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Abstract

Cognitive diagnosis is a crucial task in computer-aided edu-
cation, aimed at evaluating students’ proficiency levels across
various knowledge concepts through exercises. Current mod-
els, however, primarily rely on students’ answered exercises,
neglecting the complex and rich information contained in un-
interacted exercises. While recent research has attempted to
leverage the data within un-interacted exercises linked to in-
teracted knowledge concepts, aiming to address the long-tail
issue, these studies fail to fully explore the informative, un-
interacted exercises related to broader knowledge concepts.
This oversight results in diminished performance when these
models are applied to comprehensive datasets. In response to
this gap, we present the Collaborative-aware Mixed Exercise
Sampling (CMES) framework, which can effectively exploit
the information present in un-interacted exercises linked to
un-interacted knowledge concepts. Specifically, we introduce
a novel universal sampling module where the training sam-
ples comprise not merely raw data slices, but enhanced sam-
ples generated by combining weight-enhanced attention mix-
ture techniques. Given the necessity of real response labels in
cognitive diagnosis, we also propose a ranking-based pseudo
feedback module to regulate students’ responses on gener-
ated exercises. The versatility of the CMES framework bol-
sters existing models and improves their adaptability. Fi-
nally, we demonstrate the effectiveness and interpretability of
our framework through comprehensive experiments on real-
world datasets.

Introduction
Amid the rapid advancement of computer-aided education,
cognitive diagnosis has garnered increasing attention (Lord
2012; Yang et al. 2023c; Qin et al. 2023). As a crucial task
in intelligent education, cognitive diagnosis aims at evalu-
ating students’ proficiency levels across various knowledge
concepts through exercises. As illustrated in Figure 1, ex-
isting cognitive diagnosis studies are based on the histori-
cal response logs between students and exercises, as well as
the associations between exercises and knowledge concepts
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for modeling. They believe exercise interactions provide the
greatest diagnostic value for students, while overlooking the
information contained in un-interacted exercises. In prac-
tice, each student’s interaction with exercises represents a
mere fraction of the complete exercise bank, with the un-
interacted exercises containing intricate and extensive infor-
mation.

In this paper, we attempt to leverage these un-interacted
exercise information. One challenge with leveraging such
un-interacted exercise information is the absence of stu-
dents’ potential response labels. Recent work in EIRS (YAO
et al. 2023) makes the assumption that students will per-
form comparably on exercises related to the same knowl-
edge concepts. EIRS aims to mitigate the long-tail problem
(where insufficient interaction data results in skewed distri-
butions) through similarity-oriented sampling of exercises
associated with previously interacted concepts. Since the at-
tained sample exercises convey analogous information to the
interacted ones, constraining the acquired knowledge, this
circumstance culminates in the method being unable to real-
ize optimal performance on full datasets.

Consequently, determining how to extract additional in-
formative un-interacted exercises constitutes another chal-
lenge. Within the domain of recommender systems, infor-
mative negative samples are frequently utilized to train the
system and enhance recommendation performance (Rendle
and Freudenthaler 2014). Accordingly, substantial research
has investigated techniques for sampling informative nega-
tive instances (Rendle et al. 2012; Wang et al. 2020b; Liu
and Wang 2023). However, owing to the distinctive nature
of cognitive diagnosis models, which encompass intricate
interrelationships among students, exercises, and knowledge
concepts, sampling approaches from recommender systems
are not transferable to cognitive diagnosis models.

