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Abstract

Adapting the Diffusion Probabilistic Model (DPM) for di-
rect image super-resolution is wasteful, given that a sim-
ple Convolutional Neural Network (CNN) can recover the
main low-frequency content. Therefore, we present ResD-
iff, a novel Diffusion Probabilistic Model based on Residual
structure for Single Image Super-Resolution (SISR). ResDiff
utilizes a combination of a CNN, which restores primary low-
frequency components, and a DPM, which predicts the resid-
ual between the ground-truth image and the CNN-predicted
image. In contrast to the common diffusion-based methods
that directly use LR space to guide the noise towards HR
space, ResDiff utilizes the CNN’s initial prediction to direct
the noise towards the residual space between HR space and
CNN-predicted space, which not only accelerates the gener-
ation process but also acquires superior sample quality. Ad-
ditionally, a frequency-domain-based loss function for CNN
is introduced to facilitate its restoration, and a frequency-
domain guided diffusion is designed for DPM on behalf of
predicting high-frequency details. The extensive experiments
on multiple benchmark datasets demonstrate that ResDiff
outperforms previous diffusion-based methods in terms of
shorter model convergence time, superior generation quality,
and more diverse samples.

Introduction
Single Image Super-Resolution (SISR) is a difficult task
in computer vision, which aims to recover high-resolution
(HR) images from their low-resolution (LR) counterparts.
During image degradation, the high-frequency components
are lost, and multiple HR images could produce the same
LR image, making this task ill-posed. After Generative Ad-
versarial Networks(GAN) (Goodfellow et al. 2014) was pro-
posed, the main generative-model-based SISR methods are
GAN-driven. However, GAN-based methods are hard to
train and prone to fall into pattern collapse, causing a lack of
diversity. Therefore, a superior generative model is required
in the SISR task.

Diffusion Probabilistic Model (DPM) has already demon-
strated impressive capabilities in image synthesis (Saharia
et al. 2022a,b; Rombach et al. 2022; Ramesh et al. 2022)
and image restoration (Choi et al. 2021; Kawar et al. 2022;
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Figure 1: Overall struture of proposed ResDiff.

Wang, Yu, and Zhang 2023). It has also shown promising
prospects in SISR tasks (Saharia et al. 2022c; Li et al. 2022).
However, current Diffusion-based methods for SISR, such
as SR3(Saharia et al. 2022c), generate HR images directly
from random noise, and LR images are only used as con-
ditional input to the diffusion process (Fig.2 (a)). Conse-
quently, the diffusion model needs to recover both the high
and low-frequency contents of the image, which not only
prolongs the convergence time but also inhibits the model
from focusing on the fine-grained information, potentially
missing texture details. Li et al.(Li et al. 2022) had taken
this into account but employed only a bilinear interpolation
for the initial prediction, which, compared to CNN, failed
to restore sufficiently low-frequency contents and was inca-
pable of generating any high-frequency components in the
initial prediction (Fig.2 (b)). Similarly, whang et al.(Whang
et al. 2022) designed a random-sampler and a deterministic-
predictor to tackle this problem. However, there is no in-
formation interaction between the random-sampler and the
deterministic-predictor, resulting in the latter not function-
ing to its full potential (Fig.2 (c)).

Inspired by the above (Li et al. 2022; Whang et al.
2022), we propose ResDiff, a residual-structure-based dif-
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Figure 2: Comparison of different generation processes. In contrast to (a) (Saharia et al. 2022c), (b) (Li et al. 2022), (c) (Whang
et al. 2022) where only LR Space is used to guide the generation, our ResDiff (d) makes full utilization of CNN Prediction
Space and High-Frequency Space to guide a faster and better generation.

