature represen-
tations and CF representations to predict interactions while
CF representations are randomly corrupted to strengthen
the alignment. 2) Auxiliary loss-based methods (Zhu et al.
2020) pay attention to minimizing the distance between the
feature representations and CF representations learned from
interactions via the auxiliary loss, e.g., contrastive loss (Wei
et al. 2021) and GAN loss (Chen et al. 2022).

Despite their success, existing methods suffer from a
critical issue: item features temporally shift from warm
to cold items (Wang et al. 2023b). As illustrated in Fig-
ure 1(a), the category features of newly-uploaded items are

1For simplicity, cold-start items and warm-start items are re-
ferred to as cold and warm items, respectively.

2https://www.statista.com/.
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Figure 1: (a) An example of item category feature shifts
towards sanitary products. (b) T-SNE visualization of visual
features of item thumbnails in three time periods on a
Micro-video dataset. The stars represent the average item
features in each time period. (c) An example of the shifting
trend of three item groups over time. (d) Illustration of the
inconsistency issue of DRO.

shifting over time due to various environmental factors,
such as a pandemic outbreak. Empirical evidence from
a real-world Micro-video dataset further substantiates this
phenomenon. In Figure 1(b), we divide the micro-videos
into three time periods according to the upload time and
visualize the micro-video features, where a star represents
the average item features in each time period. The moving
stars across time periods validate that item features are
gradually shifting over time. Since the feature extractor
is typically trained on warm items using Empirical Risk
Minimization (ERM) (Vapnik 1991), it easily overfits the
majority group of warm items. Unfortunately, the majority
group of cold items could deviate from that of warm items
as depicted in Figure 1(a) and (b). Such temporal feature
shifts hinder the feature extractor’s ability to accurately
extract feature representations for cold items, thus degrading
the performance of cold-start item recommendation. To
tackle this issue, we consider learning a feature extractor
with robust generalization ability to enhance the interaction
prediction on temporally shifted cold items.

To strengthen the generalization ability, Distributionally
Robust Optimization (DRO) is a promising approach3. In
general, DRO aims to enhance the worst-case performance
over the pre-defined uncertainty set, i.e., potential shifted
distributions (Duchi and Namkoong 2018). However, di-
rectly applying DRO in cold-start recommendation suffers
from the inconsistency issue. DRO will overemphasize the
minority groups4 in warm items at the expense of other

3Other potential solutions are discussed in Section .
4Minority group usually yields worse performance in recom-

mendation (Wen et al. 2022). In DRO, the training distribution is
assumed to be a mixture of subgroups, and the uncertainty set is
defined on mixtures of these subgroups (cf. Section ).

groups’ performance (Oren et al. 2019). Due to the fact
that minority groups in warm items may not guarantee
their popularity in subsequent cold items, the overemphasis
on the minority group of warm items might compromise
the performance of the popular groups in cold items. For
example, in Figure 1(c), c1, c2, and c3 denote three item
groups, where c3 is the minority group in the warm items
that traditional DRO pays special attention to. However, c2
is gradually becoming popular, dominating the cold items.
The inconsistency between the excessive emphasis on c3 and
the shifting trend towards c2 prevents DRO from alleviating
the impact of temporal feature shifts (see Figure 1(d)). To
address this inconsistency issue and strengthen the gener-
alization ability of the feature extractor under the temporal
feature shifts, we put forth two objectives for DRO training:
1) enhancing the worst-case optimization on the minority
group of warm items, thereby raising the lower bound of
performance; and 2) capturing the shifting trend of item
features and emphasizing the optimization of the groups
likely to become popular.

To this end, we propose a Temporal DRO (TDRO), which
considers the temporal shifting trend of item features for
cold-start recommendation. In particular, we consider two
factors for the training of TDRO: 1) a worst-case factor
to guarantee worst-case performance, where we divide the
warm items into groups by the similarity of item features,
and prioritize the improvements of the item groups with
large training loss; and 2) a shifting factor to capture the
shifting trend of item features, which utilizes a gradient-
based strategy to emphasize the optimization towards the
gradually popular item groups across time periods. We
instantiate the TDRO on two State-Of-The-Art (SOTA)
cold-start recommender methods and conduct extensive
experiments on three real-world datasets. The empirical
results under multiple settings (e.g., cold-start and warm-
start recommendation, and recommendation with differing
degrees of temporal feature shifts) validate the superiority
of TDRO in enhancing the generalization ability of cold-
start models. We release our codes and datasets at https:
//github.com/Linxyhaha/TDRO/.