To address the aforementioned challenges, we propose a
general framework, namely Collaborative-aware Mixed Ex-
ercise Sampling (CMES) for cognitive diagnosis models.
CMES extracts more informative diagnoses from the pool
of un-interacted exercises and obtains students’ potential re-
sponse labels. Specifically, to improve the quality and effi-
ciency of sampling, we preclude sampling exercises affili-
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Figure 1: Illustration of cognitive diagnosis. Mainstream
cognitive diagnosis models derive diagnosis results from
students’ response logs. e1 and e2 are the exercises that Bob
has interacted with, while the remaining exercises are those
that he has not interacted with.

ated with students’ interacted concepts, as well as exercises
with potentially similar information to interacted ones. We
cluster students founded on their response capabilities and
collaborations. Throughout the sampling progression, we
sample from other students’ interacted exercise sets in differ-
ent clusters. As interacted exercises encompass robust diag-
nostic intimations while un-interacted ones retain prospec-
tive heterogeneous information, we use mixing techniques
to mix the sampled exercise information by injecting inter-
acted exercise information into sampled exercises, obtain-
ing more informative mixed samples. Finally, we design a
ranking based pseudo feedback module to predict potential
response situations for the sampled exercises, which is com-
bined with the cognitive diagnosis task for joint learning.

Our main contributions are summarized as follows:

• To fully leverage the latent information in un-interacted
exercises for student diagnosis, we propose a generic
sampling framework CMES for enhancing cognitive di-
agnosis tasks.

• We specially design a learning-based pseudo feedback
module that defines a learning-to-rank task assisting in
the training of the cognitive diagnosis task,

• We have conducted extensive experiments on real-world
datasets to validate the effectiveness and scalability of
our approach.

Related Work
In this section, we review the related work about cognitive
diagnosis models and sampling strategies.

Cognitive Diagnosis
Cognitive diagnosis, a fundamental and critical task in
education, aims to infer students’ mastery of knowl-
edge concepts. The early models IRT (Lord 1980) and
DINA (De La Torre 2009) are two classic cognitive diag-
nosis models. Unlike IRT which hypothesizes unidimen-
sional independence and adopts continuous latent variables
to evaluate examinees’ potential abilities, DINA is based
on the attribute independence assumption and uses 0/1 bi-
nary vectors to represent students’ mastery of each attribute.

MIRT (Reckase 2009), as an extension of IRT, discards
the unidimensionality and proposes that student proficiency
is multidimensional, thus utilizing multiple latent traits to
characterize students more comprehensively. NCD (Wang
et al. 2020a) firstly introduces neural networks into cognitive
diagnosis, so as to capture the sophisticated student-exercise
relationships. Afterwards, more neural network based ap-
proaches (Yang et al. 2023d,a; Ma et al. 2022; Yang et al.
2023b) are proposed, such as ECD (Zhou et al. 2021) incor-
porates contextual features to facilitate more precise diagno-
sis of students’ cognitive status. RCD (Gao et al. 2021) at-
tempts to explore student-exercise-concept associations via
graphs and conducts more delicate modeling of the interac-
tions. Recent work of ICD (Qi et al. 2023) further investi-
gates the intrinsic correlations among knowledge concepts
and quantitative relationships between exercises and con-
cepts. Despite the remarkable progress, existing methods ex-
clusively take advantage of interacted responses while over-
looking the un-interacted yet more informative exercises.

Sampling Strategy
Sampling strategies are extensively utilized in recommender
systems, where sampling informative non-interacted in-
stances close to positive samples facilitates models to bet-
ter learn the boundary between positive and negative sam-
ples. Conventional recommender systems often adopt ran-
dom negative sampling (RNS) (Rendle et al. 2012) and
static popularity-based negative sampling (PNS) (Caselles-
Dupré, Lesaint, and Royo-Letelier 2018; Chen et al. 2017),
through which the attained negative samples are typically
of low quality and fail to train models effectively. Dy-
namic negative sampling (DNS) (Zhang et al. 2013) is an
adaptive negative sampling approach, scoring each sample
and using high-scored ones as negative samples for model
training. Currently, GAN-based negative sampling (Wang
et al. 2017; Ding et al. 2019; Guo et al. 2020) prevails
in recommender systems. Despite explorations into GANs,
existing GAN-based sampling strategies often suffer from
poor interpretability and inferior performance due to train-
ing instability. A graph data augmentation based negative
sampling (Huang et al. 2021) augments the positive sam-
ples with negative sample information to delude the recom-
mender and enhance its ability to distinguish the bound-
ary. Due to the sophisticated student-exercise interactions
that not only reply on answering records but also associa-
tions between exercises and concepts, transplanting negative
sampling strategies from recommender systems into cog-
nitive diagnosis faces challenges. Although previous work
EIRS (YAO et al. 2023) has introduced sampling strategies
into cognitive diagnosis, it essentially performs similarity-
based sampling, where the attained samples carry compara-
ble information to interacted ones and fail to provide extra
diagnostic values. Inspired by the high-quality negative sam-
ples achieved in recommender systems, we propose a novel
sampling strategy to obtain informative samples.