fusion model. Unlike (Li et al. 2022), ResDiff utilizes a
CNN for initial prediction. And in contrast to (Whang et al.
2022), the CNN in ResDiff is pre-trained, thus capable of
restoring the major low-frequency components and partial
high-frequency components. The initial prediction of the
CNN is adopted to guide the random noise towards the Res
Space (i.e., the residual space between the Ground Truth
image and the CNN predicted image). Compared to the
methods that only use LR space as guidance, ResDiff can
leverage additional information and generate richer high-
frequency details. (Fig.2 (d)). Fig.1 presents the structure
of ResDiff. The CNN used in ResDiff contains a limited
number of parameters. Thus, two more loss functions are
introduced to strengthen its recovery capabilities. To fur-
ther enhance the generation quality, we design a Frequency
Domain-guided Diffusion (FD-guided Diffusion) as shown
in Fig.2 (d) where the high-frequency space also guides
the generation process. FD-guided Diffusion consists of two
novel modules. The first is a Frequency-Domain Information
Splitter (FD Info Splitter) that separates high-frequency and
low-frequency contents and performs adaptive denoising on
the noisy image. The second is a high-frequency guided
cross-attention module (HF-guided CA) that helps the diffu-
sion model predict high-frequency details. The pseudo-code
for sampling with ResDiff is as Alg.1.

Experiments on two face datasets (FFHQ and CelebA)
and two general datasets (Div2k and Urban100) demonstrate
that ResDiff not only accelerates the model’s convergence
speed but also generates more fine-grained images. To ver-
ify the generalization of our method, more experiments on
different types of datasets (Bai et al. 2022) are given in the
supplementary material.

Our contributions can be summarized as follows:
• Shorter Convergence Time: We have designed ResD-

iff, a residual structure-based diffusion model for the SISR
task that leads to an apparent improvement in convergence
speed compared to other diffusion-based methods.

• Superior Generation Quality: We have introduced FD-

guided Diffusion to enhance the diffusion model’s concen-
tration on high-frequency details, resulting in superior gen-
eration quality.

• More Diverse Output: Experiments have demonstrated
that ResDiff holds a lower perceptual-based evaluation
value, indicating our method is capable of producing diverse
samples.

Related Works
Generative-model-based methods have created great suc-
cess in SISR, which can be classified into GAN-based(Ledig
et al. 2017; Wang et al. 2018b; Mirchandani and Chordiya
2021; Wang et al. 2018a; Zhang et al. 2019), flow-
based(Lugmayr et al. 2020; Liang et al. 2021), and fiffusion-
based(Saharia et al. 2022c; Li et al. 2022) methods.

GAN-based methods Ledig et al.(Ledig et al. 2017) pro-
posed SRGAN, which employs a perceptual loss function
to generate high-quality images. Similarly, Kim et al.(Wang
et al. 2018b) introduced ESRGAN, which adopted an en-
hanced super-resolution GAN and a superior loss function to
improve the perceptual quality. GAN-based methods com-
bine content losses with adversarial losses, allowing them
to generate sharp edges and richer textures. However, they
are prone to mode-collapse, which decreases diversity in the
generated SR samples. Moreover, training GANs is chal-
lenging and may lead to unexpected artifacts in the gener-
ated image.

Flow-based methods Lugmayr et al.(Lugmayr et al.
2020) proposed SRFlow, which is a flow-based method that
learns the conditional distribution of high-resolution im-
ages given their low-resolution counterparts, enabling high-
quality image super-resolution with natural and diverse out-
puts. Flow-based methods map HR images to flow-space la-
tents using an invertible encoder and connect the encoder
and decoder with an invertible flow module, which avoids
training instability but requires higher training costs and pro-
vides lower perceptual quality.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8976



Algorithm 1: ResDiff Inference
Input: low-resolution image xLR and pre-trained CNN
Parameter: µθ and Σθ same as in DDPM
Output: High-resolution image

1: xcnn = CNN(xLR)
2: xT ∼ N (0, I)
3: for t = T : 1 do
4: ϵ ∼ N (0, I) if t > 1, else ϵ = 0

5: xt−1 = µθ(xt, t, xcnn) +
√
Σθ(xt, t, xcnn) ϵ

6: end for
7: return x0 + xcnn

Diffusion-based methods Li et al.(Li et al. 2022) in-
troduced SrDiff, the first diffusion-based model for SISR,
demonstrating that using the diffusion model for SISR tasks
is feasible and promising. Saharia et al. proposed Sr3 (Sa-
haria et al. 2022c), which adapts Denoising Diffusion Prob-
abilistic Models (DDPM) to perform SISR tasks, yielding
a competitive perceptual-based evaluation value. Diffusion-
based methods utilize a diffusion process that simulates
noise reduction, resulting in sharper and more detailed im-
ages. However, a high computational cost is needed due to
multiple forward and backward passes through the entire
network during the training process. Our proposed ResD-
iff, though without improving the training speed of a single
iteration, accelerates convergence, which can alleviate this
issue from another perspective.

