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Abstract

Click-through rate (CTR) prediction is a vital task in indus-
trial recommendation systems. Most existing methods focus
on the network architecture design of the CTR model for bet-
ter accuracy and suffer from the data sparsity problem. Espe-
cially in industrial recommendation systems, the widely ap-
plied negative sample down-sampling technique due to re-
source limitation worsens the problem, resulting in a decline
in performance. In this paper, we propose Auxiliary Match
Tasks for enhancing Click-Through Rate (AT4CTR) predic-
tion accuracy by alleviating the data sparsity problem. Specif-
ically, we design two match tasks inspired by collaborative
filtering to enhance the relevance modeling between user and
item. As the ”click” action is a strong signal which indicates
the user’s preference towards the item directly, we make the
first match task aim at pulling closer the representation be-
tween the user and the item regarding the positive samples.
Since the user’s past click behaviors can also be treated as
the user him/herself, we apply the next item prediction as the
second match task. For both the match tasks, we choose the
InfoNCE as their loss function. The two match tasks can pro-
vide meaningful training signals to speed up the model’s con-
vergence and alleviate the data sparsity. We conduct extensive
experiments on one public dataset and one large-scale indus-
trial recommendation dataset. The result demonstrates the ef-
fectiveness of the proposed auxiliary match tasks. AT4CTR
has been deployed in the real industrial advertising system
and has gained remarkable revenue.

Introduction
Click-through rate (CTR) prediction is crucial in industrial
web applications, e.g. recommendation systems and online
advertising. It estimates the probabilities of the user clicking
on items and displays the top-ranked items to the user. In on-
line advertising, the platform can only charge the advertiser
once the ad is clicked by the user. Thus, accurate CTR es-
timation can maintain the user’s satisfaction and maximize
the revenue for both the platform and the advertiser.

Existing advance in CTR mainly focuses on network ar-
chitecture and have gained huge success. Traditional meth-
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ods, like Logistic Regression (Richardson, Dominowska,
and Ragno 2007) and Factorization Machine (FM) (Rendle
2010), can only capture the low-order feature interactions.
Recently, deep learning has been exploited for CTR pre-
diction. Methods, such as Wide&Deep (Cheng et al. 2016),
DeepFM (Guo et al. 2017), and DCN (Wang et al. 2017), fo-
cus on capturing the high-order feature interactions through
the neural network. On the other side, DIN (Zhou et al.
2018b), DIEN (Zhou et al. 2019), and DBPMaN (Dong et al.
2023) extract user interest from user behavior sequences like
click or conversion. Those methods all improve the perfor-
mance of CTR prediction by a large margin.

The success of network architecture makes researchers
ignore another important problem of data sparsity which
means that positive samples take up only a small part of the
total samples. Especially in the industrial scenarios, negative
sample down-sampling which abandons each negative sam-
ple based on the Bernoulli distribution with certain probabil-
ity is widely used to reduce the computing and storage cost
when training the CTR model. However, drastically aban-
doning negative samples will worsen the data sparsity issue
and degrade the performance. As there always exists aban-
doned hard negative samples which are important for the
CTR model’s updating. A few works devote efforts to solv-
ing the data sparsity issue. DeepMCP (Ouyang et al. 2019)
applies a matching subnet to strengthen the relevance be-
tween the user and the item, and a correlation subnet to im-
prove item representation. But it introduces no extra training
signals. DMR (Lyu et al. 2020) designs an auxiliary network
to predict the last behavior based on previous behaviors. The
auxiliary losses used in DeepMCP and DMR are all negative
sampling (Mikolov et al. 2013) which is an approximation
of full softmax. It is not strong enough and implementation
unfriendly as the item has a large magnitude and changes
over time. CL4CTR (Wang et al. 2023) exploits an auxiliary
network to perform self-supervised contrastive learning but
triples the training cost.

