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Abstract

Neural ranking models (NRMs) have shown great success in
information retrieval (IR). But their predictions can easily be
manipulated using adversarial examples, which are crafted by
adding imperceptible perturbations to legitimate documents.
This vulnerability raises significant concerns about their re-
liability and hinders the widespread deployment of NRMs.
By incorporating adversarial examples into training data, ad-
versarial training has become the de facto defense approach
to adversarial attacks against NRMs. However, this defense
mechanism is subject to a trade-off between effectiveness and
adversarial robustness. In this study, we establish theoreti-
cal guarantees regarding the effectiveness-robustness trade-
off in NRMs. We decompose the robust ranking error into
two components, i.e., a natural ranking error for effective-
ness evaluation and a boundary ranking error for assessing
adversarial robustness. Then, we define the perturbation in-
variance of a ranking model and prove it to be a differentiable
upper bound on the boundary ranking error for attainable
computation. Informed by our theoretical analysis, we design
a novel perturbation-invariant adversarial training (PIAT)
method for ranking models to achieve a better effectiveness-
robustness trade-off. We design a regularized surrogate loss,
in which one term encourages the effectiveness to be maxi-
mized while the regularization term encourages the output to
be smooth, so as to improve adversarial robustness. Experi-
mental results on several ranking models demonstrate the su-
periority of PITA compared to existing adversarial defenses.

Introduction
Ranking is a fundamental problem in information retrieval
(IR). With advances in deep learning (LeCun, Bengio, and
Hinton 2015), neural ranking models (NRMs) (Guo et al.
2020) have achieved remarkable effectiveness. We have also
witnessed substantial uptake of NRMs in practice (Lin,
Nogueira, and Yates 2022). Recently, it has been demon-
strated that NRMs are vulnerable to adversarial exam-
ples that are capable of inducing misbehavior with human-
imperceptible perturbations (Wu et al. 2023; Liu et al. 2022;
Chen et al. 2023). So far, little attention has been devoted
to combating this issue. A representative and successful
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method for attacking NRMs is the word substitution rank-
ing attack (WSRA), which promotes a target document in
rankings by replacing important words with synonyms (Wu
et al. 2023). Given the prevalence of black-hat search engine
optimization (SEO) (Gyöngyi and Garcia-Molina 2005), en-
hancing the adversarial robustness of NRMs against such at-
tacks is vital for their use in real-world scenarios.

Among adversarial defense mechanisms proposed to im-
prove model robustness (Jia and Liang 2017; Raghunathan,
Steinhardt, and Liang 2018; Madry et al. 2018), adversar-
ial training remains the top-performer (Shafahi et al. 2019;
Zhu et al. 2019). During adversarial training adversarial ex-
amples are fed to a model. However, this causes an unde-
sirable reduction in effectiveness on natural (clean) sam-
ples, giving rise to a trade-off dilemma between effective-
ness and robustness (Tsipras et al. 2019). This is because ef-
fectiveness concerns the overall performance under normal
conditions, while adversarial robustness centers on perfor-
mance under malicious behavior. Several refinements have
been suggested for vanilla adversarial training, to mitigate
the aforementioned trade-off in text and image classification
(Zhang et al. 2019; Wang et al. 2021). However, clear dif-
ferences exist between classification and ranking scenarios
concerning the trade-off, given that the former relies on a
single sample, whereas the latter involves a ranked list. So
far, the ranking task has not benefited from these advances in
bridging the gap between effectiveness and robustness. This
naturally raises the first question:

What is the trade-off between effectiveness and ro-
bustness for ranking problems?

We contribute a theoretical characterization of this question
by decomposing the robust ranking error, i.e., the prediction
error for adversarial examples, into two terms: (i) a natu-
ral ranking error, which focuses on the natural effectiveness
of the ranked list predicted by the ranking model on clean
data, and (ii) a boundary ranking error, which indicates the
ranking model’s adversarial robustness against adversarial
examples, measuring the proximity of input features to the
decision boundary. We then introduce the perturbation in-
variance of a ranking model, which says that any adversar-
ial perturbation to candidate documents does not alter the
resulting document ranking. We prove that the perturbation
invariance is a differentiable upper bound on the boundary
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ranking error, which is sufficiently tight. Differences in mea-
surements of these two errors, which express distinct opti-
mization objectives, showcase the trade-off between effec-
tiveness and robustness for ranking problems.

Next to the effectiveness-robustness trade-off, the second
issue we address is:

How to design a defense mechanism against adver-
sarial examples while maintaining competitive effec-
tiveness for NRMs guided by our theoretical charac-
terization?

