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Abstract

Significance testing aims to determine whether a proposi-
tion about the population distribution is the truth or not
given observations. However, traditional significance testing
often needs to derive the distribution of the testing statis-
tic, failing to deal with complex nonlinear relationships. In
this paper, we propose to conduct Full Bayesian Signifi-
cance Testing for neural networks, called nFBST, to over-
come the limitation in relationship characterization of tra-
ditional approaches. A Bayesian neural network is utilized
to fit the nonlinear and multi-dimensional relationships with
small errors and avoid hard theoretical derivation by com-
puting the evidence value. Besides, nFBST can test not only
global significance but also local and instance-wise signifi-
cance, which previous testing methods don’t focus on. More-
over, nFBST is a general framework that can be extended
based on the measures selected, such as Grad-nFBST, LRP-
nFBST, DeepLIFT-nFBST, LIME-nFBST. A range of experi-
ments on both simulated and real data are conducted to show
the advantages of our method.

Introduction
Significance testing aims to determine whether a proposi-
tion about the population distribution1 is true or false given
observations, which is widely used in many scientific fields,
such as social sciences(Orlitzky 2012; Ortega and Navarrete
2017) and medical research(Matthews et al. 1990; Rutledge
and Loh 2004). For example, it is often used to evaluate the
efficacy of new treatments or drugs. First, clinical trials are
performed to compare the response of patients treated with a
new therapy against a control group. Then, significance test-
ing is used as an analytical tool to determine whether the
observed improvement in the treatment group is significant,
which provides evidence that the new therapy is effective.

To attain a proper testing result, a golden standard is to
recover the true data generation model f0 behind the pop-
ulation distribution, then justify the proposition according
to f0 directly. For this purpose, a number of significance
testing approaches are proposed under different assumptions
about f0 (Gozalo 1993; Lavergne and Vuong 1996; Racine
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1997). However, simple assumptions can hardly fit the real
situation, while complex assumptions make it hard to derive
the theoretical distribution of the testing statistic. Recently,
(Horel and Giesecke 2020) provides a provable solution of
significance testing in nonlinear cases, but it suffers from
the computational difficulty in statistics, only addressing a
limited function space. There is still a gap to be solved for
significance testing in the general correlations.

Existing significance testing methods only focus on
global propositions. However, some propositions that are in-
valid globally can still hold on and contribute to a certain
sub-population. For example, clinical trials have shown that
a drug is effective in treating cancer, but not in some indi-
viduals. For a better justification in nonlinear cases, a sig-
nificance testing approach should verify the correctness of
a proposition in population distribution and sub-population
distribution respectively.

To deal with the complicated real data in wide applica-
tions(He et al. 2020; Wang et al. 2018, 2020a, 2023), we
introduce deep neural networks into the significance testing
to capture the nonlinear correlations. To overcome the bar-
rier of computing statistics under the complex fitting func-
tions, we solve the significance testing problem from the
Bayesian perspective (Kass and Raftery 1995), and propose
a novel approach that conducts the Full Bayesian Signifi-
cance Testing for neural networks, abbreviated as nFBST
(neural FBST). Given the testing statistics, nFBST can test
the correctness of a proposition for both population-level
or sub-population-level problems, by comparing the poste-
rior probabilities of it and its opposite. In addition, nFBST
is a general framework that can be extended based on dif-
ferent testing statistics, such as Grad-nFBST, LRP-nFBST,
DeepLIFT-nFBST, LIME-nFBST, and so on. A range of ex-
periments on both simulated and real data are conducted to
show the advantages of our method. The main contributions
can be summarized as follows:

• We are the first to introduce deep neural networks
into significance testing. Our approach replaces compli-
cated theoretical derivation by fitting distributions in a
Bayesian way, and the neural network serves as a good
estimator of f0 without assuming specific forms.

• We design a complete procedure using Full Bayesian
Significance Testing for Neural Networks, namely
nFBST. It is a general framework that can be extended

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8841



based on different implementations and different testing
statistics, such as Grad-nFBST, LRP-nFBST, DeepLIFT-
nFBST, LIME-nFBST, and so on.