The contributions of this work are summarized as follows.
• We emphasize the vulnerability of ERM and under-

score the necessity of adjusting the learning objective to
strengthen the generalization ability of cold-start models
under temporal feature shifts.

• We propose a novel TDRO objective for cold-start rec-
ommendation, which extends the conventional DRO to
avoid overemphasizing the minority groups and capture
the temporal shifting trend of item features.

• We conduct extensive experiments on three datasets,
demonstrating the effectiveness of temporal DRO in at-
taining robust prediction under temporal feature shifts.

Related Work
• Cold-start Recommendation. Traditional CF methods
typically rely on CF representations learned from historical
interactions (Wang et al. 2022; Li et al. 2019; Sun et al.
2022). However, the influx of cold items hinders traditional
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CF methods from providing appropriate recommendations
due to the lack of historical interactions (Zhao et al. 2022;
Rajapakse and Leith 2022; Raziperchikolaei, Liang, and
Chung 2021; Pulis and Bajada 2021; Du et al. 2022a; Huan
et al. 2022; Zhu et al. 2021; Sun et al. 2021; Wang et al.
2021; Chu et al. 2023). To remedy this, existing methods
align the feature representations with interactions (Meng
et al. 2020; Guo et al. 2017), falling into two research lines.
1) Robust training-based methods utilize both feature and
CF representations for prediction while the CF representa-
tions are randomly corrupted (Volkovs, Yu, and Poutanen
2017). 2) Auxiliary loss-based methods introduce different
auxiliary losses for minimizing the distance between the
feature and CF representations (Wei et al. 2021; Chen et al.
2022). However, previous methods suffer from temporal
feature shifts from warm to cold items. To solve this issue,
a concurrent study (Wang et al. 2023b) explores equivariant
learning over minority groups of warm items. Differently,
we leverage the shifting trend and emphasize the optimiza-
tion of the potentially popular item groups.
• Distributionally Robust Optimization. DRO aims to
achieve uniform performance against distribution shifts (He
et al. 2022) by optimizing the worst-case performance
over a pre-defined uncertainty set (Rahimian and Mehrotra
2019; Michel, Hashimoto, and Neubig 2022). The most
representative line of work is discrepancy-based DRO which
defines the uncertainty set as a ball surrounding the train-
ing distributions with different discrepancy metrics (Duchi
and Namkoong 2018; Staib and Jegelka 2019; Liu et al.
2022). Since discrepancy-based DRO suffers from over-
pessimism issue (Oren et al. 2019; Sagawa et al. 2020;
Duchi, Hashimoto, and Namkoong 2023)), another line of
research falls into Group-DRO (Zhou et al. 2021; Goel et al.
2021). It defines the uncertainty set as a set of mixtures of
subgroups in the training set, encouraging DRO to focus on
meaningful distribution shifts (Oren et al. 2019; Wen et al.
2022). Some prior work (Zhou et al. 2023) explores DRO
to alleviate long-tail users and items for warm-start recom-
mendation, e.g., S-DRO (Wen et al. 2022) and PDRO (Zhao
et al. 2023). However, directly applying DRO to cold-
start recommendation may cause inconsistency issue. In this
work, we consider leveraging a temporally DRO to focus on
the mitigation of temporal item feature shifts for cold-start
recommendation.

Preliminary
Cold-start Recommendation. To address the cold-start
item issue, existing methods leverage the item features
(e.g., categories and visual features) to predict the user-item
interactions. Specifically, given the users U , warm items
Iw with features {si|i ∈ Iw}, and user-item interactions
D = {(u, i, yui)|u ∈ U , i ∈ Iw} with yui ∈ {0, 1}
indicating whether the user u likes the item i (yui = 1)
or not (yui = 0), the cold-start recommender model aims
to learn a feature extractor, an interaction predictor, and the
CF representations of users and items for aligning feature
representations with user-item interactions. The learnable
parameters of the cold-start recommender model, denoted
as θ, are optimized via Empirical Risk Minimization (ERM).