We introduce a novel perturbation-invariant adversarial
training method (PIAT) to achieve this goal. The key idea
is to capture the trade-off between natural and bound-
ary ranking error by optimizing a regularized surrogate
loss composed of two terms: (i) a natural ranking loss,
which encourages the optimization of the natural rank-
ing error by minimizing the “difference” between the pre-
dicted ranked list and the ground-truth based on supervised
data, and (ii) an adversarial ranking loss, as the regular-
ization term, which encourages the optimization of bound-
ary ranking error by minimizing the “difference” between
the predicted ranked list on natural candidates and on at-
tacked candidates using semi-supervised learning. We pro-
pose three ways to implement the regularization term to en-
sure perturbation invariance. By combining supervised and
semi-supervised training, we effectively leverage informa-
tion from large-scale volumes of unlabeled documents to
improve the effectiveness-robustness trade-off for NRMs.

Extensive experiments conducted on the widely-used MS
MARCO passage ranking dataset show that PIAT offers su-
perior defense against WSRA while maintaining effective-
ness as compared to several empirical defense methods, in-
cluding data augmentation and vanilla adversarial training.
Ablations and visualizations are provided for more insights.

Preliminaries
Our work focuses on adversarial robustness to word substi-
tution ranking attacks for NRMs. We review this type of at-
tack in this section.
Attacks in web search. The web, as a canonical example
of a competitive search setting, involves document authors
who have incentives to optimize their content for better rank-
ings in search results (Kurland and Tennenholtz 2022). This
practice is commonly known as search engine optimization
(SEO), which aims at improving the visibility and ranking of
a web page in retrieved results when specific queries are en-
tered by users (Gyöngyi and Garcia-Molina 2005). This can
lead to a decrease in the overall quality of search results, as
many irrelevant or low-quality documents may end up being
ranked higher than they deserve, while more valuable and
accurate content may get pushed down in the results.
Word substitution ranking attack. Recently, there has
been much research on adversarial attacks against NRMs to
simulate real-world ranking competitions. A representative
study is the word substitution ranking attack (WSRA) (Wu
et al. 2023), which demonstrates promising results in terms
of the attack success rate. Given a ranking model, WSRA
aims to promote a target document in rankings by replacing

important words in its text with synonyms in a semantics-
preserving way. Our research concentrates on WSRA at-
tacks and develops a corresponding defense strategy.

Typically, in ad-hoc retrieval, given a query q and
a set of document candidates D = {d1,d2, . . . ,dNd

},
a neural ranking model f predicts the relevance score
f (q,di) of each query-document pair for ranking the
whole candidate set. For example, f outputs the ranked
list [dNd

,dNd−1, . . . ,d1] if it determines f (q,dNd
) >

f (q,dNd−1) > · · · > f (q,d1). The rank position of docu-
ment di with respect to query q predicted by f is πf (q,di).
And we use πy (q,di) to represent the ground-truth rank po-
sition of di with respect to q.

Given a target document d = (w1, w2, . . . , wM ) ∈ D,
the WSRA task constructs an adversarial example d′ =
(w′

1, w
′
2, . . . , w

′
M ) by replacing at most ϵ ·M (ϵ ≤ 1) words

in d with any of their synonyms w′
m. We denote a candidate

set of adversarial examples (neighborhood) of d as B(d, ϵ),
i.e.,

B(d, ϵ) :=
{
d′ :

∥∥d′ − d
∥∥
0
/∥d∥ ≤ ϵ

}
, (1)

where ∥d∥ represents the number of words in document d,∥∥d′ − d
∥∥
0
:=

∑M
m=1 I {w′

m ̸= wm} is the Hamming dis-
tance, with I{·} the indicator function. Ideally, the goal of
the attacker is to find d′ ∈ B(d, ϵ) such that f(q,d′) >
f(q,d) and d′ has the same semantic meaning as d.

Theoretical Analysis: The Trade-Off Between
Effectiveness and Robustness

Tsipras et al. (2019) have shown that the goals of stan-
dard performance and adversarial robustness may be at odds.
There can be an inherent trade-off between effectiveness and
robustness. Drawing inspiration from the definitions of nat-
ural and robust accuracy in (Zhang et al. 2019), we charac-
terize the trade-off in ranking by breaking down the robust
ranking error into the sum of the natural ranking error and
boundary ranking error. We also provide a differentiable up-
per bound on the boundary ranking error, to inform the de-
sign of the defense method.

Natural Ranking Error
So far, much effort in the field of NRMs has been dedicated
to improving the ranking effectiveness, which is about the
average performance under normal conditions.