Problem Statement
For cognitive diagnosis, we define three entity groups: the
student set S = {s1, s2, ..., sN} of size N ; the exercise set
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E = {e1, e2, ..., eM} of size M ; and the knowledge concept
set K = {k1, k2, ..., kC} of size C. The exercise-concept re-
lationship is defined by matrix Q ∈ RM×C , where Qi,j = 1
if exercise ei involves concept kj , else Qi,j = 0. We also
define interaction logs as triplets (si, ej , rij) ∈ R, where ej
is called an interacted exercise of student si, rij = 1 if stu-
dent si correctly answered exercise ej , else rij = 0 and R
is the interaction set. The un-interacted exercise set for stu-
dent si is defined by Ui = E\Ei, where Ei is the interacted
exercise set of student si. The knowledge concepts associ-
ated with the interacted exercises by student si are called
interacted knowledge concepts Ki, where Ki ⊂ K.

PROBLEM DEFINITION. Given student entity, exercise
entity, knowledge concept entity, students’ exercising re-
sponse logs, the un-interacted exercises set Ui for each
student, and the exercise-knowledge relational matrix. Our
goal is to leverage the un-interacted exercises to enhance
the performance of cognitive diagnosis.

The Proposed CMES Framework
In this section, we first briefly introduce the proposed frame-
work, then elaborates on each module, and finally discusses
how to train the cognitive diagnosis model with the proposed
CMES framework.

Overview. The brief idea of this paper is to enhance cog-
nitive diagnosis by sample augmentation using un-interacted
exercises. For this aim, as shown in Figure 2, our CMES
framework comprises three key components: the sample
augmentation module, the pseudo feedback module, and the
extensible diagnosis module. The initial two modules aim to
sample and blend informative exercises from the pool of un-
interacted exercises for individual students, simultaneously
evaluating potential feedback labels for the mixed exercises.
More precisely, within the sample augmentation module, we
group students based on their response capabilities to miti-
gate interference from exercises with limited information.
We then proceed to sample and mix exercise information
from other clusters. Once we acquire informative samples,
the pseudo feedback module leverages interacted informa-
tion to deduce students’ feedback, subsequently generating
pseudo response labels for each mixed sample. The final
module (i.e., the cognitive diagnosis module) employs the
mixed exercises with pseudo labels and interaction records
to deduce students’ cognitive levels. Notably, our frame-
work exhibits remarkable extensibility, seamlessly integrat-
ing supplementary data into existing methods, thereby en-
hancing their performance.

Sample Augmentation Module
To thoroughly augment the information encompassed within
the samples for each student, we first sample more informa-
tive exercises for each student from un-interacted exercises
by clustering students. Subsequently, the sampled exercises
are combined with the interacted exercises to generate novel
samples, facilitated by attention mechanisms.