Formally, we have

θ∗ERM := argmin
θ∈Θ

E(u,i,yui)∈D[L (θ; (u, i, yui, si))], (1)

where L(·) is the loss function of the cold-start recom-
mender model and is particularly tailored to different cold-
start methods to regulate the alignment.

Nevertheless, such a learning paradigm merely minimizes
the expected loss under the same distribution as the training
data (Rahimian and Mehrotra 2019). The feature extractor
could under-represent the minority groups (Wen et al. 2022),
which however might be popular in cold items, leading to the
vulnerability to the shifted cold item features.

Distributionally Robust Optimization. To alleviate tem-
poral feature shifts, DRO5 is an effective solution that
could achieve consistently high performance across various
distribution shifts (Zhou et al. 2021; Duchi and Namkoong
2018; Oren et al. 2019; Sagawa et al. 2020; Hu et al.
2018). In detail, DRO assumes the training distribution to
be a mixture of K pre-defined groups {Pi|i = 1, . . . ,K}.
Then, it optimizes the worst-case performance over the K
subgroups for controlling the performance lower bound.
Formally,

θ∗DRO := argmin
θ∈Θ

{
max
j∈[K]

E(u,i,yui)∼Pj
[L (θ; (u, i, yui, si))]

}
.

(2)
A practical solution to Eq. (2) is to conduct interleave step-
wise optimization (Piratla, Netrapalli, and Sarawagi 2022;
Sagawa et al. 2020). Specifically, at each update step t, DRO
first selects the group with the worst empirical performance:

j∗ = argmax
j∈{1,...,K}

E(u,i,yui)∼Pj
[L(θ; (u, i, yui, si))]

≈ argmin
j∈{1,...,K}

−L̄j ,
(3)

where L̄j = 1
Nj

∑
(u,i,yui)∼P̃j

Lj(θ; (u, i, yui, si)), P̃j is
the empirical distribution of group j in dataset D, and Nj is
the number of samples in group j. Subsequently, the model
parameters θ are updated based on the selected group, i.e.,
θt+1 = θt − η∇θL̄j∗(θ

t), where η is the learning rate.
Despite the success of DRO in various domains (e.g.,

image classification (Zhai et al. 2021; Sagawa et al. 2020),
natural language modeling (Oren et al. 2019; Michel,
Hashimoto, and Neubig 2022)), directly applying DRO in
cold-start recommendation faces an inconsistency issue. It
is likely that DRO will overemphasize the minority group
in warm items at the expense of performance of other
groups (Wen et al. 2022). Besides, the majority and minority
item groups may change due to temporal feature shifts,
thereby hurting the cold item performance (cf. Section ).

Temporally DRO
To alleviate the impact of temporal feature shifts for cold-
start recommendation, we propose two new objectives for
DRO training: 1) enhancing the worst-case optimization on
minority groups to raise the lower bound of performance,

5We adopt Group-DRO to avoid over-pessimism issue.
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Figure 2: Illustration of the shifting factor with three groups and three time periods (i.e., i ∈ {1, 2, 3} and e ∈ {1, 2, 3}). (a)
depicts the three steps of obtaining the weighted period gradient in each time period. And then, by summing up the weighted
period gradient, we can obtain the shifting trend as shown in (b). Finally, the shifting factor for each group is obtained by
calculating the similarity between the group gradient and the shifting trend as presented in (c).

and 2) capturing the temporal shifting trend of item features
and emphasizing the optimization of groups that are likely
to become popular.

Group Selection
It is noted that the group selection plays a critical role in
DRO (Eq. (3)) to strengthen the model’s robustness (Piratla,
Netrapalli, and Sarawagi 2022). As such, we propose a novel
TDRO, which introduces two factors in group selection: 1)
a worst-case factor to focus more on minority groups with
larger losses and give them priorities for group selection,
and 2) a shifting factor to emphasize the potentially popular
groups in cold items by leveraging the temporal shifting
trend. Besides, the shifting factor can alleviate the overem-
phasis on one particular worst-case group.