To alleviate the data sparsity problem, we propose two
novel auxiliary match tasks to provide more helpful train-
ing signals. As shown in Figure 1, it contains two auxiliary
tasks. The ”click” action demonstrates the user’s strong pref-
erence for the clicked item. Intuitively, the representation of
positive samples between the user side and the item side
features should be highly relevant. The main binary clas-
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sification task can not fully concentrate on user-item rele-
vance learning because it needs to deal with the context and
other interaction features simultaneously (Lin et al. 2023).
Thus, we propose the first auxiliary match task named User-
Item Match (UIM). Inspired by the success of contrastive
learning in CV&NLP, we take the InfoNCE (Oord, Li, and
Vinyals 2018) as the loss of the UIM task. It treats each
positive sample’s user and item as positive pairs and pulls
closer their representation. It takes the other samples in the
same batch to synthesize negative samples whose represen-
tation of user and item should be pushed away. The UIM task
provides explicit signals to model the relevance between the
user and the item, which relieves the stress of the main task
and speeds up convergence. The behavior sequence consists
of the user’s clicked items in chronological order, which
contains the causality of the user’s decision and can rep-
resent himself/herself to some extent. We design the sec-
ond auxiliary match task named Next Item Prediction (NIP).
Specifically, we aggregate the previous behaviors through
self-attention (Vaswani et al. 2017) as the user’s representa-
tion and predict the next item, which can also be regarded as
a micro UIM task. We exploit the InfoNCE as an approxi-
mation of full softmax due to the large magnitude of items.
The NIP task can accelerate the convergence of the behavior
sequence modeling module. We choose InfoNCE because
of its inherent ability to mine hard negative samples(Wang
and Liu 2021). This ability can release the power of the syn-
thetic negative samples from the in-batch negative construc-
tion and benefits the negative sample down-sampling indus-
trial scenarios more by supplementing more hard negative
signals. In summary, the main contributions of this paper
are:

• We reveal the neglected problem of data sparsity which
is serious in the negative sample down-sampling indus-
trial scenarios and propose two auxiliary match tasks to
provide extra meaningful training signals.

• We propose the AT4CTR, which contains two auxiliary
match tasks to strengthen the relevance between the user
and the item with the help of InfoNCE loss.

• We conduct offline experiments on both public and in-
dustry datasets to verify the effectiveness of the proposed
AT4CTR, which achieves remarkable improvement in
the online A/B test.

Related Work
Deep CTR Prediction
Recent CTR research based on deep learning can be mainly
divided into two directions: feature interaction and user be-
havior sequence modeling. The feature interaction meth-
ods believe that the interaction between different features
is important for CTR modeling. Early FM-based methods
only model the second-order pairwise interactions by us-
ing factorized parameters, which limits the performance
of CTR modeling. Many works explore how to capture
high-order and informative feature interactions efficiently.
Wide&Deep (WDL) (Cheng et al. 2016) exploits Deep Neu-
ral Network (DNN) to capture the high-order feature inter-

action implicitly for capturing high-order feature interac-
tion. DeepFM (Guo et al. 2017) combines DNN and FM,
and xDeepFM (Lian et al. 2018) further proposes the Com-
pressed Interaction Network to model the high-order feature
interaction explicitly. DCN (Wang et al. 2017) and DCN-
V2 (Wang et al. 2021) apply cross-vector/matrix network to
achieve informative feature interaction automatically.

User behavior sequence modeling is another important
part of CTR modeling. It focuses on extracting the user’s in-
terest from the behavior sequence which is composed of in-
teracted items by the user in chronological order. DIN (Zhou
et al. 2018b) first applies the attention mechanism to mine
user interest by activating items related to the target item
and gains huge performance improvement. Based on DIN,
DIEN (Zhou et al. 2019) utilizes a two-layer GRU to cap-
ture the dynamic change of the user’s interest. Works (Pi
et al. 2020; Chang et al. 2023; Lin et al. 2022) propose
to extract long-term interest from the user’s ultra-long be-
havior sequence by taking the approximate nearest neighbor
search algorithm to reduce latency. Some works (Guo et al.
2019; Zhou et al. 2018a) introduce multiple types of be-
havior sequences to obtain fine-grained user interest. DBP-
MaN (Dong et al. 2023) proposes a new perspective for be-
havior sequence modeling. It introduces the concept of be-
havior path to understand the psychological procedure be-
hind the user’s decision. However, all the above methods
devote too much effort to the network structure’s design and
ignore the data sparsity problem.