Definition 1 (Natural ranking error) Formally, the natu-
ral error associated with the effectiveness of a ranking
model f on natural (clean) examples is denoted as,

Rnat(f) := Edi∼DI {πf (q,di) ̸= πy(q,di)}, (2)

where I{·} is the indicator function that is 1 if an event hap-
pens and 0 otherwise. For simplicity, we consider the 0 − 1
loss in our theoretical analysis to evaluate the natural error.

Boundary Ranking Error
Here, we first define the decision boundary of a ranking
model, and then introduce the boundary ranking error cor-
responding to the adversarial robustness of ranking models.
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Definition 2 (Ranking decision boundary) For a ranking
model f , we define the ranking decision boundary as the
predicted rank position πf (q,di) being higher or lower than
it truly deserves. Note that for the topmost and the bottom-
most ranks, we exclusively consider the situations where
the predicted rank is one position lower and higher, respec-
tively. Considering practical attacks aimed at ranking im-
provement, we denote πn(q,di) = πy(q,di) − 1 as the
neighborhood rank of (q,di). Recall that low values of rank
positions attest to high ranking. In this way, the ranking de-
cision boundary can be formulated as:

DB(f) := {di ∼ D : πf (q,di) = πn(q,di)} . (3)

We use B(di, ϵ) to represent a neighborhood of di under the
WSRA attack. Then, for a ranking model f , we denote the
neighborhood of the decision boundary of f as:

B(DB(f), ϵ) := {di ∼ D : ∃ d′
i ∈ B(di, ϵ) such that

[πf (q,di)−πn(q,di)] · [πf (q,d′
i)−πn(q,di)]≤0}.

(4)

This implies that di and d′
i are located on different sides of

the decision boundary concerning the query q. Therefore,
a successful adversarial attack could move the target docu-
ment to the wrong side of the decision boundary, leading to
weak robustness of NRMs.

The above analysis elucidates why a ranking model with
high effectiveness might still manifest considerable adver-
sarial vulnerability. This discrepancy arises from the distinc-
tion between optimizing based on natural ranking error and
acquiring a robust decision boundary for NRMs. Based on
experimental findings due to Wu et al. (2023), we can tell:
(i) decision boundaries learned based on natural ranking er-
rors enable NRMs to achieve high effectiveness on clean
documents, and (ii) such boundaries are susceptible to being
breached by adversarial examples, resulting in vulnerabili-
ties to easy attacks. Existing attack methods take advantage
of this boundary vulnerability to deceive the NRM. As such,
training robust NRMs requires a defining boundary ranking
error to tackle this vulnerability effectively.

Definition 3 (Boundary ranking error) We introduce the
boundary ranking error to assess the existence of adversarial
examples near the ranking decision boundary of f , i.e.,

Rbdy(f) :=

Edi∼DI {di ∈ B(DB(f), ϵ) , πf (q,di) = πy(q,di)} .
(5)

Optimizing the boundary ranking error poses a challenge,
mainly due to the large volume of unlabeled documents in
the datasets and the unavailability of ground-truth rankings.
To address this obstacle, we present a solution in the form of
an upper bound on the boundary ranking error.

Theorem 1 (Upper bound of boundary ranking error)
According to Eq. 4 and 5, for a ranking model f : q ×D →
R and ranking mechanism r : R× R → {±1, 0}, we have:

Rbdy(f)≤Edi∼D max
d′
i∈B(di,ϵ)

I
{
πf (q,di) ̸= πf (q,d

′
i)
}
.(6)

Theorem 1 states the boundary ranking error can be upper-
bounded by the expectation that any adversarial example

maintaining its original ranking positions. This emphasizes
the perturbation invariance of a robust ranking model, that is,
any perturbation to the inputted candidate documents does
not change the output ranking. Consequently, restraining the
boundary ranking error is attainable by maximizing the out-
putted perturbation invariance of ranking models.

Nonetheless, if an upper bound is too loose, it may lead to
the inadequacy of effectively optimizing the error. Hence,
we further prove the upper bound in Theorem 1 is tight
enough. The tightness ensures the reduction of the bound-
ary ranking error through the optimization of perturbation
invariance. The proof of Theorem 1 and its tightness are pro-
vided at https://github.com/ict-bigdatalab/PIAT.

Trade-Off Between Two Ranking Errors
Based on the definitions of natural error and boundary error
for a ranking model, we present the robust ranking error for
adversarial examples.

Definition 4 (Robust ranking error) To train a robust
ranking model, the robust ranking error Rrob(f) under the
WSRA scenario, can be decomposed as follows,

Rrob(f) = Rnat(f) +Rbdy(f), (7)

where Rnat(f) corresponds to naturally wrongly ranked
documents; and Rbdy(f) corresponds to correctly ranked
samples but close to the ϵ-extension of the ranking decision
boundary. Consequently, these samples are susceptible to
successful boundary-crossing attacks (i.e., ranked higher or
lower) by introducing human-imperceptible perturbations.