Collaboration-aware Un-interacted Exercise Sampling
This section focuses on the objective of selecting a spe-
cific number of exercises for each student si from the un-

interacted exercise set Ui. We posit the existence of two
types of exercises within Ui that offer limited supplemen-
tary information aimed at improving the accuracy of stu-
dents’ proficiency diagnosis. The initial type encompasses
exercises related to the knowledge concepts within Ki that
have been interacted with by student si. This is facilitated by
the understanding that student si’s proficiency with respect
to the knowledge concepts in Ki can be discerned from the
interaction records. The second type consists of exercises ac-
complished by students exhibiting similar proficiency levels,
drawing inspiration from the notion of collaboration. Given
that these details can be somewhat captured by prevailing
cognitive diagnosis models.

Thus, we structure the sampling process in the follow-
ing manner. Initially, we partition students into W groups
based on their performance in exercises and the exercise-
concept relational matrix Q. Subsequently, for the student
si with an interaction set Ri of size t, we give preference
to exercises that are commonly completed by peers within
the remaining W − 1 clusters, as these exercises have gar-
nered more feedback. In other words, for student si, we
draw a sample of 2n exercises, forming the candidate set
U cand
i = {u1, u2, ..., u2n} ⊆ Ui which intentionally ex-

cludes exercises linked to the knowledge concepts in Ki,
and the value of n serves as a hyperparameter.

Attention-based Sample Augmentation Using the sam-
pled 2n exercises U cand

i for student si, we combine these
exercises with the interacted exercises Ei to create a newly
generated sample set, thereby augmenting our samples.
More precisely, for each interacted exercise ej ∈ Ei, we ran-
domly select n exercises (denoted UE

i,j) from the set U cand
i .

Subsequently, we combine these n + 1 exercises, leverag-
ing an attention mechanism to produce n + 1 new samples.
Consequently, for student si who possesses an interacted ex-
ercise set Ei containing t exercises, we will generate a total
of t × (n + 1) new samples. Interacted exercises consis-
tently provide substantial information, whereas sampled un-
interacted exercises offer a range of diverse and informative
insights. This mixing operation serves to balance the infor-
mativeness and diversity of samples, thereby enhancing the
robustness and precision of student si’s diagnosis.

As we apply mixture to the vector representations of ex-
ercise instances, we initiate the embedding process of ex-
ercises by performing a matrix multiplication. Specifically,
the one-hot vector xej for each exercise ej , along with
xum for exercise in UE

i,j , is multiplied by a trainable matrix
E ∈ RM×d to attain their initialized embedding representa-
tion eEj , e

E
um

∈ R1×d, where M is the number of exercises,
d is the embedding size:

eEj = xej × E, eEum
= xum × E. (1)

Cognitive diagnosis models commonly utilize eEj as the
exercise ej’s feature vector. The dimensions of eEj corre-
spond to the quantity of knowledge concepts, with each di-
mension representing an exercise attribute concerning the
relevant concept. In this study, for a deeper understanding
of exercises related to un-interacted knowledge concepts, it
is essential to amplify the weights of correlated knowledge
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Figure 2: The overview architecture of CMES: (a) The Sample Augmentation Module, which consists of Collaboration-aware
Un-interacted Exercise Sampling and Attention-based Sample Augmentation; (b) The Pseudo Feedback Module; (c) Model
Training via the Cognitive Diagnosis Task.

concepts in the information mixing process. As such, we
propose to construct a weight matrix based on the Q ma-
trix denoted as Q′ ∈ RM×C, where M and C represent the
number of exercises and knowledge concepts respectively:

Q′
m,c =

{
α, if Qm,c = 0

β, if Qm,c = 1
, (2)

where Qm,c denotes exercise em is affiliated with knowl-
edge concept kc, α and β represent hyperparameters, sub-
ject to α < β. Then, we multiply the knowledge con-
cept weight vector Q′

j with the initialized embedding vector
eEj of exercise ej to obtain the exercise embedding vector
eEj′ ∈ R(n+1)×d with knowledge concept weight enhance-
ment as follows:

eEj′ = eEj ·Q′
j . (3)