Contrastive Learning for Recommendation
Contrastive learning is a self-supervised learning algorithm,
aiming to obtain invariant representation by optimizing the
goal of mutual information maximization, and gains huge
success in CV&NLP (Gao, Yao, and Chen 2021; Chen et al.
2020). In contrastive learning, the key is to construct pos-
itive pair of each sample through reasonable data augmen-
tation methods. The InfoNCE loss will bring closer repre-
sentation of positive pairs and push away the representation
of negative samples. Recently, some works have introduced
contrastive learning into the recommendation system. In se-
quential recommendation, task (Zhou et al. 2021; Xie et al.
2022; Zhang et al. 2023), the augmented user’s behavior se-
quence, produced by inserting, masking, shuffling, etc, is
treated as a positive pair. The additional contrastive learning
task enhances the representation learning ability of the rec-
ommendation model and thus gains performance improve-
ment. In the CTR prediction task, contrastive learning has
not been well explored. MISS (Guo et al. 2022) focuses on
sequential-based CTR tasks, which apply interest-level con-
trastive learning to enhance the behavior sequence model-
ing. CL4CTR (Wang et al. 2023) improves the quality of fea-
ture representation by designing three self-supervised tasks:
contrastive learning, feature alignment constraint, and field
uniformity constraint. However, the proposed three self-
supervised tasks are unrealistic for industrial CTR model
training because they need to regularize the huge embedding
table and triple the training overhead at least. AT4CTR also
exploits contrastive learning but can enhance performance
efficiently with little extra training cost.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8788



Auxiliary Match Tasks for CTR
Overview
CTR modeling is a binary classification machine learning
task based on sparse features. The sparse features mainly
contain information about the user, item, and context. The
user side information contains the user’s profile (e.g., age,
gender, city) and the user’s behavior sequence. The item
side information consists of item id, category id, etc. The
context information is composed of position, time, etc. The
CTR model needs to estimate the probability of the user
clicking on the item under the given context. We represent
the instance by {x, y}, where x = [xUP,xUS,xI,xC],
y ∈ {0, 1} indicates click or not. UP,US, I , and C repre-
sent the features’ set of user profile, user behavior sequence,
item, and context respectively. The CTR task can be formu-
lated as the following Eq (1):

P (y = 1|x) = F (x) (1)

where F is the CTR model.
AT4CTR takes x as input and transforms it into dense vec-

tor through the embedding layer. As shown in Figure 1, the
UIM task takes the xUP,xUS and xI as input. It applies
an independent self-attention (Vaswani et al. 2017) network
to aggregate behavior sequence. The user representation is
composed of the aggregated behavior sequence and user pro-
file. Then the InfoNCE loss strengthens the relevance be-
tween the user and the item of positive samples. NIP task
exploits another self-attention network to perform the causal
behavior sequence aggregation based on xUS. And the In-
fonce loss is applied to supervise the process. The two aux-
iliary match tasks only add little training cost and do not
increase the parameters and latency during inference.

Embedding Layer
The embedding layer transforms the high-dimensional
sparse vector x into low-dimensional dense representations.
Specifically, each feature field will be assigned with an em-
bedding matrix E = [e1; e2; ...; eK] ∈ RK×d, where K
represents the cardinality of this feature field and d donates
the embedding size. If the index value of the feature is i, then
ei serves as its embedding.