• Our proposed nFBST can solve both local and global
significance testing problems while previous methods
only focus on the latter. Under non-linear assumptions,
global significance may be inconsistent with local or
instance-wise significance.

• We conduct extensive experiments to verify the advan-
tage of our method on better testing results.

Theoretical Method
Classical Frequentist Significance Test
We denote f0 : X ⊂ Rd → R as the underlying and un-
known conditional mean function, namely E[Y|X = x], of
the population (X,Y ). Then, we consider the data genera-
tion process of (X,Y ) as follows:

y = f0(X) + ϵ, (1)

where ϵ is a random error such that E[ϵ|X] = E[ϵ] = 0.
Significance testing first defines a testing statistic η, then
proposes two contradictory propositions (or hypotheses) H0

and H1, which represent the null hypothesis and the alter-
native hypothesis respectively. Classical significance testing
is regarded as a procedure for measuring the consistency of
data with the null hypothesis by the calculation of a p-value
(tail area under the null hypothesis) (De Bragança Pereira
and Stern 1999). The process is as follows:

• First, we make assumptions about the population distri-
bution of f0 and denote it as f0(β), whose parameters
are β. Then we derive the theoretical distribution of η(β)
under the assumptions.

• Second, based on the observed data D, we fit an opti-
mal estimator f̂(β̂) as an approximation function of f0,
whose parameters are β̂.

• Third, we calculate η(β̂) and p-value further to deter-
mine whether the distribution of η(β) is reasonable un-
der the null hypothesis using sample information η(β̂).

The problem of testing the significance of a feature is:

H0 : η(β) = 0 H1 : η(β) ̸= 0, (2)

where η(β) is a measure of feature importance. For example,
if we assume f0 satisfies linear relationships as follows:

y = β0 + β1x1 + · · ·+ βdxd + ϵ. (3)

Whether the coefficient of a feature xj is equal to zero de-
termines its significance, that is η(β) = βj . However, there
are two main defects in classical significance testing.

• First, the effectiveness of classical significance testing
is based on reasonable assumptions about f0. However,
it is difficult to find such precise assumptions when the
data distribution is actually complicated.

• Second, some models, such as deep learning, excel in ac-
curately fitting complex data distributions. However, the
more complex assumption of f0, the more computational
theoretical distribution of η(β), even intractable.

Full Bayesian Significance Test
In order to solve the problems, we adopt the Full Bayesian
significance Testing (FBST) (De Bragança Pereira and Stern
1999; de B. Pereira, Stern, and Wechsler 2008). FBST is a
statistical methodology that allows for the testing of precise
hypotheses in a Bayesian framework. Here, “full” means
that one only needs to use the posterior distribution to test
without the specific assumptions for f0. In contrast to clas-
sical significance testing which uses p-value to reject or fail
to reject the null hypothesis, FBST provides a measure of ev-
idence in favor of or against the null hypothesis, taking into
account prior information and the strength of observations.

Let P (H) be the prior of the hypothesis H and P (D|H)
be the likelihood function of H given observations D. The
posterior probability distributions for the null and alternative
hypotheses are then calculated using Bayes’ theorem as

P (H|D) =
P (D|H)× P (H)

P (D)
∝ P (D|H)× P (H). (4)

It is consistent with the process by which people adjust their
assessments in response to observed data. The evidence in
favor of the null hypothesis is quantified by the Bayes Factor.
Its value reflects which proposition is more likely under the
observed data. If it is greater than 1, we believe it provides
evidence in favor of H0. The evidence is moderate if it is
greater than 3 and strong if it is greater than 10 (Jeffreys
1998). On the contrary, it provides evidence against H0 if
it is smaller than 1, moderate evidence for less than 1

3 , and
strong evidence for less than 0.1.

From the above analysis, we can conclude that FBST
doesn’t need to assume a specific distribution form of f0, but
calculate P (D|H0) and P (D|H1) instead. In other words,
the current goal is to obtain a good estimator to fit P (D|H).