Based on the embedding representation vectors of exer-
cises, for each interacted exercise ej ∈ Ei and the randomly
selected n exercises UE

i,j , we employ a self-attention net-
work to mix them and obtain n+1 new embedding vectors.
The embedding vectors of generated samples incorporate the
learned target embedding as well as the information from
one another. Here we adopt the Scaled Dot-Product Atten-
tion to capture the information among the sampled instances
and interacted exercises:

Q,K, V =eEj′ ×WQ, e
E
j′ ×WK , eEj′ ×WV

Aj = softmax(
Q×KT

√
d

)V
, (4)

where WQ ∈ Rd×d, WK ∈ Rd×d, and WV ∈ Rd×d are
three trainable matrices. Aj ∈ R(n+1)×d is the result com-
puted by the attention module, representing a weighted vec-
tor that captures information from other exercises. Then Aj

is taken as the j-th item (i.e, UE′

i,j ) of the diagnosis-generated
sample set UE′

i = {UE′

i,1 , U
E′

i,2 , . . . , U
E′

i,j , . . . , U
E′

i,t }, which
encompasses t× (n+ 1) samples for student si.

Pseudo Feedback Module
The samples generated by the sample augmentation module
lack genuine response labels, which is necessary for cog-
nitive diagnosis models. Therefore, within this module, we
introduce a learning-to-rank task (Cao et al. 2007) to deduce
the corresponding pseudo response label for these generated
samples, relying on the following assumption.

Assumption. We assume that the correct probability of
student si answering the interacted sample eEj is greater than
or equal to that of this student answering each generated
sample, when rij = 1. Otherwise, when rij = 0, the rank-
ing relationship is the opposite. This assumption is formally
defined as follows:

P (rim) ≤ P (rij) ≤ 1, rij = 1,

P (rim) ≥ P (rij) ≥ 0, rij = 0,
(5)

where rij is the real response label of student si on the
exercise ej , rij = 1 if student si correctly answered exer-
cise ej , otherwise rij = 0; P (rim) and P (rij) denote the
probabilities of student si correctly answering the exercises
eE

′

u′
m
∈ UE′

i,j and eEj , respectively.
Based on the above assumption, we simply define a learn-

ing objective, which is to maximize the following function:∏
eE

′
u
′
m

∈UE′
i,j

rij × Pi(e
E
j > eE

′

u
′
m
) + (1− rij)Pi(e

E′

u
′
m

> eEj ), (6)

where Pi (a > b) represents the probability of student si
correctly answering exercise a is higher than that of cor-
rectly answering exercise b.

We employ the BPR (Bayesian Personalized Rank-
ing) (Rendle et al. 2012) loss function to simplify the learn-
ing of the objective:

LFeedback = −
∑

eE
′

u′
m

∈UE′
i

( rij ∗ lnσ(y′
ij − y′

im)

+(1− rij) ∗ lnσ(y′
im − y′

ij) )

, (7)
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where σ (·) is the sigmoid function, y′ij and y′im are obtained
by the diagnosis function (denoted by f1) of the cognitive
diagnosis model. Then, for each un-interacted exercise eu′

m
,

we map y′im into ˆyim ∈ {0, 1} as the pseudo feedback re-
sponse label of student si on exercise eu′

m
, where 1 indicates

student si may correctly answer the exercise eu′
m

, while 0
indicates possible wrong answers.

Cognitive Diagnosis Module
Learning Model with CMES Framework. Our framework
is applicable to any prevailing cognitive diagnosis model.
The Sample Augmentation Module and Pseudo Feedback
Module cater to student si in the cognitive diagnosis model
by providing personalized pairs of sampled exercises UE′

i
and their corresponding pseudo feedback response labels.