UIM: User-Item Match Task
The UIM which applies InfoNCE loss aims at pulling closer
the representation between user and item of the positive
sample. To avoid representation collapse, we combine the
user/item in the positive samples with the item/user of the
other samples in the same batch as the negative term of the
InfoNCE loss. The representation between the user and the
item of synthetic negative samples will be pushed away.

Specifically, the representation of the user side contains
the embedding of user profile and the aggregated behavior
sequence. There are multiple types of features in xUP, we
concatenate the embedding of all these features and get the
user profile representation eUP. For the behavior sequence,
we first apply self-attention (Vaswani et al. 2017) to refine

behavior sequence representation as it can capture the relat-
edness between the clicked items as Eq (2):

SA(X) = Softmax(
XWQ(XWK)T√

d
)XWV (2)

where X is the user’s behavior sequence xUS,
WQ,WK ,WV ∈ Rd×d are the weight matrix to gen-
erate query, key, and value respectively. After that, we
perform the mean pool aggregation operation to get the
representations of the user’s interest eUS as Eq (3):

eUS = mean pool(SA(xUS)) (3)

We then concat the user profile representation and the user’s
interest as the user’s representation eU.

eU = concat(eUP, eUS) (4)

For the representation of the item side, we concatenate the
embeddings of features in xI to get the item representation
eI. The number of features differs between the user side and
the item side. We apply two separate Multi-Layer Percep-
tron (a.k.a Projection Head) (Chen et al. 2020) to align their
representation, which follows the Eq( 5):

rU = MLPu(e
U),

rI = MLPI(e
I)

(5)

where MLPu and MLPI are all two-layer MLP with ReLU
as activation, rU and rI are the aligned representations.
Then we apply the InfoNCE for all positive samples based
on the aligned representations as Eq( 6).

Lui = − 1

n+

n+∑
k=1

log
exp(

sim(rU+ ,rI+)

τ1
)∑n

j=1 exp(
sim(rU+ ,rIj)

τ1
)

(6)

where sim(·) represents the cosine similarity, τ1 is the tem-
perature hyperparameter, n is the batch size, and n+ is the
number of positive samples in the batch. The InfoNCE loss
should be symmetrical, so we also compute the Liu as fol-
lows Eq( 7):

Liu = − 1

n+

n+∑
k=1

log
exp(

sim(rI+,rU+ )

τ1
)∑n

j=1 exp(
sim(rI+,rUj )

τ1
)

(7)

Combining the two losses, we obtain the UIM auxiliary loss
as LUIM = Lui + Liu.

NIP: Next Item Prediction Task
The user behavior sequence which consists of interacted
items contains the causal psychological clues of the user im-
plicitly. One obvious intuition is that the past behaviors of
the user will affect the current behavior. We design the sec-
ond auxiliary match task which performs the next item pre-
diction task by taking InfoNCE as an approximation of full
softmax. From another side, we can also treat the past behav-
iors as the user’s representation and the next behavior as the
positive target item, which is consistent with the mechanism
of the UIM.
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Figure 1: The overall framework of AT4CTR. SA represents self-attention and CSA indicates causal self-attention. UBM means
user behavior sequence modeling. UIM and NIP are the two proposed auxiliary match tasks.

Specifically, we take the auto-regressive causal self-
attention (Vaswani et al. 2017) as the encoder of behavior
sequence in NIP as Eq (8):

[r1, r2, .., rm−1] = Causal SA(xUS) (8)

where the rt, t ∈ {1, 2, ..,m− 1} is the aggregated repre-
sentation of oldest t behaviors. We treat the embedding eI

of the next item as the representation rI of the next item. To
calculate the InfoNCE loss, we still apply the in-batch nega-
tive construction. Items at the same position in the behavior
sequence in other samples of the same batch are regarded as
negative samples.