Approximate the Distribution of Testing Statistics
According to the universal approximation theorem, neural
networks with appropriate size can approximate an extensive
class of functions to a desired degree of accuracy (Hornik,
Stinchcombe, and White 1989). In this paper, we propose to
use Bayesian neural networks to fit the likelihood P (D|H).
As a technique that combines Bayesian Theory and neural
networks, Bayesian neural networks can fit complex rela-
tionships and produce a probability distribution over model
parameters θ that expresses our beliefs regarding how likely
the different parameter values are.

Given a dataset D = {(X(1), y(1), . . . , (X(n), y(n))},
nFBST first uses Bayesian neural networks, whose param-
eters are θ, to fit D. Before training, a prior distribution is
assigned to model parameters θ as an initial belief π(θ) ac-
cording to experience. This belief is gradually adjusted to fit
data D by using the Bayesian rule. The final belief is pre-
sented as the posterior distribution

P (θ|D) =
P (D|θ)π(θ)

P (D)
=

π(θ)
∏n

i=1 P (y(i)|X(i), θ)∫
Θ

∏n
i=1 P (y(i)|X(i), θ)dθ

, (5)

where Θ is the parameter space. Given a new case X ,
the prediction made by the Bayesian neural network is the
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Figure 1: Bayesian evidence calculated based on the distri-
bution of η(θ).

weighted average of an ensemble

P (y|X,D) =

∫
Θ

P (y|X, θ)P (θ|D)dθ. (6)

Then, based on the posterior distribution of θ, we obtain the
posterior distribution of the testing statistic η(θ) and denote
p(η(θ)|D) as its probability density. The testing problem is
formulated as:

H0 : η(θ) = 0 H1 : η(θ) ̸= 0 (7)

We denote the whole space of η(θ) as Ψ such that η(θ) ∈ Ψ.
Then, we define the region whose probability greater than
p(η(θ) = 0|D) according to the following formula:

Ψ0 = {η(θ) : p(η(θ)|D) > p(η(θ) = 0|D)}, (8)

where p(η(θ) = 0|D) is the maximum of the posterior den-
sity under the null hypothesis H0 (Figure 1). The Bayes Fac-
tor is not the only way to calculate evidence and its result is
influenced by prior distribution. In our method, we adopt a
more flexible valid Bayesian evidence for the null hypothe-
sis provided by (De Bragança Pereira and Stern 1999):

Ev(H0) = 1−
∫
Ψ0

p

(
η(θ)|D

)
dη(θ)

= 1−
∫
Ψ

1

(
η(θ) ∈ Ψ0

)
p

(
η(θ)|D

)
dη(θ).

(9)

Using the Monte Carlo method, the above formula can be
further simplified to

Ev(H0) ≈ 1− 1

m

m∑
i=1

1

(
ηi(θ) ∈ Ψ0

)

= 1− 1

m

m∑
i=1

1

(
p(ηi(θ)|D) > p(0|D)

)
,

(10)

where ηi(θ) is sampled m times based on the posterior
probability density of η(θ). The result of Eq (10) is called
Bayesian evidence, whose value is between 0 and 1. The
closer the Bayesian evidence to 1, the more likely to accept
H0. The closer the Bayesian evidence to 0, the more likely
to reject H0. Moreover, we have mathematically proven that
under certain constraints, as the sample size approaches in-
finity, Ev(H0) for insignificant features converges to 1. The
detailed process of proof is provided in the Appendix.

Implementation Approach
Calculate the Distribution of Testing Statistics
So far, we have clarified the entire process of FBST, but there
still remain two implementation details that need to be elab-
orated on. First, to perform nFBST to deal with the testing
problem Eq (7), we need to calculate the posterior distribu-
tion of θ. Second, after obtaining the distribution of θ, we
need to calculate the distribution of the testing statistic η(θ).