Shifting Trend-guided Group Selection. In detail, we
first split the warm items into K groups via K-means
clustering based on their item features (e.g., visual features
of thumbnails). We then split the chronologically sorted
interactions into E time periods, e ∈ {1, . . . , E}. We denote
the average loss of group i in time period e as Le

i (·). At each
update step t, we consider both the worst-case factor and the
shifting factor to select the group j∗ for optimization, which
is formulated as

j∗ = argmin
j∈{1,...,K}

−(1− λ)L̄j(θ
t)︸ ︷︷ ︸

(worst-case factor)

+λ

E∑
e=1

K∑
i=1

βeLe
i (θ

t − η∇θL̄j(θ
t))︸ ︷︷ ︸

(shifting factor)

,
(4)

where λ is the hyper-parameter to balance the strength
between two factors. The worst-case factor calculates the
loss value of each group L̄j(θ

t) for group selection. The
group with a larger loss will have a smaller −L̄j(θ

t), thus
being more likely to be selected. Besides, the shifting factor
consists of two perspectives:

• To alleviate the overemphasis on one particular worst-case
group, the shifting factor selects the optimization group
to improve the performance on all groups. Specifically,
θt − η∇θL̄j(θ

t) is the updated parameters if we choose
group j for optimization. Thereafter, the loss of each
group i in a time period e after parameter updating will
be Le

i (θ
t − η∇θL̄j(θ

t)). And the performance improve-
ments for all groups across all periods are measured by∑E

e=1

∑K
i=1 Le

i (θ
t − η∇θL̄j(θ

t)).
• To emphasize the potentially popular groups in cold items,

the shifting factor upweights the later time periods closer
to the test phase. In detail, we use βe to re-weight the
performance improvements over all groups for each time
period e. We define βe = exp(p · e), where a later period
e will have a higher weight and p > 0 is the hyper-
parameter to control the steepness. A smaller p encourages
time periods to be uniformly important, while a larger p
upweights the time periods closer to the test phase.
However, directly applying Eq. (4) for group selection

will incur extensive resource costs as we need to consider
all possible cases of the updated parameters. Fortunately, we
can approximate Eq. (4) into a gradient-based formulation
via First-order Taylor formulation.

j∗ = argmax
j∈{1,...,K}

(1− λ)L̄j(θ
t)︸ ︷︷ ︸

(worst-case factor)

+λ⟨gj ,

E∑
e=1

K∑
i=1

βeg
e
i ⟩︸ ︷︷ ︸

(shifting factor)

,
(5)

where gj = ∇θL̄j(θ) denotes the gradient of the average
loss of group j, and ge

i = ∇θLe
i (θ) denotes the gradient of

group i’s average loss in time period e. The ⟨·, ·⟩ represents
the inner product computation. Since

∑E
e=1

∑K
i=1 βeg

e
i is a

constant vector (referred to as shifting trend) for any group
j, we can avoid this cumbersome computations in Eq. (4) for
efficient group selection.

Interpretation of Shifting Factor. For an intuitive under-
standing of the gradient-based shifting factor, we visualize a
toy example in Figure 2, where we set K = 3 and E = 3.
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• Factor decomposition. As shown in Figure 2(a), we have
three decomposed group gradients, ge

i∈{1,2,3}, for each time

period e. We can then obtain the period gradient
∑K

i=1 g
e
i

of time period e by summing up the decomposed group
gradients. Since the gradient indicates the optimization di-
rection, the sum of the gradient within each time period, i.e.,
period gradient, represents the optimal updating direction in
each temporally shifted distribution. Subsequently, by mul-
tiplying the period importance βe to each time period and
summing up the weighted period gradient, we can obtain the
shifting trend

∑E
e=1

∑K
i=1 βeg

e
i that reflects optimization

direction on potentially popular groups (Figure 2(b)).
• Factor interpretation. Finally, the shifting factor is
obtained by calculating the inner product of the shifting
trend and the group gradient gj (see Figure 2(c)). Since
the shifting trend is a constant vector for all groups, the
shifting factor essentially measures the similarity between
each group gradient and the shifting trend, i.e., optimization
direction emphasizing the potentially popular item groups.