We calculate InfoNCE loss of the next item prediction
task as Eq (9):

Lpi = − 1

nm

n∑
i=1

m−1∑
k=1

log
exp(

sim(rki ,e
k+1
i )

τ2
)∑n

j=1 exp(
sim(rki ,e

k+1
j )

τ2
)

(9)

where n is the batch size, m is the length of behavior se-
quence, τ2 is the temperature hyperparameter, rki is the ag-
gregated representation of the first k behaviors, and ek+1

i is
the embedding of the k + 1-th item. We also have the sym-
metrical InfoNCE loss Lip as Eq( 10).

Lip = − 1

nm

n∑
i=1

m−1∑
k=1

log
exp(

sim(ek+1
i ,rki )

τ2
)∑n

j=1 exp(
sim(ek+1

i ,rkj )

τ2
)

(10)

Adding both losses together, we get the loss of the auxiliary
NIP task as LNIP = Lpi + Lip.

Multi-task Training
We use the widely applied negative log-likelihood loss as the
main loss of CTR prediction as Eq (11):

Lmain = −y logF (x)− (1− y) log(1− F (x)) (11)

We add the main loss and losses of the two auxiliary tasks
together to supervise the model training. The total loss is as
Eq (12):

Ltotal = Lmain + λUIMLUIM + λNIPLNIP (12)

where the λUIM and λNIP are the weight coefficients.

Experiment Settings
Datasets
We conduct extensive experiments on both the industry and
the public datasets. The statistics information about the two
datasets are shown in Table 1.

Taobao Dataset The Taobao dataset (Zhu et al. 2018) is
widely used in CTR research. It consists of a set of user
behaviors from Taobao’s industry recommendation system.
The dataset contains about 1 million users whose behaviors
include clicking, purchasing, adding items to the shopping
cart, etc. The click behaviors for each user are taken and
sorted according to the timestamp to construct the behavior
sequence. We filter out users who have less than 10 behav-
iors. The split standard is the same as what CAN (Bian et al.
2022) does.
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Datasets #Users #Items #Fields #Instances
Taobao 987,991 4,161,138 7 100,095,182
Industry 40M 417K 168 6.6B

Table 1: Statistics of datasets.

Industry Dataset We collect traffic logs from the
search advertising system in the location-based service e-
commerce platform of Meituan. The last ten months’ sam-
ples are used for training and samples of the following day
are for testing. For the training set, we perform negative sam-
ple down-sampling with the ratio 0.1. As the testing set is
only for evaluating the offline metric, we don’t perform neg-
ative sample down-sampling anymore. Following (He et al.
2014), we re-calibrate the model for the online severing.

Baselines
We compare AT4CTR with three types of CTR modeling
methods. The first type are feature interaction methods in-
cluding FM (Rendle 2010), WideDeep (Cheng et al. 2016),
DeepFM (Guo et al. 2017), which focus on second and
high order feature interactions. The second type is the be-
havior sequence modeling method. DIN (Zhou et al. 2018b)
uses the attention mechanism to extract the user’s candidate-
aware interest. DIEN (Zhou et al. 2019) extends DIN with
the interest extractor layer and interest evolution layer. DBP-
MaN (Dong et al. 2023) exploits the behavior path to cap-
ture the psychological procedure behind user decisions. The
third type is the auxiliary task method. DeepMCP (Ouyang
et al. 2019) uses the matching subnet to capture the user-item
relation, and the correlation subnet to explore the item-item
correlation. DMR (Lyu et al. 2020) proposes an auxiliary
matching loss to measure the correspondence between the
user preference and the target item in the behavior sequence.
CL4CTR (Wang et al. 2023) exploits an auxiliary network
to perform contrastive learning, which aims to enhance the
embedding representation.

Evaluation Metric
Two widely used metrics AUC, and Logloss are chosen. The
AUC (Area Under the ROC Curve) measures the compre-
hensive ranking ability of the CTR model for all samples
in the testing set. The Logloss measures the accuracy of the
estimated probability depending on the ground-truth label.
A slight improvement of AUC or Logloss at 0.001-level is
significant in a mature recommendation system (Guo et al.
2017), as it means a huge promotion in revenue.