Algorithmic Design: Perturbation-
Invariant Adversarial Training

Inspired by our theoretical analysis, we present a new de-
fense method for NRMs, named perturbation-invariant ad-
versarial training (PIAT), to strike a balance between effec-
tiveness and adversarial robustness.

Motivation
Theorem 1 and Definition 4 emphasize the importance of
simultaneously optimizing the natural ranking error and
the boundary ranking error, when training a robust ranking
model while preserving effectiveness. We introduce a refine-
ment to adversarial training, called PIAT, tailored specifi-
cally for ranking problems. This involves the incorporation
of a regularized surrogate loss aimed at optimizing the ro-
bust ranking error, comprising two essential terms, i.e.,

L = λLnat + (1− λ)Ladv, (8)

where the first term, i.e., the natural ranking loss Lnat, en-
courages the natural ranking error to be optimized, by min-
imizing the “difference” between the predicted and ground-
truth ranked list. We achieve this by leveraging a traditional
pair-wise loss, which is supervised using the labeled query-
document pairs. The regularization term, i.e., the adversarial
ranking loss Ladv, encourages the boundary ranking error to
be optimized. We propose a perturbation-invariant ranking
loss to minimize the “difference” between the prediction of
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a clean document set and that of an attacked document set,
which is semi-supervised by the NRM’s outputs. The λ is a
trade-off parameter that controls the balance between effec-
tiveness and robustness during training.

Natural Ranking Loss
The standard training of NRMs primarily emphasizes the
model’s effectiveness on the labeled dataset (Dai et al.
2018a; Dai and Callan 2019). In line with existing research,
we adopt a pairwise loss as the natural ranking loss, i.e.,

Lnat = − 1

|Nq|

|Nq|∑
i=1

log
ef(qi,d

+)

ef(qi,d
+) +

∑n̄
j=1 e

f(qi,d
−
j )
, (9)

where Nq is the number of training queries, d+ is the rel-
evant document and d− is the irrelevant document. We use
the negative examples returned by the retrieval stage as hard
negative examples and also incorporate random negative ex-
amples for the same purpose (Nogueira and Cho 2019).

Adversarial Ranking Loss
To enhance adversarial robustness, we first use the WSRA
attack to generate adversarial examples. Subsequently, we
utilize augmented adversarial examples to optimize the pro-
posed perturbation-invariant ranking loss.
Adversarial examples. To execute a WSRA attack in a
decision-based black-box setting, Wu et al. (2023) introduce
a pseudo-relevance based adversarial ranking attack method
to generate adversarial examples. Following this work, for
each query q, given a candidate document set D, we con-
duct the attack against a portion of the documents evenly to
derive the adversarial examples Dadv . Each adversarial ex-
ample dadv in Dadv is selected from the neighborhood of
the original document d, based on the most threatening at-
tack effect, i.e.,

dadv = arg max
d′∈B(d,ϵ)

(
f(q,d′)− f(q,d)

)
. (10)

Thus, we obtain adversarial examples Dadv for each query
q, which will be used in the following loss.
Perturbation-invariant ranking loss. As the regularization
term in Eq. 8, the adversarial ranking loss encourages the
model’s output to be smooth, effectively constraining the
sample instances within adjacent ranking decision bound-
aries of the model. This is achieved by minimizing the rank-
ing order variance between the prediction of natural docu-
ments D and that of adversarial examples Dadv . We design
the perturbation-invariant ranking loss between D and Dadv

as the adversarial ranking loss, i.e.,

Ladv = − 1

|Nq|

|Nq|∑
i=1

ψ (f (qi,D) , f (qi,Dadv)) , (11)

where f(q,D) is the predicted ranked list by a ranking
model f over D; ψ(·) is a differential metric to evaluate
the difference in the resulting document rankings between
D and Dadv . Here, Dadv comprises Nadv perturbed docu-
ments and Nd −Nadv benign documents.

We consider three ways to compute the difference ψ(·) in
the ranked results obtained using D and Dadv .