As for model optimization at each step, we first select the
optimal group j∗ via Eq. (5), and then update the parameters
θ by gradient descent θt+1 = θt − η∇θL̄j∗(θ

t).

Gradient Smoothing
Despite the success of step-wise optimization in many
applications (Sagawa et al. 2020), directly employing such
strategy in recommender systems suffers from training in-
stability (Wen et al. 2022). As such, we follow the previous
work (Piratla, Netrapalli, and Sarawagi 2022; Wen et al.
2022) by incorporating gradient smoothing for optimization
from two aspects: group importance smoothing and loss
consistency enhancement.
• Group importance smoothing. We consider assigning
weight vector w for groups and regulate the weight dynamic
by ηw. Formally,

wt+1 = argmax
wi∈[K]

∑
i

wi[(1− λ)L̄i(θ) + λ⟨gi,
E∑

e=1

K∑
j=1

βeg
e
j ⟩]−

1

ηw
KL(w,wt),

(6)
where wi is the i-th entry of w, η is the learning rate, and
KL(p, q) =

∑
i pi log

pi

qi
is the KL-divergence between p

and q. By applying KKT conditions, we obtain the closed-
form solution of Eq. (6):

wt+1
i =

wt
i exp(ηw[(1− λ)L̄i(θ

t) + λ⟨gi,
∑E

e=1

∑K
j=1 βeg

e
j ⟩])∑

s w
t
s exp(ηw[(1− λ)L̄s(θt) + λ⟨gs,

∑E
e=1

∑K
j=1 βege

j ⟩])
.

(7)
Thereafter, the model parameters θ are updated through

θt+1 = θt − η
∑
i

wt+1
i ∇L̄i(θ

t). (8)

• Loss consistency enhancement. To alleviate the training
instability caused by aggravated data sparsity after group
and time period division, we follow (Wen et al. 2022) to keep
the streaming estimations of empirical loss:

L̄t
j ← (1− µ)L̄t−1

j + µL̄t
j ,

where µ is the hyper-parameter to control the streaming step
size. A smaller µ leads to more conservative training.

Algorithm 1: Training Procedure of TDRO
Input: Number of groups K, number of time periods E,

initial model parameters θ0, initial group weight w =
( 1
K
, 1
K
, . . . , 1

K
), initial group loss L̄0

i∈[K], item features
{si|i ∈ Iw}, interactions D, shifting factor strength λ, period
importance βe∈[E], weight step size ηw, streaming step size µ,
and learning rate η.

1: while not converge do
2: for all i ∈ {1, . . . ,K} do
3: Calculate L̄t

i(θ
t) via cold-start loss function.

4: L̄t
i(θ

t)← (1− µ)L̄t−1
i (θt−1) + µL̄t

i(θ
t)

5: for all i ∈ {1, . . . ,K} do
6: wt+1

i ← wt
i exp(ηw[(1− λ)L̄t

i(θ
t)+

λ(∇L̄t
i(θ

t)
E∑

e=1

K∑
j=1

βe∇L̄e,t
j (θt))])

7: wt+1
i ← wt+1

i /∥wt+1∥1, ∀i ∈ {1, . . . ,K} ▷ Normalize
8: θt+1 ← θt − η

∑
i∈[K] w

t+1
i ∇L̄t

i(θ
t) ▷ Update

Output: Optimized model parameters θ.

• Instantiation. To instantiate TDRO on cold-start recom-
mender models, we first calculate the group weight w via
Eq. (7), where L(θ) can be substituted by any form of
the loss function from the backend cold-start models. The
model parameters will then be optimized based on weighted
gradient descent via Eq. (8). Training details of TDRO are
presented in Algorithm 1.

Experiments
We conduct extensive experiments on three real-world
datasets to answer the following research questions:

• RQ1: How does our proposed TDRO perform compared
to the baselines under temporal feature shifts?