Implementation Details
We implement AT4CTR with Tensorflow. For the industrial
dataset, the embedding size is 16 and the learning rate is
5e−4. We train the model using 8 80GA100 GPUs with the
batch size 1500 of a single card. For the Taobao dataset, we
set the embedding size to be 18, the learning rate to be 1e−
3, and use one single 80 A100 for training with batch size
1024. We set τ1 to be 0.07 and τ2 to be 0.1. We use Adam
as the optimizer for both datasets. We run all experiments

Industry Taobao
AUC Logloss AUC Logloss

FM 0.7177 0.1955 0.8025 0.2723
WideDeep 0.7335 0.1923 0.8733 0.2233
DeepFM 0.7327 0.1924 0.8690 0.2263

DIN 0.7420 0.1906 0.9402 0.1544
DIEN 0.7424 0.1905 0.9479 0.1430

DBPMaN 0.7426 0.1905 0.9509 0.1382
DeepMCP 0.7426 0.1906 0.9514 0.1376

DMR 0.7421 0.1906 0.9405 0.1540
CL4CTR 0.7428 0.1904 0.9508 0.1384

AT4CTR 0.7441∗ 0.1902∗ 0.9535∗ 0.1345∗

Table 2: Performance comparison of baselines on two
datasets. The best result is in boldface and the second best is
underlined. * indicates that the difference to the best base-
line is statistically significant at 0.01 level.

five times and report the average result. For DeepMCP and
CL4CTR, we exploit the DBPMaN to do behavior sequence
modeling.

Experiment Results
Performance Comparison
Table 2 shows the results of all methods. AT4CTR ob-
tains the best performance on both the Industry and Taobao
datasets, which shows the effectiveness of AT4CTR. There
are some insightful findings from the results. (1) The pro-
posed AT4CTR beats all baselines on both metrics on both
datasets. Compared with methods of feature interaction and
behavior sequence modeling, AT4CTR forces the neural net-
work to capture the relevance between user and item through
two proposed auxiliary tasks. This demonstrates that the
proposed auxiliary tasks based on the intrinsic character of
the data itself can alleviate the data sparsity issue and im-
prove the training of the model. (2) FM performs worse than
WideDeep and other deep learning models significantly,
which reveals the importance of non-linear transformation
and high-order feature interactions. (3) From Table 2, be-
havior sequence modeling methods outperform feature in-
teraction methods significantly, which verifies the necessity
of extracting user interest. DIN extracts the user interest by
considering the relevance of the behavior sequence with re-
gard to the target item but ignores the sequential character
of user behavior. DIEN applies the two-layer GRU struc-
ture and the auxiliary binary classification task to capture
the evolution of user interest, and thus performs better than
DIN. DBPMaN exploits the behavior path to understand the
psychological procedure behind user decisions and achieves
the best performance among behavior sequence modeling
methods. (4) Auxiliary task methods also benefit the perfor-
mance. The DeepMCP uses a matching subnet to strengthen
the correlation between user and item through binary clas-
sification task and takes the skip-gram algorithm to model
items’ correlation. However, it can only achieve slight im-
provement and we think the reason is that its auxiliary binary
classification task is homogeneous with the main CTR task,
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Industry Taobao
AUC Logloss AUC Logloss

DBPMaN 0.7426 0.1905 0.9509 0.1382
+UIM 0.7438 0.1903 0.9529 0.1360

DBPMaN
(+UIM,+NIP) 0.7441 0.1902 0.9535 0.1345

Table 3: Effect of each auxiliary task.

which can not provide extra signals. For DMR, its auxiliary
task is to predict the last behavior based on the previous be-
haviors with the negative sampling technique to approximate
the multi-classification task. It provides weak training signal
and obtains little earnings. The CL4CTR shows almost no
improvement on both datasets.