The Proposed ResDiff
Pre-trained CNN
To reduce additional training costs, we utilize a CNN with
a reduced number of parameters to generate an initial pre-
diction. This CNN aims to recover primary low-frequency
components and partial high-frequency components, conse-
quently facilitating the diffusion model’s restoration of the
more intricate high-frequency details. To ensure its gener-
ating capability, we are enlightened by (Deng et al. 2019;
Dou, Tu, and Peng 2020) and introduce two more loss func-
tions (Fig.3), namely LFFT based on the Fast Fourier Trans-
form (FFT) (Cooley and Tukey 1965) and LDWT based on
the Discrete Wavelet Transform (DWT) (Mallat and Hwang
1992), in addition to the original loss function.

The LFFT can be defined as the mean square error(MSE)
between the magnitudes of the FFT coefficients of the two
images:

LFFT = E[
∥∥∥M − M̂

∥∥∥2] (1)

where M and M̂ denote the frequency domain images
obtained by performing FFT on the ground-truth image and
the predicted image.

In a bid to enable the CNN to further recover partial high-
frequency contents on top of recovering the primary low-
frequency contents, we designed LDWT . Performing DWT
on an image will decompose it into four sub-bands: low-low
(LL), low-high (LH), high-low (HL), and high-high (HH).

Figure 3: Depiction of the three loss functions utilized in
CNN pre-training. A spatial domain loss (GT Loss) and two
frequency domain losses (FFT Loss and DWT Loss) are
computed.

LL sub-band contains the low-frequency content of the im-
age, while the remaining three contain the high-frequency
components of the image from horizontal, vertical, and di-
agonal directions, respectively. The LL sub-band can per-
form further similar decomposition to obtain multi-layer
high-frequency components. As for LDWT , we extract the
wavelet coefficients of the high-frequency bands H , V , and
D, which refer to the high-frequency components in the hor-
izontal, vertical, and diagonal directions, respectively. For
both the ground-truth image and predicted image, LDWT

compute the MSE between each high-frequency sub-band:

LDWT =
L∑

i=1

E[
∥∥∥Ĥi −Hi

∥∥∥2+∥∥∥V̂i − Vi

∥∥∥2+∥∥∥Ĝi −Gi

∥∥∥2]
(2)

where Hi,Vi,Di are the sub-bands of the ground-truth im-
age in the i-th downsampling, and Ĥi,V̂i,D̂i are the sub-
bands of the predicted image in the i-th downsampling, L
is the total level of downsampling.

We also add the spatial domain loss named LGT : let the
ground-truth image be Y , the predicted image be Ŷ , and
LGT is the MSE between them:

LGT = E[
∥∥∥Y − Ŷ

∥∥∥2] (3)

The total loss function of pre-trained CNN thus is:

LCNN = LGT + αLFFT + βLDWT (4)
where α and β are adjustable hyperparameters.
Furthermore, we design a simple CNN using residual-

connection (He et al. 2016) and pixel-shuffle (Shi et al.
2016), named SimpleSR, for initial prediction (the specific
structure is given in the supplementary material). Ablation
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studies on the proposed loss function and SimpleSR are
given in the supplementary material.

FD-guided Diffusion
After obtaining the image I predicted by the pre-trained
CNN, we adapt a diffusion model to predict the residuals be-
tween I and the ground truth, i.e., the high-frequency com-
ponents of the ground-truth image. To this end, we propose a
Frequency-Domain guided diffusion (FD-guided diffusion),
as shown in Fig.4. In contrast to SR3 (Saharia et al. 2022c),
which simply concatenates the bilinear interpolated image
with the noisy image xt at step t, we propose a Frequency-
Domain Information Splitter module (FD-Info-Splitter): I
and xt is first fed into the FD-Info-Splitter, whose output
is then fed into the U-net (Ronneberger, Fischer, and Brox
2015). We follow the Imagen (Saharia et al. 2022a), where
the self-attention layer is added. In addition, a Frequency-
Domain guided Cross-Attention mechanism (FD-guild CA)
is designed, which utilizes the high-frequency features ob-
tained from DWT at each layer to generate more fine-
grained detail features.