Training. Through predicting students’ proficiency lev-
els, we derive the ultimate mastery status for each student. In
addition to employing the generated sample set UE′

i , we also
leverage the interaction set R for diagnostic purposes. The
loss function is defined as a composite of two components.
Initially, we employ the frequently employed cross-entropy
loss function (Yang et al. 2021, 2022) within conventional
CD models on the data from the interaction set R:

Linter = −
∑

(si,ej ,rij)∈R

(rij log yij) + (1− rij) log (1− yij) ,

(8)
where yij represents the proficiency prediction for student
si on exercise ej attained through diagnosis function of the
cognitive diagnosis model (denoted by f2).

Then, we design a loss function for the mixed exercises:

Lun−inter = −
∑
si∈S

1∣∣UE′
i

∣∣ ∑
eE

′
u′
m

∈UE′
i

(
(ŷim log yim)

+ (1− ŷim) log (1− yim)

)
,

(9)

where yim represents the proficiency prediction for student
si on mixed sample eE

′

u′
m

attained through the cognitive di-
agnosis function f2, ŷim indicates the pseudo feedback label
of student si on eE

′

u′
m

. We optimize the cognitive diagnosis
module using the following loss function:

LCD = Linter + Lun−inter. (10)

We optimize the entire framework using the following
loss function:

LCMES = LCD (Θ1) + α · LFeedback (Θ2) , (11)

where α is a balancing hyper parameter that weighs the two
loss functions, Θ1 and Θ2 represent the training parameters
of the Pseudo Feedback Module and the Cognitive Diagno-
sis Module respectively. It is worth noting that the diagnosis
functions f1 and f2 in the Pseudo Feedback Module and the
Cognitive Diagnosis Module apply the same cognitive diag-
nosis model but different parameters.

Experiments
As the key contribution of this work is to extend exist-
ing cognitive diagnosis models (CDMs) to adaptively uti-
lize un-interacted data, we compare the original CDMs and
our optimized CDMs with the CMES1 framework (denoted
as Orginal-CDMs and CMES-CDMs respectively) on real-
world datasets to address the following research questions:

• RQ1: Can CMES-CDMs outperform Original-CDMs in
terms of performance?

• RQ2: How does our sample augmentation strategy out-
perform random sampling?

• RQ3: Whether the performance of CMES is sensitive to
the setting of sampling number?

• RQ4: Whether the performance of CMES is sensitive to
the setting of student cluster number?

• RQ5: How does CMES perform on different ratios of the
training set?

Experimental Settings
Datasets Description. We conduct experiments on two
real-world datasets ASSISTments (Feng, Heffernan, and
Koedinger 2009) and Math, which both provide student-
exercise interaction records and the exercise-knowledge
concept relational matrix. ASSISTments is a publicly avail-
able dataset collected from the online tutoring system AS-
SISTments. Math is a proprietary dataset assembled by
a renowned e-learning platform, comprising mathematics
practice and examination records of elementary and sec-
ondary school students. For both datasets, we filter out stu-
dents with less than 15 response logs to ensure sufficient data
for model learning. After processing, the statistics of the two
datasets are shown in Table ??. We apply 70% : 10% : 20%
training/validation/test split for each student’s response logs
in the two datasets.

Statistics ASSISTments MATH

# Students 4,163 1,967
# Exercises 17,746 1,686
# Knowledge concepts 123 61
# Response logs 278,868 118,348
# Avg logs per student 67 60

Table 1: The statistics of the datasets.

Evaluation Metrics. Considering that there is no true
knowledge mastery of students, in the literature, the main-
stream approach is to indirectly evaluate the effectiveness of
CDMs by using the knowledge mastery vector obtained to
predict the student’s exercising performance. Three famous
metrics, i.e., the Root Mean Square Error (RMSE) (Tian
et al. 2022), the Prediction Accuracy (ACC) (Tian et al.
2021) and Area Under an ROC Curve (AUC) (Bradley 1997)
were chosen to evaluate predictive performance.