(1) KL divergence. To promote smoothness between D
and Dadv during optimization, our objective is to minimize
the KL divergence between the similarity distributions of the
ranking model f . As a result, the computation of Ladv in Eq.
11 using the KL divergence, is as follows:

LKL
adv =KL(P (S | Q,D; f) ∥ P (S | Q,Dadv; f))

=
1

Nq

Nq∑
i=1

Nd∑
j=1

P (si | qi,dj ∼ D; f) ·

log
P (si | qi,dj ∼ D; f)

P (si | qi,d
′
j ∼ Dadv; f)

,

(12)

where

P (si | qi,dj ∼ D; f) =
exp(f (qi,dj))∑

dk∼D exp(f (qi,dk))
,

P (si | qi,d
′
j ∼ Dadv; f) =

exp
(
f
(
qi,d

′
j

))∑
d′
k∼Dadv

exp
(
f
(
qi,d

′
k

)) .
Let us consider a scenario where only one document ranked
at the bottom within D is perturbed and moves to the top-
1 position, while the other documents are shifted down one
position each. In this case, the distribution of the entire per-
mutation would not undergo significant disordering. How-
ever, even though the overall re-ordering might be limited,
the situation could have implications for practical search en-
gines. Therefore, using KL divergence as a metric may not
impose a sufficiently severe penalty for this attack result.

Next, we present alternatives to tackle this issue. We in-
troduce a listwise loss to model the output ranking both be-
fore and after perturbation. By concentrating on the ranked
list, our approach strives to prevent the perturbed document
from excessively rising to the top position, thereby preserv-
ing a natural and gradual change in rankings.

(2) Listwise function – ListNet. ListNet (Cao et al.
2007) devises a listwise loss to assess the dissimilarity be-
tween the predicted ranked list and the ground-truth permu-
tation, given by the following expression:

LListNet (f ; q,D,Y) =

KL (P (πf | φ(f(q,D))) ∥ P (πY)) ,
(13)

where πf is the permutation predicted by f , πY is the
ground-truth permutation, and φ is a transformation func-
tion (an increasing and strictly positive function, e.g., linear,
exponential or sigmoid). The probability of a permutation
given the score list (Cao et al. 2007), is computed as follows,

P (πf | φ(f(q,D))) =

Nd∏
j=1

φ
(
fπ(j)(q,D)

)∑Nd

k=j φ
(
fπ(k)(q,D)

) , (14)

where fπ(i)(q,D) denotes the similarity score predicted by
f of the document, which is ranked at the i-th position with
respect to the query q. We define Ladv based on ListNet as,

LListNet
adv =

KL
(
P (πf(q,D) | f(q,Dadv))∥P (πf(q,D) | f(q,D))

)
,
(15)

where πf(q,D) is the permutation computed by the ranking
model f on data pair (q,D).
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(3) Listwise function – ListMLE. ListMLE (Xia et al.
2008) addresses the computational complexity of ListNet by
optimizing the negative log-likelihood of the ground-truth
permutation πY , i.e.,

LListMLE (f ; q,D,Y) = − logP (πY | f(q,D)). (16)

Inspired by ListMLE, we design our adversarial loss Ladv

to compute the negative log-likelihood of benign document
permutation, i.e.,

LListMLE
adv = − logP (πf(q,D) | f(q,Dadv)), (17)

where πf(q,D) represents the document permutation gener-
ated by the ranking model f for the list of documents that
have not been attacked. This enables us to effectively align
the ranked list after perturbations with the benign ranked list,
thereby achieving adversarial robustness.

Experiments
We present our experimental setup and results in this section.

Experimental Setup
Dataset and target ranking models. We conduct experi-
ments on the MS MARCO Passage Ranking dataset, which
is a large-scale benchmark dataset for Web passage retrieval,
with about 8.84 million passages (Nguyen et al. 2016). The
relevant documents to user queries are obtained using Bing,
thereby simulating real-world web search scenarios.

We choose several typical ranking models that achieve
promising effectiveness, including traditional probabilis-
tic models, e.g., BM25 (Robertson and Walker 1994),
interaction-focused NRMs, e.g., ConvKNRM (Dai et al.
2018b), and pre-trained models, e.g., BERT (Devlin et al.
2019) and PROP (Ma et al. 2021a), for adversarial attack.
Evaluation metrics. (i) CleanMRR@k evaluates Mean Re-
ciprocal Rank (MRR) performance on the clean dataset (Ma
et al. 2021b; Yan et al. 2021). (ii) RobustMRR@k evaluates
the MRR performance on the attacked dataset by WSRA.
(iii) Attack success rate (ASR) (%) evaluates the percentage
of the after-attack documents that are ranked higher than
original documents (Wu et al. 2023). (iv) Location square
deviation (LSD) (%) evaluates the consistency between the
original and perturbed ranked list for a query, by calculating
the average deviation between the document positions in the
two lists (Sun, Li, and Zhao 2022).