• RQ2: How do the different components of TDRO (i.e.,
two factors for group selection) affect the performance?

• RQ3: How does TDRO perform over different strengths
of temporal feature shifts and how does TDRO mitigate
the impact of shifts?

Experimental Settings
Datasets. We conducted experiments on three real-world
datasets across different domains: 1) Amazon (He and
McAuley 2016) is a representative clothing dataset with
rich visual features of clothing images. 2) Micro-video
is a real-world industry dataset collected from a popular
micro-video platform, with rich visual and textual features
from thumbnails and textual descriptions. 3) Kwai6 is a
benchmark recommendation dataset provided with rich vi-
sual features. For Amazon and Micro-video datasets, we
split the interactions into training, validation, and testing
sets chronologically at the ratio of 8:1:1 according to the
timestamps. For the Kwai dataset, due to the lack of global
timestamps, we instead follow previous work (Wei et al.
2021) that randomly split the interactions. In addition, we
divide the items in the validation and testing sets into warm

6https://www.kwai.com/.
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Metric Models Amazon Micro-video Kwai
All Warm Cold All Warm Cold All Warm Cold

Recall@20

DUIF 0.0042 0.0048 0.0129 0.0318 0.0537 0.0771 0.0208 0.0248 0.0158
DropoutNet 0.0050 0.0110 0.0050 0.0187 0.0494 0.0222 0.0099 0.0118 0.0066
M2TRec 0.0065 0.0058 0.0068 0.0131 0.0056 0.0298 0.0317 0.0320 0.0009
MTPR 0.0057 0.0116 0.0082 0.0303 0.0723 0.0542 0.0464 0.0550 0.0049
Heater 0.0065 0.0136 0.0040 0.0469 0.1153 0.0868 0.0452 0.0536 0.0087
CB2CF 0.0078 0.0170 0.0074 0.0496 0.0961 0.0928 0.0624 0.0737 0.0064
CCFCRec 0.0071 0.0175 0.0117 0.0435 0.0750 0.0699 0.0098 0.0141 0.0129
InvRL 0.0120 0.0183 0.0150 0.0578 0.0899 0.0754 0.0588 0.0701 0.0191
CLCRec 0.0106 0.0200 0.0135 0.0583 0.1135 0.0623 0.0743 0.0884 0.0160
66+S-DRO 0.0121 0.0237 0.0144 0.0656 0.1173 0.0719 0.0661 0.0787 0.0172
66+TDRO 0.0130* 0.0237* 0.0166* 0.0703* 0.1180* 0.0761* 0.0841* 0.1016* 0.0186*
GAR 0.0079 0.0200 0.0124 0.0644 0.0962 0.0840 0.0588 0.0706 0.0051
66+S-DRO 0.0078 0.0189 0.0132 0.0626 0.0894 0.0874 0.0579 0.0690 0.0050
66+TDRO 0.0087* 0.0236* 0.0150* 0.0711* 0.1104* 0.0947* 0.0598* 0.0719* 0.0052

NDCG@20

DUIF 0.0020 0.0023 0.0058 0.0204 0.0295 0.0511 0.0158 0.0181 0.0070
DropoutNet 0.0021 0.0043 0.0021 0.0117 0.0286 0.0121 0.0054 0.0061 0.0030
M2TRec 0.0032 0.0029 0.0030 0.0075 0.0036 0.0211 0.0247 0.0248 0.0004
MTPR 0.0029 0.0056 0.0030 0.0175 0.0389 0.0362 0.0324 0.0369 0.0021
Heater 0.0037 0.0075 0.0015 0.0290 0.0653 0.0484 0.0276 0.0312 0.0030
CB2CF 0.0037 0.0076 0.0031 0.0254 0.0490 0.0636 0.0446 0.0504 0.0026
CCFCRec 0.0032 0.0074 0.0050 0.0321 0.0410 0.0464 0.0068 0.0092 0.0058
InvRL 0.0056 0.0079 0.0072 0.0355 0.0493 0.0503 0.0390 0.0444 0.0088
CLCRec 0.0054 0.0093 0.0061 0.0417 0.0728 0.0444 0.0536 0.0610 0.0071
66+S-DRO 0.0060 0.0107 0.0071 0.0451 0.0747 0.0480 0.0472 0.0536 0.0076
66+TDRO 0.0066* 0.0112* 0.0077* 0.0507* 0.0794* 0.0511* 0.0597* 0.0719* 0.0081*
GAR 0.0041 0.0088 0.0060 0.0375 0.0496 0.0625 0.0421 0.0485 0.0021
66+S-DRO 0.0033 0.0089 0.0052 0.0385 0.0474 0.0532 0.0423 0.0481 0.0021
66+TDRO 0.0041 0.0110* 0.0066* 0.0419* 0.0571* 0.0638* 0.0431* 0.0495* 0.0024*