In practice, it is intractable to solve the integral in Eq (5).
A popular way, known as Variational Inference (VI), entails
approximating the real but intractable posterior distribution
with a tractable distribution called variational distribution
(Blei, Kucukelbir, and McAuliffe 2017; Jaakkola and Jordan
2000). Therefore, Eq (5) could be efficiently approximated.
Formally, variational family Q = {qϑ : ϑ ∈ Γ} is a pre-
defined family of tractable distributions on model parameter
space Θ, where ϑ is the parameter of variational distribution
and Γ is the range of ϑ. The optimal variational distribution
qϑ∗ is chosen from Q such that

ϑ∗ = argmin
ϑ∈Γ

KL(qϑ(θ)∥P (θ|D)). (11)

KL divergence describes the “distance” between two distri-
butions. We set diagonal Gaussian distributions as the prior
and variational families of parameter θ. This assumption is
common in many works (Blundell et al. 2015; Kendall and
Gal 2017). Under this assumption, applying Bayesian rule
Eq (5), Eq (11) can be further simplified as

ϑ∗ = argmin
ϑ∈Γ

−E[logP (D|θ)] + KL(qϑ(θ)∥π(θ)) + logP (D).

(12)
The derivation is shown in Appendix. The first term is re-
lated to data (such as MSE for regression task); The second
term is only related to parameters θ like regularization term,
and the third term is a constant. In the end, we finish ap-
proximating the posterior distribution of parameters P (θ|D)
with variational distribution qϑ∗(θ).

We adopt Kernel Density Estimation (KDE) (Scott 1979;
Parzen 1962) to estimate the posterior probability density
of η(θ), which is a common non-parametric method. The
process is as follows:

• First, draw samples of parameters θ with size m from
the approximate posterior distribution qϑ∗(θ) randomly,
that is {θ1, . . . , θm}.

• Second, calculate {η(θ1), . . . , η(θm)} to obtain sample
from the posterior of η(θ).

• Third, estimate p(η(θ)|D) using KDE

p

(
η(θ)|D

)
=

1

mh

m∑
i=1

K

(
η(θ)− η(θi)

h

)
, (13)

where K is the kernel function, and h is the window
width (also known as bandwidth). The commonly used
kernel function is the Gaussian kernel function.

Finally, by calculating Bayesian evidence in Eq (10), we
finish the entire process of nFBST. nFBST is a general and
flexible framework that can be easily extended based on dif-
ferent implementations, including VI and KDE. In the case
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of VI, we have derived the detailed training procedure in the
Appendix. The approximation between variational and pos-
terior distributions can be gauged through the prediction er-
ror. As for KDE, its robust theoretical underpinning guaran-
tees convergence and consistency, as evidenced by the work
of (Parzen 1962). Consequently, the margin of error in our
approach remains within a reasonable range.

Design of Testing Statistics
To test the significance of a feature xj , we first need a rea-
sonable measure as the testing statistic to represent the re-
lationship between xj and y. nFBST is a flexible frame-
work that can be applied to global significance, local sig-
nificance, and instance-wise significance testing problems.
The weighted average of the partial derivative, with weights
defined by a positive measure µ, is adopted as the testing
statistic in (Horel and Giesecke 2020):

η(θ) =

∫
X

(
∂f0(x)

∂xj

)2

dµ(x). (14)

This reflects the global significance of the overall data,
whose value will not change when the data distribution is
fixed. In non-linear contexts, the significance of a feature
in sub-population distribution is dynamic and varies with
its range. We consider a simple case f0(X) = ReLU(x0)
where x0 ∼ N (0, 1). It can be calculated that η(θ) = 1

2 ,
which is a constant without considering the specific values
of x0. If we define Xi ⊆ X , the local significance testing
statistic value is dynamic as Xi varies, that is

η(θ,Xi) =

∫
Xi

(
∂f0(X)

∂xj

)2

dµ(X). (15)

In this example, if we define X1 = {X : x0 < 0},X2 =
{X : x0 ≥ 0}, we obtain η(θ,X1) = 0, η(θ,X2) =

1
2 . It is

clear that under partial derivative settings, x0 is insignificant
when its value is less than zero, but significant when its value
is greater than zero. Further, Xi can contain only one data,
that is the instance-wise significance testing statistic