The effectiveness of a ranking model is better with a
higher CleanMRR. The robustness of a ranking model is bet-
ter with a higher RobustMRR and a lower ASR and LSD.
Baselines. (i) Standard training (ST): We directly optimize
the ranking model via the natural ranking loss (Eq. 9) with-
out defense mechanisms. (ii) Data augmentation (DA): We
augment each document in the collection with 2 new doc-
uments by uniformly replacing synonyms, and then use the
normal hinge loss for training following (Wu et al. 2022).
The number of replacement words equals the number of
words perturbed by the WSRA attack. (iii) Adversarial
training (AT): We follow the vanilla AT method (Goodfel-
low, Shlens, and Szegedy 2015) to directly include the ad-
versarial examples during training. (iv) CertDR is a certified

defense method for NRMs (Wu et al. 2022), which achieves
certified top-K robustness against WSRA attacks.
Implementation details. We implement target ranking
models following previous work (Dai et al. 2018b; Devlin
et al. 2019; Ma et al. 2021a; Liu et al. 2023b). First-stage re-
trieval is performed using the Anserini toolkit (Yang, Fang,
and Lin 2018) with BM25, to obtain top 100 candidate pas-
sages. The ranked list is obtained by using the well-trained
ranking model to re-rank the above initial candidate set.

We randomly sample 1000 Dev queries as target queries
to attack their ranked lists for evaluation. For each sam-
pled query, we randomly sample 1 document from 9
ranges in the ranked list following (Wu et al. 2023), i.e.,
[11, 20], ..., [91, 100], respectively. We attack these 9 target
documents to achieve their corresponding adversarial exam-
ples using WSRA. Finally, we evaluate the defense perfor-
mance of ranking models using the attacked list with 9 ad-
versarial examples and its query as an input. For BM25, we
attack it using adversarial examples generated by the attack
method in (Wu et al. 2023) designed for attacking BERT.

For adversarial training, considering the time overhead,
we sample 0.1 million (1/10 of the total) training queries
to generate adversarial examples. For each training query,
we randomly sample 10 documents from its initial candidate
set to construct adversarial examples using WSRA. Note the
sampled documents are not ground-truth ones. We set the
maximum number of word substitutions to 20, and other
hyperparameters are consistent with Wu et al. (2023). The
regularization hyperparameter λ is set to 0.5. We train the
NRMs with a batch size of 100, maximum sequence length
of 256, and learning rate of 1e-5.

By training the ranking model with different adversar-
ial ranking losses, i.e., LKL

adv, LListNet
adv , and LListMLE

adv , we
obtain three types of PIAT as PIATKL, PIATListNet, and
PIATListMLE, respectively.

Experimental Results
Defense comparison. Table 1 presents a comparison of the
trade-off performance among four ranking models with dif-
ferent defenses. Observations on the defense baselines are:
(i) Effectiveness and adversarial robustness of PROP is gen-
erally better than BERT, which in turn is stronger than Con-
vKNRM. This indicates that well-designed model architec-
tures and pre-training objectives encourage a ranking model
to achieve better trade-off performance. (ii) After being at-
tacked, the ranking performance of the ST method with-
out defense mechanisms, decreases significantly with a high
ASR and LSD. Hence, it is imperative not only to focus on
the effectiveness of existing NRMs when deploying them in
real-world scenarios. (iii) CertDR ensures consistent ranking
performance between clean and adversarial data. This could
be attributed to CertDR’s ability to guarantee the stability
of the Top-K of the ranked list by certifying the Top-K ro-
bustness. (iv) DA and AT enhance the model’s ranking per-
formance on adversarial data, but this improvement comes
at the cost of reduced performance on clean data. The find-
ing is consistent with prior research in natural language pro-
cessing and machine learning (Zhang et al. 2019; Rade and
Moosavi-Dezfooli 2021; Bao, Wang, and Zhao 2021).
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Model Method CleanMRR@10 CleanMRR@100 RobustMRR@10 RobustMRR@100 ASR↓ LSD↓
BM25 - 0.1874 0.1985 0.1624 0.1736 56.4 15.3

ConvKNRM

ST 0.2461 0.2592 0.1692 0.1741 95.1 33.2
DA 0.2298 0.2378 0.1786 0.1829 71.2 23.6
CertDR 0.1816 0.1935 0.1592 0.1632 65.3 19.3
AT 0.2316 0.2410 0.1896 0.1953 61.3 17.6

PIATKL 0.2498 0.2603 0.2008∗ 0.2073∗ 51.1∗ 12.6
PIATListNet 0.2513∗ 0.2621∗ 0.2035∗ 0.2009∗ 48.3∗ 11.5∗