FD Info Splitter
For CNN’s initial prediction, low-frequency components are
mixed with high-frequency contents. As the diffusion model
only needs to recover high-frequency details, the input low
and high-frequency features have different statuses: the for-
mer mainly assist the generation of high-frequency compo-
nents globally, while the latter is required to provide guid-
ance for fine-grained details in each region. Therefore, we
introduce Frequency-Domain Information Splitter (FD Info
Splitter), which explicitly separates high-frequency and low-
frequency information for better restoration. Additionally, it
effectively mitigates noise for noisy images with large time
steps, resulting in better noise prediction (The detailed struc-
ture of FD Info Splitter is shown in Fig.4).

For the CNN predicted images xcnn ∈ RH×W×C , we
first perform 2D FFT along the spatial dimensions to obtain
the frequency domain feature map M :

M = FFT (xcnn) ∈ CH×W×C (5)

where FFT (·) denotes the 2D FFT. We adapt the meth-
ods proposed by (Hu, Shen, and Sun 2018; He et al. 2016)
and merged them into the ResSE module (Residual Squeeze-
and-Excitation module), the details of which are shown in
the supplementary material.

To implement adaptive high-pass filtering, a Gaussian
high-pass filter is utilized whose Standard deviation is ob-
tained from M as follows:

σ = min(|ResSE(M)|+ l

2
, l) (6)

where l = min(H,W ). The operation for the acquired
ResSE(M) is for numerical stability. After obtaining σ,
adaptive gaussian high-pass filter can be given directly as:

H(u, v) = 1− e−D2(u,v)/(2σ2) (7)

where D(u, v) is the distance from the point (u, v) in the
frequency domain to the center point. The gaussian high-
pass filter are then preformed element-wise multiplication
with M to obtain the adaptive high-pass filtered feature map
M

′
:

M
′
= Ahp ⊗M (8)

Finally, we reverse M
′

back to the spatial domain by
adopting inverse FFT to obtain an feature map xHF rich in
high-frequency components:

xHF = FFT−1(M
′
) ∈ RH×W×C (9)

where FFT−1(·) denotes the Inverse 2D FFT. Mean-
while, we feed M

′
into a ResSE module to acquire the at-

tention weights learned in the frequency domain and then
perform element-wise multiplication with xcnn to obtain a
feature map xLF containing abundant low-frequency infor-
mation:

xLF = ResSE(M)⊗ xcnn (10)

These two feature maps, dominated by high-frequency
and low-frequency components, are concatenated in the
channel dimension. By explicitly separating the input’s
mixed high-frequency and low-frequency components, the
network can utilize both differently and more efficiently.

For a noisy image xt at a large time step t, the noise com-
ponents can be so large that it hinders network inference.
Hence, an adaptive denoising is utilized on xt to obtain the
partially denoised noisy image x

′

t:

x
′

t = ResSE(T )⊗ xt (11)

The three feature maps xHF , xLF , x
′

t, along with xcnn

and xt, are all concatenated in the channel dimension and
fed into the U-net.

HF-guided CA
In the original U-net architecture, the encoder features are
directly concatenated with the features obtained by the de-
coder (Ronneberger, Fischer, and Brox 2015). This fusion
facilitates the network to integrate the higher and lower-
layer features effectively but lacks the ability to extract
high-frequency features. To tackle this issue, we introduce a
High-Frequency feature guided Cross-Attention mechanism
(HF-guided CA) to recover fine-grained high-frequency de-
tails. The flow of the HF-guided CA is illustrated in Fig.4.