η(θ, xj) =
∂f0(X)

∂xj
. (16)

nFBST is a general framework and supports signifi-
cance testing based on various feature importance mea-
sures. In our implementation, we select LRP(Binder et al.
2016), LIME(Ribeiro, Singh, and Guestrin 2016), and
DeepLIFT(Shrikumar, Greenside, and Kundaje 2017) as
testing statistics and the corresponding methods are called
LRP-nFBST, LIME-nFBST, and DeepLIFT-nFBST respec-
tively. Eq (16) uses gradient as the testing statistic and we
name it Grad-nFBST.

For global significance, Eq (14) is difficult to capture
enough information when the distribution of the testing
statistic is complex. Therefore, we propose a Quantile-
based Global Significance, namely Q-GS. First, we sort all
Bayesian evidence of instance-wise significance in descend-
ing order. Then, we set a threshold λ and select the quantile
of the sorted evidence. It satisfies that the percentage of evi-
dence over it reaches the threshold λ.

Experiments
Toy Example
We consider the following data generation process

y = 8+x2
0+x1x2+cos(x3)+exp(x4x5)+0.1x6+0x7+ϵ, (17)

where X = [x0, x1, . . . , x7] ∼ U(−1, 1)8, ϵ ∼ N (0, 1).
The variable x7 has no influence on y. Our goal is to differ-
entiate x7 from other features, that is to determine x7 as in-
significance but others as significance. We compare the fol-
lowing three classical testing methods as the baselines:

• Bootstrap (Efron 1979). It gets the distribution of the
testing statistic from samples repeatedly drawn from the
original data and simulates the mean and variance of the
population to perform Z-test.

• Likelihood ratio test (Fisher 1922). By training an
unconstrained model incorporating all variables and a
nested model with restricted variables, and comparing
their likelihoods, we will obtain the standard asymptotic
chi-square distribution if the unconstrained model is as-
sumed correctly.

• t-test for linear models (Student 1908). It calculates the
estimated coefficient divided by its standard error and
tests the result whether to follow the t-distribution.

From table 1 we have the following observations:

• First, for the three classical testing methods, only Boot-
strap accurately identifies the global significance of all
features. Usually, we set the significance level α and
compare p-value with it. If the p-value is smaller than
the significance level, we reject the null hypothesis and
accept the alternative hypothesis. That is, the smaller the
p-value, the more we can determine a feature is signif-
icant. If we set α = 0.05, the p-value of Bootstrap sat-
isfies that only x7 is greater than α but others are not.
However, the likelihood ratio test and t-test can hardly
distinguish correctly. This is probably because their as-
sumptions about f0 are too strong and lead to errors.

• Second, all nFBST methods based on different testing
statistics perform well. Here, we set λ = 0.5 to obtain Q-
GS. It means only when more than half of the instance-
wise testing results reflect insignificance, we determine
the feature as insignificant globally. The smaller the Q-
GS, the less the evidence for H0, and we tend to re-
ject that the feature is insignificant. The results show all
nFBST methods provide strong evidence about x7 for
H0 but little evidence for other features.

• Third, instance-wise significance can provide us with
more insights than global significance. For the likelihood
ratio test and t-test methods, p-value for x3 is high even
the highest. We plot scatters of the evidence for x3 ob-
tained by nFBST and plot histograms under different x3

intervals. As shown in Figure 2, its evidence of Grad-
nFBST is more concentrated on one when the value of
x3 is close to zero. This is consistent with Eq (17) as
∂f0(X)/∂x3 = − sin(x3). We conclude that global sig-
nificance is more coarse-grained than instance-wise sig-
nificance due to averaging different situations together.
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(a) Scatter of Evidence (b) 0 ≤ |x3| < 0.25 (c) 0.25 ≤ |x3| < 0.5 (d) 0.5 ≤ |x3| < 0.75 (e) 0.75 ≤ |x3| < 1

Figure 2: Bayesian evidence of x3 obtained by Grad-nFBST under different intervals on the toy example.