PIATListMLE 0.2534∗ 0.2645∗ 0.2018∗ 0.2091∗ 49.2∗ 11.9

BERT

ST 0.3831 0.3923 0.3225 0.3286 92.1 32.3
DA 0.3705 0.3810 0.3315 0.3423 63.2 18.9
CertDR 0.3202 0.3311 0.3026 0.3140 56.9 16.3
AT 0.3743 0.3865 0.3451 0.3508 55.1 15.6

PIATKL 0.3860 0.3948 0.3686∗ 0.3761∗ 41.2∗ 9.4
PIATListNet 0.3892 0.3981 0.3728∗ 0.3802∗ 36.1∗ 7.2∗

PIATListMLE 0.3910∗ 0.4002∗ 0.3705∗ 0.3785∗ 38.3∗ 7.9

PROP

ST 0.3902 0.4061 0.3352 0.3478 90.3 30.9
DA 0.3783 0.3930 0.3418 0.3538 60.4 16.8
CertDR 0.3351 0.3489 0.3199 0.3220 52.8 13.4
AT 0.3819 0.4002 0.3532 0.3611 51.2 12.8

PIATKL 0.3943 0.4063 0.3749∗ 0.3853∗ 39.4∗ 8.2
PIATListNet 0.3971 0.4121 0.3794∗ 0.3890∗ 35.0∗ 6.2∗

PIATListMLE 0.3992∗ 0.4148∗ 0.3767∗ 0.3864∗ 37.8∗ 7.8

Table 1: Trade-off performance of different ranking models under PIAT and defense baselines; For CertDR, the ASR is evalu-
ated under conditional success rate (Wu et al. 2022); ∗ indicates significant improvements over the best baseline (p ≤ 0.05).

When we look at PIAT, we find that: (i) In general, three
types of PIAT exhibit superior effectiveness and adversar-
ial robustness than baselines. This suggests that a combi-
nation of proposed supervised and semi-supervised train-
ing enables the effective utilization of information from
extensive unlabeled documents to enhance trade-off per-
formance. (ii) PIAT outperforms the baselines in terms of
LSD, indicating increased resistance to perturbations across
the entire ranked list. This highlights the efficacy of the
perturbation-invariant ranking loss in facilitating NRMs to
learn more robust ranking decision boundaries. (iii) PIATKL

demonstrates comparatively lower effectiveness in compar-
ison to the other two PIAT types, likely due to the fact that
the KL divergence of the relevant scores serves as a soft
constraint, rendering a relatively mild supervisory signal.
(iv) PIATListMLE achieves a slightly inferior performance
compared to PIATListNet. The reason might be that ListMLE
compromises precision by converting list-wise differences
into an estimate of the probability distribution. Nevertheless,
ListMLE exhibits higher training efficiency.

Effectiveness vs. robustness trade-off. λ is an important
hyperparameter in our proposed method, since it plays a
crucial role in determining the balance between effective-
ness and robustness. Figure 1 shows a comparison of the
effectiveness vs. robustness trade-off between PIAT and
empirical defense baselines. CertDR is excluded from the
comparison due to its inferior performance compared to
empirical defenses in terms of both effectiveness and ro-
bustness, as indicated in Table 1. We conduct comparisons
by examining CleanMRR@10 (for effectiveness) against
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Figure 1: The sensitivity of trade-off parameter λ exhibited
by different types of PIAT, compared with empirical defense
methods. From left to right, we increase the trade-off param-
eter λ of PIAT from 0.2 to 0.8 with the step of 0.15.

RobustMRR@10 and ASR (for robustness) respectively,
thereby visualizing the effectiveness-robustness trade-off.

We show the results of the BERT model; similar findings
were obtained for other ranking models. Both DA and AT
enhance robustness, but at the expense of effectiveness. This
suggests they may not adequately consider the balanced re-
lationship between effectiveness and robustness. When we
look at the different types of PIAT we find that they achieve
a heightened trade-off between effectiveness and robustness.
This indicates that proper modeling and optimization of the
boundary ranking error can guide NRMs to bolster robust-
ness, while maintaining or even improving effectiveness.
Furthermore, we note that with an excessively large λ, the
model’s robustness considerably decreases, while effective-
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AT PIAT

clean example adversarial example original example ground truth

Figure 2: t-SNE plot of query-document representations for
AT and PIAT. For clean examples, a darker blue circle rep-
resents a higher relevance score. Triangle and cross denote
the original document and its corresponding adversarial ex-
ample. Star denotes the ground-truth query-document pair.