Ablation Study
We investigate how the UIM and NIP auxiliary tasks influ-
ence AT4CTR and show the results in Table 3. The abla-
tion experiments are conducted based on the DBPMaN. We
first integrate UIM with DBPMaN. And then based on UIM,
we further combine NIP with DBPMaN. From Table 3, both
the auxiliary tasks are beneficial for the DBPMaN on both
datasets, which indicates their ability to alleviate data spar-
sity problem. The UIM works by directly capturing the fine-
grained relevance between the user and the item, which is
not easy for the main task as it needs to provide compro-
mised gradients for all features. For the NIP, it models the
items’ correlation of behavior sequence. However, the infor-
mation of each behavior which only contains item id, cate-
gory id, etc in the behavior sequence is limited due to the
storage cost. This explains why the benefit enhanced by NIP
is less than UIM, the latter contains plenty of features.

The Generalization Ability of AT4CTR
Since we focus on designing auxiliary tasks for CTR pre-
diction which is orthogonal to most existing CTR predic-
tion models. We show the result by combining AT4CTR
with different CTR prediction models. For methods of fea-
ture interaction WideDeep and DeepFM, we only combine
UIM with them. For the rest behavior sequence modeling
methods, we integrate both the UIM and the NIP with them.
The result in Table 4 shows that AT4CTR can boost various
CTR models’ performance and demonstrates its generaliza-
tion ability. We have two findings from the result. First, the
feature interaction methods gain huge improvements when
combined with AT4CTR. The absence of behavior sequence
makes the features of user profile gain unexpected stress on
user representation. The original binary click/non-click sig-
nals together with the feature interaction components (e.g.,
FM, DNN) are not enough to provide sufficient signals for
the representation and relevance learning. The UIM gives
an explicit signal to pull closer the representation between
user and item with regard to the positive samples and push
away the representation of user and item for the synthetic
negative samples in InfoNCE loss. The result demonstrates
the UIM improves the embedding representation of the user

Industry Taobao
AUC Logloss AUC Logloss

WideDeep 0.7335 0.1923 0.8733 0.2233
WideDeepAT 0.7389 0.1912 0.8781 0.2189

DeepFM 0.7327 0.1924 0.8690 0.2263
DeepFMAT 0.7375 0.1916 0.8802 0.2174

DIN 0.7420 0.1906 0.9402 0.1544
DINAT 0.7433 0.1904 0.9430 0.1509

DIEN 0.7423 0.1905 0.9479 0.1430
DIENAT 0.7434 0.1903 0.9506 0.1394

DBPMaN 0.7426 0.1905 0.9509 0.1382
DBPMaNAT 0.7441 0.1902 0.9536 0.1344

Table 4: Results of combining AT4CTR with different CTR
Models, AT means combination.

Figure 2: Result of different negative sample sampling ratios
on Industry dataset. NSR means negative sampling ratio.

and item features. Then the improved embedding represen-
tation eases the learning of feature interaction components
(e.g., FM, DNN). Second, when combining both the auxil-
iary tasks with methods of behavior sequence modeling, per-
formance is also enhanced. Since the mechanism of extract-
ing user interest through the attention network between the
target item and the behavior sequence is similar to the effect
of two auxiliary tasks. The effect is to constrain the represen-
tation between user and item according to given signals, the
improvement of AT4CTR here is less than that of the fea-
ture interaction methods. All the results indicate that only
the main binary classification task can’t fully unleash the
potential of the CTR model. The proposed auxiliary tasks
always help the model’s training.