p-value Q-GS(λ = 0.5) by nFBST

Feature Bootstrap likelihood
ratio test t-test Grad-

nFBST
DeepLIFT-

nFBST
LRP-

nFBST

x0 < 0.001 0.696 0.442 <0.001 <0.001 <0.001
x1 <0.001 0.063 0.592 0.021 <0.001 0.02
x2 <0.001 0.087 0.598 0.029 <0.001 0.027
x3 0.027 0.813 0.838 0.011 0.043 0.01
x4 <0.001 0.209 0.604 0.005 0.007 0.003
x5 <0.001 0.361 0.559 0.006 0.01 0.007
x6 <0.001 0.318 <0.001 0.278 0.203 0.273
x7 0.383 0.049 0.922 0.637 0.637 0.617

Table 1: Global significance testing results of different algorithms on the toy example, the maximum values are bolded.

Simulation Experiments
In this section, we conduct experiments on three simula-
tion datasets for analysis. Compared to three classical test-
ing methods, we found nFBST can perfectly distinguish the
global significance while others cannot. Compared to five
feature importance methods, we found nFBST can improve
the ability to test instance-wise significance.

Data Generation Process We consider the input features
X = [x0, x1, . . . , x99] ∼ U(−1, 1)100 and the data genera-
tion process

y = f0(X) + ϵ, (18)

where ϵ ∼ N (0, 0.01) and f0 is a neural network func-
tion whose weights and biases are initialized randomly. Then
only the last fifty features are insignificant by setting the cor-
responding weights to zero. Our goal is to select these fifty
insignificant features accurately.

According to the above generation process, we generate
two sets of 10,000 independent samples, namely Dataset 1
and Dataset 2. The difference between them is that the struc-
ture of f0 for Dataset 1 is three hidden layers of 20 nodes but
three hidden layers of 16 nodes for Dataset 2. In our exper-
iments, we only adopt the structure with three hidden lay-
ers of 20 nodes as the trained model to simulate conditions
where it has the same or different structure from f0. Then,
we reduce the data size to one-tenth of the Dataset 2, that
is 1,000 independent samples, namely Dataset 3, to simulate
the scenario of small data.

Test the Global Significance For the global significance
of each feature, there are two possible testing results, in-
significant or significant. Therefore, we can consider the

task of testing as a binary classification problem. Specifi-
cally, significant represents the positive class, and insignifi-
cant represents the negative class. TP means identifying sig-
nificant features correctly. TN means identifying insignif-
icant features correctly. FN means misidentifying a fea-
ture that should be significant as an insignificant feature.
FP means misidentifying a feature that should be insignif-
icant as a significant feature. Precision=TP/(TP+FP), re-
flects the accuracy of correctly testing significant features.
Recall=TP/(TP+FN), reflects the completeness of correctly
identifying significant features. F1-score combines precision
and recall to calculate the harmonic mean.

Table 2 shows these metrics on three simulation datasets
compared to three classical testing methods. As with the set-
tings of “Toy Example”, we set the significance level for
classical testing methods as 0.05 and λ = 0.5 to obtain Q-
GS. First, Bootstrap tends to determine a feature as signifi-
cant thus resulting in high recall but poor precision. On the
contrary, the likelihood ratio test tends to determine a fea-
ture as insignificant thus resulting in poor recall but fine pre-
cision. If we compare comprehensively, t-test method out-
performs the two methods with the highest F1-score. Sec-
ond, all nFBST methods based on different testing statistics
perform perfectly, with the F1-score of 1. Compared to the
classical testing methods, the improvement is largely due to
the flexible hypothesis of nFBST, as neural networks can fit
more complex cases of f0.