We utilize the pre-trained CNN prediction by extracting
the Ĥi, V̂i, and D̂i coefficients at the i-th level of the DWT.
By adding these extracted coefficients with a linear projec-
tion, we obtain the feature map Q with aggregated high-
frequency information:

Q = Conv1×1(Ĥi + V̂i + D̂i) (12)

Then, different linear projections of the input feature map
M are constructed to obtain K and V in the cross-attention
mechanism (Hou et al. 2019) :
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Figure 4: An overview of the model architecture in proposed FD-guided diffusion. The pre-trained CNN prediction and the
noisy image xt from step t are fed into the FD-info-Splitter, and its output is then passed on to a U-net, which is equipped with
HF-guided cross-attention.

K = Conv1×1(M) (13)

V = Conv1×1(M) (14)

The output feature map M
′

can then be obtained from the
formula:

M
′
= Softmax(

QKT

√
dk

)V (15)

where dk is the number of columns of matrix Q.

Experiments
Performance
To evaluate the performance of our ResDiff model, we
compared it with previous diffusion-based and GAN-based
methods using four datasets: two face datasets (FFHQ (Kar-
ras, Laine, and Aila 2019), and CelebA (Liu et al. 2015)) and
two general datasets (Div2k (Agustsson and Timofte 2017),
and Urban100 (Huang, Singh, and Ahuja 2015)). The se-
lected evaluation metrics include two distortion-based met-
rics (PSNR and SSIM (Wang et al. 2004)), as well as a

perceptual-based metric (FID (Heusel et al. 2017)). Our Res-
Diff is trained solely on the provided training data to guaran-
tee a fair comparison. The supplementary material contains
detailed information about the training process, hyperparam-
eters, and other relevant details. Since several methods did
not state their performance on some datasets we use, their
values are marked as ”-” in the table. More experiments with
different types of datasets are presented in the supplemen-
tary material.

FFHQ and CelebA Results The quantitative results at
32×32 → 128×128 (4×) ,256×256 → 1024×1024 (4×)
on FFHQ (Karras, Laine, and Aila 2019) and 20 × 20 →
160×160 (8×), 64×64 → 256×256 (4×) on CelebA (Liu
et al. 2015) are shown in table 1,2. Our ResDiff demonstrates
superior performance compared to all diffusion-based meth-
ods, as evidenced by the metrics presented in the table, and
has about 50% reduction in Perceptual metrics (FID) than
the GAN-based model.

DIV2K and Urban100 Results The quantitative results
at 40 × 40 → 160 × 160 (4×) on DIV2K (Agustsson and
Timofte 2017) and 40 × 40 → 160 × 160 (4×) on Ur-
ban100 (Huang, Singh, and Ahuja 2015) are shown in ta-
ble 3. Note that ResDiff’s distortion-based metric values can
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  Input                    Bicubic                  SR3                  SRDiff           ResDiff(Ours)       Reference

Figure 5: DIV2k 4× results. Note that ResDiff provides richer details and more natural textures than other diffusion-based
methods for the recovery of small objects (e.g., the clock in the first column) and difficult scenes (e.g., the bridge structure in
the second column, the building in the fourth column).

32 → 128 256 → 1024

PSNR↑ SSIM↑ FID↓ PSNR↑ SSIM↑ FID↓
Ground Truth ∞ 1.000 0.00 ∞ 1.000 0.00

SRGAN 17.57 0.688 156.07 21.49 0.515 60.67
ESRGAN 15.43 0.267 166.36 19.84 0.353 72.73
BRGM 24.16 0.70 - - – -
PULSE 15.74 0.37 - - - -
SRDiff 26.07 0.794 72.36 23.01 0.656 56.17
SR3 25.37 0.778 75.29 22.78 0.647 60.12

ResDiff 26.73 0.818 70.54 23.15 0.668 53.23

Table 1: Quantitative comparison on the FFHQ (Karras,
Laine, and Aila 2019) dataset, where the bolded values rep-
resent the best value in each evaluation metric.