ness exhibits marginal growth. Conversely, an excessively
small λ shows a notable decline in effectiveness, while ro-
bustness experiences only a minor improvement. These find-
ings emphasize the necessity of prioritizing the balance of
effectiveness and robustness when training NRMs.
Visual analysis. We train the BERT model using AT and
PIATListMLE , respectively, on the MS MARCO passage
ranking dataset, with inputs being query-document concate-
nations. The hidden states of [CLS] in BERT’s final layer
are utilized as query-document pair representations and vi-
sualized using t-SNE (Van der Maaten and Hinton 2008) to
observe semantic space distributions. As a t-SNE example,
we generate plots by sampling a query (QID=262232) and
selecting its top 100 candidate documents, including 9 ad-
versarial examples. Results in Figure 2 show that: (i) For AT,
the distribution of adversarial examples in the latent space is
relatively disordered. By examining data at the same rele-
vance level (color depth), we find that the decision bound-
aries exhibit a certain degree of chaos. Some adversarial ex-
amples have managed to move away from their original po-
sitions and closer to the ground-truth. AT lacks clear distinc-
tions in terms of modeling effectiveness and robustness, re-
lying solely on pair-wise loss for simultaneous optimization.
(ii) For PIAT, the ranking decision boundary not only dis-
tinguishes between data points of varying relevance levels,
but also effectively constrains the adversarial examples to
stay close to their original examples. This result emphasizes
the fact that by using perturbation-invariant loss, tailored
through analysis of boundary ranking errors, PIAT achieves
remarkable adversarial robustness while maintaining effec-
tiveness compared to the traditional AT. Similar observations
were obtained with other ranking models.

Related Work
Neural ranking models. The emergence of deep learn-
ing has led to the popularity of NRMs (Onal et al. 2018;
Guo et al. 2020), showcasing their superiority over tradi-
tional ranking models. There have been efforts to lever-
age pre-trained models for ranking tasks (Fan et al. 2022),
further enhancing the effectiveness of NRMs. Additionally,
studies have explored training NRMs using data augmenta-
tion techniques, such as hard negative mining (Xiong et al.

2021; Zhan et al. 2021), achieving new state-of-the-art per-
formance. Despite these effectiveness improvements, these
studies often overlook the adversarial robustness of NRMs.

Defense methods. Adversarial attacks aim to discover
human-imperceptible perturbations that can deceive neural
networks (Szegedy et al. 2014). In IR, there is growing inter-
est in robustness (Liu et al. 2023a) and adversarial attacks.
Wu et al. (2023) introduced the WSRA method of attack-
ing black-box NRMs using word substitution. This study re-
vealed the serious vulnerability of NRMs to synonym substi-
tution perturbations. As a result, subsequent explorations of
attack against NRMs have emerged (Liu et al. 2023c, 2022;
Chen et al. 2023), inspired by this pioneering work.

In response to adversarial attacks, research has proposed
various defense strategies to enhance adversarial robustness.
These can be generally classified into certified defenses and
empirical defenses. Certified defenses aim for theoretical ro-
bustness against specific adversarial perturbations (Raghu-
nathan, Steinhardt, and Liang 2018). For instance, Wu et al.
(2022) introduced a certified defense method that ensures
the top-K robustness of NRMs via randomized smoothing.
However, due to their theoretical nature, these methods often
face limitations in practical applications and may not fully
meet the desired performance requirements.

Empirical defenses aim to enhance the empirical robust-
ness of models against known adversarial attacks, and this
approach has been extensively explored in image classifica-
tion (Madry et al. 2018; Wang et al. 2019) and text classifica-
tion (Ye, Gong, and Liu 2020; Jia et al. 2019). Among these
methods, adversarial training emerges as one of the most ef-
fective defenses. Adversarial training on adversarial exam-
ples remains empirically robust (Cui et al. 2021). However,
the use of adversarial training as a defensive mechanism is
often limited to simple classification scenarios, and its appli-
cation in NRMs remains largely unexplored. Therefore, we
propose an adversarial training method tailored for NRMs to
improve the trade-off between effectiveness and robustness.

Conclusion

To the best of our knowledge, our study is the first study on
the trade-off between effectiveness and adversarial robust-
ness for neural retrieval models. Our theoretical analysis mo-
tivated the development of perturbation-invariant adversarial
training, incorporating a new regularized surrogate loss. Ex-
perimental results have showcased the superior performance
of our method in terms of effectiveness and robustness.

Broader impact and limitations. We aim for our initial ex-
ploration to serve as a benchmark for adversarial robust-
ness and to inspire the IR community to further enhance
the effectiveness-robustness trade-off. As to the limitations
of our work, we currently only consider the popular attack
of WSRA, and constructing adversarial training examples
could be time-consuming. In future work, we will investi-
gate the design of adversarial training methods to defend
against other or unseen attacks, and create training examples
with reduced time overhead. Besides, we will consider more
benchmark datasets to simulate different retrieval scenarios.
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