Test the Instance-wise Significance For the instance-
wise significance of each feature, there are also two possi-
ble testing results, insignificant or significant. Specifically,
there are 10,000 instances of 100 features for Dataset 1 and
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Dataset Metric Bootstrap likelihood
ratio test t-test Grad-

nFBST
DeepLIFT-

nFBST
LRP-

nFBST
LIME-
nFBST

Dataset 1
Precision 0.54 0.91 0.96 1 1 1 1

Recall 0.98 0.80 0.86 1 1 1 1
F1-score 0.70 0.85 0.91 1 1 1 1

Dataset 2
Precision 0.55 0.94 0.91 1 1 1 1

Recall 0.98 0.66 0.86 1 1 1 1
F1-score 0.71 0.78 0.89 1 1 1 1

Dataset 3
Precision 0.51 0.87 0.90 0.82 0.80 0.83 0.85

Recall 1 0.54 0.54 0.84 0.90 0.86 0.80
F1-score 0.68 0.67 0.68 0.83 0.85 0.84 0.82

Table 2: Precision, Recall and F1-score for global significance on different Datasets.

Figure 3: Average AUC of all features for instance-wise significance before and after nFBST under different eps.

Dataset 2. As the last fifty features are insignificant by set-
ting the corresponding weights to zero, our focus is mainly
on the first fifty features. Because the instance-wise signifi-
cance of these features varies with their values. First, we cal-
culate the gradients of f0 on each instance and adjust differ-
ent precision thresholds, namely eps, to label the instance-
wise significance. If the gradient is less than eps, we label
it insignificant, otherwise significant. Then, we evaluate the
performance by ROC and AUC. Most existing testing meth-
ods don’t distinguish global significance and instance-wise
significance and only focus on the former. Therefore, we se-
lect feature importance analysis methods as baselines. They
assign a feature importance score for a prediction, which re-
flects the significance of the feature learned from the model.

From Figure 3, we have the following observations:

• First, diverse measure-based nFBST consistently sur-
passes primary feature importance methods across var-
ious epsilon settings. Through the comparison of Grad
and Grad-nFBST, DeepLIFT and DeepLIFT-nFBST,
LRP and LRP-nFBST, LIME and LIME-nFBST, we in-
fer that the integration of nFBST enhances the capacity
to discern instance-wise significant and insignificant fea-
tures. Moreover, it can be concluded that our approach
remains unaffected by the precision of the ground truth.
The distinct AUC for each feature under varying epsilon
values is presented in the Appendix.

• Second, LIME and LIME-nFBST perform worse than
other methods. That’s because LIME is a perturbation-
based method that constructs a local linear model based
on the data collected by perturbing near sample points.
Its performance is limited by sampling efficiency.

Real World Experiments

In this section, we analyzed the performance of nFBST in
real world scenarios through UCI and image datasets. On
energy efficiency, we focused on analyzing feature x8 and
found the instance-wise testing results are consistent with
its physical truth. On MNIST, by comparing different feature
importance methods, we found nFBST recognized the object
information in the image more prominently.

The energy efficiency dataset comprises 768 samples and
8 features. It aims to predict the dependent target y (HL,
heating load), which determines the specifications of the
heating equipment needed to maintain comfortable indoor
air conditions. The descriptions of the features and target are
shown in the Appendix. From figure 4, we find that testing
results are more concentrated around one when x8 equals
zero, while others are not. It indicates that the instance-
wise significance of x8 is different under different values,
insignificant if its value is zero. The research in (Tsanas and
Xifara 2012) confirms our findings. There are six possible
values for x8 (0, 1, 2, 3, 4, 5) in total. When x8 equals zero,
it means no glazing areas and that’s why x8 doesn’t make
sense in this situation. In conclusion, nFBST can effectively
discover instance-wise significance in real world data.

The testing problem for MNIST is defined as testing each
pixel of a digit image and distinguishing significant pixels
from insignificant pixels for the target. It involves a weakly
supervised semantic segmentation task in computer vision.
Ideally, the pixels related to the target class should be as-
signed higher scores than the background pixels. For feature
importance analysis methods, they generate a saliency map
based on feature importance scores. For nFBST, Bayesian
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(a) x8 = 0 (b) x8 = 1 (c) x8 = 2 (d) x8 = 3 (e) x8 = 4 (f) x8 = 5

Figure 4: Histograms of gradient distributions for different values of x8 on energy efficiency dataset.