20 → 160 64 → 256

PSNR↑ SSIM↑ FID↓ PSNR↑ SSIM↑ FID↓
Ground Truth ∞ 1.000 0.00 ∞ 1.000 0.00

ESRGAN 23.24 0.66 - - - -
PULSE - - - 22.74 0.623 40.33
SRFlow 25.28 0.72 - - - -
SRDiff 25.32 0.73 80.98 26.84 0.792 39.16
SR3 24.89 0.728 83.11 26.04 0.779 43.27

ResDiff 25.37 0.734 78.52 27.16 0.797 38.47

Table 2: Quantitative comparison on the CelebA (Liu et al.
2015) dataset, where the bolded values represent the best
value in each evaluation metric.
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DIV2K 4× Urban100 4×
PSNR↑ SSIM↑ FID↓ PSNR↑ SSIM↑ FID↓

Ground Truth ∞ 1.000 0.00 ∞ 1.000 0.00

SRDiff 26.87 0.69 110.32 26.49 0.79 51.37
SR3 26.17 0.65 111.45 25.18 0.62 61.14

ResDiff 27.94 0.72 106.71 27.43 0.82 42.35

Table 3: Quantitative comparison on the DIV2K (Agustsson
and Timofte 2017) and Urban100 (Huang, Singh, and Ahuja
2015) dataset, where the bolded values represent the best
value in each evaluation metric.

significantly outperform other diffusion-based methods on
these general datasets whose restoration is more difficult.
Fig.5 presents partial results of ResDiff and other diffusion-
based methods.

Ablation Study
In this section, we perform an ablation study on FFHQ (4×)
to investigate the effectiveness of each component in ResD-
iff, including the influence of different CNNs, and the use-
fulness of the proposed FD Info Splitter/HF-guided CA. The
results are shown in Table 4. Note that utilizing the resid-
ual structure, even with a simple bilinear interpolation for
the initial prediction, can significantly improve the perfor-
mance. In terms of CNN selection, our proposed SimpleSR
also outperforms SRCNN (Dong et al. 2014). Moreover, the
addition of FD Info Splitter and HF-guided CA both have
an improvement in the results. More detailed ablation stud-
ies are given in the supplementary material.

Conclusion and Future Work
In this paper, we propose ResDiff, a residual structure-based
diffusion model. In contrast to the previous works, which
only adapt LR images to generate HR images, ResDiff uti-
lizes the feature-richer CNN prediction for guidance. Mean-
while, we introduce a frequency-domain-based loss func-
tion to the CNN and design a frequency-domain guided dif-
fusion to facilitate the diffusion model in generating low-
frequency information. Comprehensive experiments on dif-
ferent datasets demonstrate that the proposed ResDiff accel-
erates the training convergence speed and provides superior
image generation quality.

Our ResDiff can also be adapted for other image restora-
tion tasks, such as image blind super-resolution, deblurring,
and inpainting. Although ResDiff can accelerate conver-
gence, operations such as DWT are still time-consuming and
call for optimization in future work. In addition, it can be
seen from the supplementary material that the color will ap-
pear a large discrepancy when the model is under-trained,
which may be caused by a lack of color features in the
guided high-frequency information. Utilizing a global color
feature may well address this issue in future work. More-
over, our ResDiff does not outperform current State-Of-The-
Art(SOTA) SISR methods (Chen et al. 2022; Zhang et al.

Model Components Metrics

CNN FD Info HF-guided PSNR↑ SSIM↑ FID↓Splitter CA

SimpleSR ✓ ✓ 26.73 0.818 70.54

N/A ✓ ✓ 25.49 0.781 74.18
Bilinear ✓ ✓ 25.99 0.792 74.29
SRCNN ✓ ✓ 26.14 0.809 72.17

SimpleSR
✓ ✓ 26.47 0.812 71.58(only LGT )

SimpleSR 25.41 0.788 77.21
SimpleSR ✓ 26.09 0.796 72.42
SimpleSR ✓ 25.97 0.793 73.17

Table 4: Ablation study over different model components on
the ffhq (Karras, Laine, and Aila 2019) test sets (The model
components we use are placed in the first row). N/A denotes
no residual structure used.

2022). This is attributed to the disparity between model pa-
rameters. Due to equipment limitations, adopting a larger
U-net model in ResDiff is left to future work. In addition, if
a pre-trained SOTA model is applied to replace the CNN in
ResDiff, it may be possible to establish a new SOTA. Finally,
ResDiff may consider incorporating more DPM techniques
(Rombach et al. 2022; Dhariwal and Nichol 2021; Ho and
Salimans 2022) and superior network architectures (Peebles
and Xie 2022; Chen et al. 2021) in the future.
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