Table 1: Overall performance comparison between the baselines and two SOTA models enhanced by TDRO on three datasets.
The bold results highlight the better performance in the comparison between the backbone models with and without TDRO. ∗
implies that the improvements over the backbone models are statistically significant (p-value <0.01) under one-sample t-tests.

and cold sets, where items that do not appear in the training
set are regarded as cold items, and the rest as warm items.
Evaluation. We adopt the full-ranking protocol (Wei et al.
2021) for evaluation. We consider three different set-
tings: full-ranking over 1) all items, 2) warm items only,
and 3) cold items only, denoted respectively as “all”,
“warm”, and “cold” settings. The widely-used Recall@20
and NDCG@20 are employed as evaluation metrics.

Baselines. We compare TDRO with competitive cold-start
recommender models, including 1) robust training-based
methods: DUIF (Geng et al. 2015), DropoutNet (Volkovs,
Yu, and Poutanen 2017), M2TRec (Shalaby et al. 2022), and
MTPR (Du et al. 2020)), and 2) auxiliary loss-based meth-
ods: Heater (Zhu et al. 2020), CB2CF (Barkan et al. 2019),
CCFCRec (Zhou, Zhang, and Yang 2023), CLCRec (Wei
et al. 2021), and GAR (Chen et al. 2022). Additionally, we
also consider 3) potential methods to overcome temporal
feature shifts: S-DRO (Wen et al. 2022) and invariant learn-
ing framework (Du et al. 2022b; Pan et al. 2023).

Overall Performance (RQ1)

The overall performance of the baselines and the two SOTA
cold-start methods equipped with S-DRO and TDRO is re-
ported in Table 1, from which we can observe the following:

• Auxiliary loss-based methods typically outperform the ro-
bust training-based ones. The reason is that robust training-
based methods directly utilize feature representations to
fit interactions, which inevitably introduces noises. Mean-
while, auxiliary loss-based methods decouple the CF and
feature representations space, which protects the CF repre-
sentations from feature noises.

• CLCRec consistently yields impressive performance
across the three datasets. This is attributed to the contrastive
loss, which maximizes the mutual information between
feature and CF representations. Besides, by introducing
adversarial constraints for similar distributions of CF
and feature representations, GAR exhibits competitive
performance despite its instability.

• In most cases, S-DRO improves the performance of cold
items compared to the backbone model. The stable improve-
ments are attributed to the tail performance guarantee over
potential shifted distributions, which may partially cover
the shifted cold item distribution. In addition, our proposed
TDRO consistently outperforms S-DRO and the backbone
model on all and cold performance by a large margin, which
justifies the effectiveness of TDRO. Moreover, capturing
the shifting patterns is also helpful for achieving steady
improvements for warm items, reflecting the superiority of
TDRO in alleviating the temporal feature shifts issue.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8755



Amazon Micro-video Kwai
Methods All Warm Cold All Warm Cold All Warm Cold

CLCRec 0.0106 0.0200 0.0135 0.0583 0.1135 0.0623 0.0743 0.0884 0.0160
w/o Worst-case Factor 0.0121 0.0219 0.0157 0.0648 0.1138 0.0687 0.0790 0.0997 0.0145
w/o Shifting Factor 0.0126 0.0228 0.0160 0.0643 0.1145 0.0622 0.0797 0.0986 0.0165
TDRO 0.0130 0.0237 0.0166 0.0703 0.1180 0.0761 0.0814 0.1016 0.0186

Table 2: Ablation study of worst-case factor and shifting factor w.r.t. Recall@20. The best results are highlighted in bold.