1https://github.com/WangCQ206/Intelligent-
Education/tree/main/CMES
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Metrics ACC RMSE AUC
Orginal-CDMs CMES-CDMs Orginal-CDMs CMES-CDMs Orginal-CDMs CMES-CDMs

IRT 68.89% 70.59% 0.4684 0.4547 70.45% 74.40%
MIRT 70.79% 72.36% 0.4634 0.4368 73.93% 75.55%
NCD 72.27% 72.89% 0.4335 0.4283 75.22% 76.23%

CDGK 72.08% 73.01% 0.4356 0.4306 74.83% 75.51%
ECD 72.47% 72.80% 0.4334 0.4287 74.97% 76.25%
RCD 72.99% 73.06% 0.4243 0.4237 76.40% 76.51%

(a) ASSISTments

Metrics ACC RMSE AUC
Orginal-CDMs CMES-CDMs Orginal-CDMs CMES-CDMs Orginal-CDMs CMES-CDMs

IRT 70.88% 72.75% 0.4505 0.4460 71.62% 76.37%
MIRT 72.99% 74.60% 0.4284 0.4097 75.31% 78.04%
NCD 74.13% 74.94% 0.4102 0.4053 77.14% 78.81%

CDGK 73.68% 74.63% 0.4121 0.4068 77.00% 78.13%
ECD 74.16% 74.83% 0.4101 0.4077 77.18% 78.30%
RCD 74.86% 75.16% 0.4063 0.4055 78.34% 78.64%

(b) MATH

Table 2: Experimental results on student performance prediction. The best results are highlighted in bold. Our CMES-CDMs
significantly outperform the Orginal-CDMs with p <0.01.

Cognitive Diagnosis Models. To validate the effective-
ness of CMES framework, we conducted the comparison ex-
periments based on six representative CDMs, namely IRT
(Lord 1980), MIRT (Reckase 2009), NCD (Wang et al.
2020a), CDGK (Wang et al. 2021), ECD (Zhou et al. 2021)
and RCD (Gao et al. 2021).

Parameter Settings. We first initialized all the parame-
ters in the networks with Xavier (Glorot and Bengio 2010)
initialization and used the Adam (Kingma and Ba 2014) op-
timizer with a fixed batch size of 256 during the training
process. For the multi-dimensional models (i.e., MIRT, Neu-
ralCD, CDGK, ECD and RCD), we set the dimensions of
latent features for both students and exercises to be equal
to the number of knowledge concepts, i.e., 123 for AS-
SISTments and 61 for MATH datasets. Based on the pa-
rameter tuning, we set n to 20 for ASSISTments and 5 for
Math respectively; we set W to 50 and 20 for ASSISTments
and Math respectively. Finally, experimental results for all
models are obtained by performing standard 5-fold cross-
validation. The hyper-parameters of comparison approaches
are tuned on the validation set according the original paper.
All models are implemented in Pytorch, and all experiments
are conducted on Linux servers with Tesla V100.

Performance Comparison (RQ1)
We compare six pairs of Orginal-CDMs and CMES-CDMs
in terms of RMSE, ACC, and AUC. The experimental re-
sults are exhibited in Table 2. For each pair, better results
are bolded. As shown in the table, for each pair, CMES-
CDM outperforms Orginal-CDM in terms of all evaluation
metrics on all datasets. Even for RCD that models the in-
trinsic correlations among knowledge concepts, our CMES
can still improve its efficacy. These observations verify that
our proposed CMES framework by excavating and leverag-

Figure 3: The comparison results between our sampling
strategy CMES and the random sampling strategy (RSS).

ing the information within un-interacted exercises can match
prevailing CDMs and boost the diagnosis performance of
existing CDMs.

Effectiveness of the Sampling Strategy (RQ2)
To validate the effectiveness of the sample augmentation
strategy, we compare it with the random sampling strat-
egy (RSS). RSS randomly samples exercises for each stu-
dent si from Ui. These sampled exercises are directly used
as extra training samples without the information mixture
process. The randomly sampled exercises are then fed into
the pseudo feedback module to assess the potential labels.