The Influence of Negative Down-sampling Ratio
As we have claimed the applied InfoNCE loss can provide
plenty of synthetic negative samples to make up for the los-
ing performance caused by negative sample downsampling.
In this subsection, we perform ablation studies to observe
the influence of different negative sampling ratios on the
AT4CTR. We present the result of different negative sam-
pling ratios in Figure 2. From Figure 2, we have the fol-
lowing findings. (1) The proposed AT4CTR can enhance the
performance under all negative sampling ratios. (2) Under
the negative sampling ratio 0.1, the AT4CTR achieves the
same performance as the situation without negative sam-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8792



Figure 3: Result of various loss weights on Industry dataset.

Figure 4: Result of various loss weights on Taobao dataset.

pling. What’s more, the relative promotion enhanced by
AT4CTR decreases as the negative sampling ratio increases.
This phenomenon is consistent with our hypothesis. As the
negative sampling ratio increases, there are more real nega-
tive samples for training and the effect of synthetic negative
samples goes weak. (3) We find a counterintuitive result that
the performance reaches best under the negative sampling
ratio 0.3 rather than 1.0. We leave it for future research.

Hyperparameter
For hyperparameters, we study the effect of two auxiliary
tasks’ loss weight on both datasets. Figure 3 and Figure 4
show the results of the two datasets respectively. For the loss
weight of the UIM task, the improvements increase when
the loss weight enlarges at the beginning, but then decrease
when it further enlarges. The NIP is sensitive to the loss
weight hyperparameter on both datasets. It needs to maintain
the loss weight at a magnitude of small order otherwise the
performance will fade away or even decline. Overall, prop-
erly tuned hyperparameters of loss weights can provide use-
ful signals to accelerate the model’s convergence.

Case Study
In this section, we study whether AT4CTR can strengthen
the relevance between user and item of positive samples. We
randomly select 10, 000 positive samples from the test set on
the Taobao dataset. Then we extract the embedding of user
side features and embeddings of item side features respec-
tively. After that, we compute the cosine similarity of the
concatenated embedding between user and item. We choose
DBPMaN, DBPMaNUIM , DBPMaNAT4CTR for analysis.
The results in Figure 5 demonstrate the two auxiliary match
tasks can enhance the relevance between user and item. This
reveals the deficiency of the main CTR task in learning the
user-item relevance due to the data sparsity. AT4CTR makes
up the deficiency and enhances the performance.

Resource Cost
In this section, we collect the statistical data to analyze the
storage cost and the model training time on the industry

Figure 5: Relevance between user and item.

Ratio 0.1 0.3 0.5 0.7 1.0

Storage(T) 39.0 88.3 137.0 181.6 230.2

Time(h) 6.1 13.9 21.3 29.1 39.5
TimeAT (h) 6.4 14.6 22.5 31.0 -

Table 5: Resource cost of different negative sampling ratios.
T means terabyte and h means hour.

dataset. From Table 5, the storage cost and the model train-
ing time increase rapidly as the negative sampling ratio in-
creases. A large negative sampling ratio will influence the
daily updating of the CTR model as the CTR model is only
one component of the industry search advertisement system.
Thus, negative down-sampling sometimes is unavoidable.
But, AT4CTR just brings a little extra training time and no
storage cost. When we take the negative sampling ratio as
0.1, AT4CTR can obtain the same performance as the situa-
tion without negative down-sampling but save 6 times stor-
age cost and model training time. For the platform, saving
costs can also increase revenue.

Online Results
We conduct an A/B test in the industry online search adver-
tising system to measure the benefits of AT4CTR compared
with the online baseline DBPMaN. The AT4CTR is allo-
cated with 10% serving traffic for one month. It achieves
1.27% relative promotion on the Revenue Per Search and
7.21% relative increase in the Return on Investment.

Conclusion
In this paper, we propose the AT4CTR for enhancing the
CTR model’s performance. AT4CTR which contains UIM
and NIP auxiliary tasks aims at alleviating the data spar-
sity problem by providing extra training signals. We conduct
offline/online experiments to verify the effectiveness of the
AT4CTR. Finally, we do some ablation studies and visual-
ization to show the correctness of AT4CTR’s component.
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