Amazon Micro-video
G1 G2 G3 G1 G2 G3

Distance 48 62 123 13 19 39
CLCRec 0.0218 0.0075 0.0024 0.1131 0.0503 0.0116
TDRO 0.0254 0.0110 0.0027 0.1321 0.0598 0.0139

Table 3: Recall@20 over user groups with different strengths
of temporal feature shifts under “all” setting.

All Cold
Worst-case Popular Worst-case Popular

CLCRec 0.0166 0.0168 0.0088 0.0088
TDRO 0.0173 0.0195 0.0123 0.0125

Table 4: Recall@20 of the item group with the worst
performance and the item group of top 25% popular items.

In-depth Analysis
Ablation Study (RQ2). To study the effectiveness of the
worst-case and shifting factor, we implement TDRO without
(w/o) each factor, separately. From Table 2, we can find
that: 1) The performance declines if either the worst-case
factor or the shifting factor is removed. This verifies the
effectiveness of incorporating the optimization over worst-
case group and the performance improvements for all groups
based on the shifting trend. 2) Removing each factor still
outperforms CLCRec (“all” setting). This indicates that
either performance lower bound guarantee or leveraging
shifting trends improves generalization ability.

User Group Evaluation (RQ3). We further inspect how
TDRO performs under different strengths of temporal fea-
ture shifts by evaluating TDRO on different user groups.
Specifically, we calculate the Euclidean distance of the
average item features between the training set and testing
set for each user. Next, we rank the users according to the
distance, and then split the users into three groups (denoted
as Group 1, Group 2, and Group 3) based on the ranking.
The results w.r.t. Recall@20 is given in Table 3. Despite
that the performance of both CLCRec and TDRO declines
gradually as the shifts become more significant, TDRO
consistently outperforms CLCRec in each group, validating
the effectiveness of TDRO in enhancing the generalization
ability to temporal feature shifts.

Item Group Analysis (RQ3). We analyze the generaliza-
tion ability enhancement of TDRO on Amazon w.r.t. item
groups. In detail, we calculate the item popularity (i.e.,
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Figure 3: Effect of the strength of shifting factor λ.

interaction proportion) in the testing set and divide the items
into four subgroups based on the popularity scores. We then
conduct evaluation on each item subgroup to see whether
TDRO: 1) guarantees the worst-case group performance,
and 2) enhances the performance over the group with the top
25% popular items. As shown in Table 4, the boosted per-
formance on worst-case group and popular items partially
explains the superior performance of TDRO.

Effect of shifting trend strength. We inspect the effect of
the shifting factor by changing λ from 0.1 to 0.9. Stronger
incorporation of shifting trend intends to yield better perfor-
mance on cold items as shown in Figure 3, indicating the
importance of shifting patterns in robustness enhancement.
However, the all and warm performance declines if we
consider the shifting factor too much, which is probably due
to the overlook of the minority group of warm items.

Conclusion and Future Work
In this work, we revealed the critical issue of temporal
item feature shifts in the cold-start recommendation. To
overcome this issue, we proposed a novel temporal DRO
learning framework called TDRO, which 1) considers the
worst-case performance for the performance lower bound
guarantee, and 2) leverages the shifting trend of item fea-
tures to enhance the performance of popular groups in
subsequent cold items. Empirical results on three real-world
datasets validated the effectiveness of TDRO in achieving
robust prediction under temporal item feature shifts.

This work highlights temporal feature shifts in cold-start
recommendation, leaving many promising directions to be
explored in the future. One is to consider adaptive envi-
ronment importance for more fine-grained modeling of the
shifting trend. Moreover, it is worthwhile to explore more
effective group division strategies beyond the pre-defined
ones. It is also promising to leverage LLM for cold-start
recommendation (Wang et al. 2023a; Bao et al. 2023b,a).
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