Figure 3 exhibits the comparison results among NCD
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Figure 4: Impact of sampling number.

with our sample strategy (namely CMES-NCD), NCD with
the random sampling strategy (namely RSS-NCD) and the
original NCD (original-NCD). CMES-NCD markedly sur-
passes RSS-NCD and original-NCD across all metrics on
both datasets, while the random sampling strategy deteri-
orates model performance. The information gathered from
these randomly sampled exercises might lack diversity, re-
sulting in ineffective diagnostic values. Even the redundant
exercises delude the cognitive diagnosis model, hindering
it from accurately diagnosing students’ cognitive states. In
contrast, the proposed CMES performs collaboration-aware
sampling and mixes the information of exercises, enriching
diagnostic information to enable the model to infer students’
cognitive states more comprehensively.

Sensitivity Analysis of Sampling Number (RQ3)
We choose two representative CDMs (i.e., MIRT and
NCD) combined with our CMES framework to investigate
the performance change when varying the sampling num-
ber for each student (i.e., the parameter n) in the range
of {5, 10, 20, 30, 40}. As shown in Table 4, on the AS-
SISTments, the optimal performance of CMES-MIRT and
CMES-NCD is achieved at n = 20, while their peak perfor-
mance is reached at n = 5 on the Math. It maybe attributed
to the exercise pool size of the two datasets. As shown in
Table ??, the number of exercise in ASSISTments is more
larger than that of Math. The performance of CMES-MIRT
and CMES-NCD starts to decrease when n > 20 and n > 5
on ASSISTments and MATH respectively. The degradation
is more significant for MIRT, because the simple student-
exercise interaction function in MIRT model cannot capture
fine-grained exercise information. Excessive exercises con-
fuse the diagnosis model and lead to negative optimization.

Sensitivity Analysis of Student Cluster (RQ4)
We further used NCD combined with our CMES to probe the
impact of the number of clusters W . Here we search W in
the range of {0, 50, 100, 150, 200} and {0, 20, 50, 80, 100}
for ASSISTments and MATH respectively. As depicted in
Figure 5, the optimal values for W are set to 50 and 20
for ASSISTments and MATH. From this observation, on the
one hand, the optimal setting for W seems to be related to
the student size, as shown in Table ??, the student number
in ASSISTments is larger than that in Math. On the other
hand, inappropriate setting for the student cluster number
W will result in significant performance degradation, which

Figure 5: Impact of student cluster number.

Figure 6: The training set with different ratio.

manifests that the performance of CMES is sensitive to the
setting of student cluster number and answers RQ4.

Case Study (RQ5)
We selected 20% of the dataset ASSISTments as the test set,
and utilized data sets with sizes of 80%, 70%, 60% and 50%
of the full dataset from the remaining data to train model re-
spectively. As depicted in Figure 6, we observe that CMES-
NCD trained by different size of training sets all demon-
strate excellent performance. The performance of CMES-
NCD trained on 60% of the data is on par with orginal-NCD
trained on 80%. Additionally, the enhancement attained by
CMES-NCD is most pronounced when trained on 50% of
the data, which surpasses the performance of orginal-NCD
trained on 70% of the data, and nears its performance trained
on 80%. These observations validate that our CMES frame-
work can mitigate data scarcity challenges by extracting
more information from un-interacted exercises.

Conclusion
In this work, we attempted to explore informative, un-
interacted exercises related to broader knowledge concepts
with the aim of providing a more comprehensive diagnostic
assessment of students. We proposed a generic framework
CMES (Collaborative-aware Mixed Exercise Sampling)
that enables sampling of rich information from un-interacted
exercises and facilitates the evaluation of potential true la-
bels. Experimental results on real-world datasets demon-
strate the effectiveness of the sampling strategy and the scal-
ability of our framework. We intend to further investigate
sampling strategies tailored to the characteristics of cogni-
tive diagnostic models.
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