Figure 5: Visualization of scores calculated by different
methods for the target class.

evidence represents the evidence supporting H0, which is
pixel-wise insignificance in this task. Figure 5 shows that
the object pixels are more prominent after using nFBST. Be-
sides, Grad-nFBST identifies a messy area because the pri-
mary gradient method recognizes poorly. When we multiply
it with the input, the performance is improved and this prob-
lem doesn’t exist in other methods (LRP and DeepLIFT).

Related Works
In recent years, there has been an increasing amount of liter-
ature on the interpretability of deep learning (Wang et al.
2019a,b, 2020b, 2021, 2022; Wang, Wu, and Zhao 2021;
Wang, Feng, and Wu 2019; Cong et al. 2021; Ji et al. 2020,
2022), one of which is feature importance analysis. The first
group propagates an importance score from the output neu-
ron backward to the input. Most of them are gradient-based,
including saliency map(Simonyan, Vedaldi, and Zisserman
2013), deconvolution(Zeiler and Fergus 2014), guided back-
propagation(Springenberg et al. 2014) and integrated gra-
dients(Sundararajan, Taly, and Yan 2017). The first three
methods have different strategies to calculate the gradient
when passing through the ReLU layer, but cannot show neg-
ative contributions and face discontinuity. The integrated
gradients method increases the computational cost by com-
puting the integral. Another approach is the Layer-wise Rel-
evance Propagation proposed by (Binder et al. 2016). (Kin-
dermans et al. 2016) shows that the LRP rules for ReLU
networks are equivalent within a scaling factor to gradient ×
input in some conditions. Moreover, DeepLIFT (Shrikumar,
Greenside, and Kundaje 2017) and SHAP (Lundberg and
Lee 2017) do not compute gradients but are also based on
back-propagation. In contrast, the second group of methods

makes perturbations to individual inputs or neurons(Zeiler
and Fergus 2014). A typical approach is LIME (Ribeiro,
Singh, and Guestrin 2016), where data are collected by per-
turbing near sample points to construct a local linear model.
However, it is computationally expensive and requires a
large number of samples to obtain reliable results.

The above methods aim to explain the predictions of a
model locally at a specific instance, while others aim to un-
derstand how the model works globally. The partial depen-
dence plot (PDP) shows the marginal impact of one or two
features on the model prediction (Friedman 2001)(Green-
well, Boehmke, and McCarthy 2018). (Datta, Sen, and Zick
2016) measures the impact by calculating the difference in
the quantity of interest when the data is generated accord-
ing to the true distribution and the hypothetical distribution
designed deliberately. SP-LIME extends LIME to global by
selecting typical points(Ribeiro, Singh, and Guestrin 2016).

There is also prior work treating the significance of vari-
ables. One is to regard neural networks as parametric for-
mulations (Olden and Jackson 2002; White 1989a,b; Vuong
1989) but restricts the model structure. The testing statistic is
not necessarily identifiable due to the non-identifiability of
neural networks. The other is to regard neural networks as
nonparametric models (Gozalo 1993; Lavergne and Vuong
1996; Yatchew 1992; Fan and Li 1996; Lavergne and Vuong
2000; Racine 1997). However, most of them study in the
context of kernel regressions and can be computationally
challenging because of Bootstrap. The latest related research
restricts the model structure to a single hidden layer and only
tests the global significance (Horel and Giesecke 2020).

Conclusion

In this paper, we propose to conduct the Full Bayesian Sig-
nificance Testing for neural networks, called nFBST. It is
a general framework that can be extended based on differ-
ent measures. To the best of our knowledge, we are the first
to introduce significance testing into deep neural networks.
What’s more, it offers a new perspective of exploring knowl-
edge hidden behind the underlying relationship between fea-
tures and targets in a rigorous way, rather than explaining the
estimated relationship which contains estimation errors due
to the randomness of the data generation process. Extensive
experiments on simulation and real-world datasets confirm
the advantages of our proposed approach.
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