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Abstract

Recently, the paradigm of pre-training and fine-tuning graph
neural networks has been intensively studied and applied in a
wide range of graph mining tasks. Its success is generally at-
tributed to the structural consistency between pre-training and
downstream datasets, which, however, does not hold in many
real-world scenarios. Existing works have shown that the struc-
tural divergence between pre-training and downstream graphs
significantly limits the transferability when using the vanilla
fine-tuning strategy. This divergence leads to model overfitting
on pre-training graphs and causes difficulties in capturing the
structural properties of the downstream graphs. In this paper,
we identify the fundamental cause of structural divergence
as the discrepancy of generative patterns between the pre-
training and downstream graphs. Furthermore, we propose
G-TUNING to preserve the generative patterns of downstream
graphs. Given a downstream graph G, the core idea is to tune
the pre-trained GNN so that it can reconstruct the generative
patterns of G, the graphon W . However, the exact reconstruc-
tion of a graphon is known to be computationally expensive.
To overcome this challenge, we provide a theoretical analysis
that establishes the existence of a set of alternative graphons
called graphon bases for any given graphon. By utilizing a
linear combination of these graphon bases, we can efficiently
approximate W . This theoretical finding forms the basis of
our model, as it enables effective learning of the graphon bases
and their associated coefficients. Compared with existing al-
gorithms, G-TUNING demonstrates consistent performance
improvement in 7 in-domain and 7 out-of-domain transfer
learning experiments.

1 Introduction
The development of graph neural networks (GNNs) has rev-
olutionized many tasks of various domains in recent years.
However, labeled data is extremely scarce due to the time-
consuming and laborious labeling process. To address this
obstacle, the “pre-train and fine-tune” paradigm has made
substantial progress (Xia et al. 2022; Li, Zhao, and Zeng
2022; Jiao et al. 2023) and attracted considerable research
interests. Specifically, this paradigm involves pre-training a
model on a large-scale graph dataset, followed by fine-tuning
its parameters on downstream graphs by specific tasks.

*Corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The success of “pre-train and fine-tune” paradigm is gen-
erally attributed to the structural consistency between pre-
training and downstream graphs (Hu et al. 2020b,a; Qiu et al.
2020; Sun et al. 2021; Jiarong et al. 2023). However, in real-
world scenarios, structural patterns vary dramatically across
different graphs, and patterns in the downstream graphs may
not be readily available in the pre-training graph. In the con-
text of molecular graphs, a well-known out-of-distribution
problem arises when the training and testing graphs originate
from different environments, characterized by variations in
size or scaffold. As a consequence, the downstream molecular
graph data often encompasses numerous novel substructures
that has not been encountered during training. Hence, struc-
tural consistency does not always hold. Fig 1(a) shows that
while structural consistency (shown in orange) between the
pre-training and downstream dataset A ensures the promo-
tion of performance, the structural divergence (shown in
green) causes a degradation of performance when fine-tuned
on downstream dataset B. In some cases, it can even lead to
worse results than those obtained without pre-training.

In light of this, we are intrigued by the relationship be-
tween structural divergence and the extent of performance im-
provements on downstream graphs. Specifically, graphon is a
well-known non-parametric function on graph that has been
proved to effectively describe the generative mechanism of
graphs (i.e., generative patterns) (Lovász 2012). In Fig 1(b),
we calculate the Gromov-Wasserstain (GW) discrepancy (a
distance metric between geometry objects) of graphons be-
tween different pre-training and one test graph and report
the corresponding performance on the same downstream
graph. Interestingly, as the difference between graphons of
pre-training dataset and that of downstream dataset increases,
the performance improvement diminishes. To further validate
this, we compute the Pearson CC (Correlation Coefficient)
between other representative graph measurements (e.g., den-
sity, transitivity, etc.) and the performance improvement. As
Fig 1(c) suggests, most of them cannot reflect the degree
of performance improvement, and only the graphon discrep-
ancy is consistently negatively correlated with the degree
of performance promotion. Hence, we attribute the subpar
performance of fine-tuning to the disparity in the genera-
tive patterns between the pre-training and fine-tuning graphs.
Nevertheless, fine-tuning with respect to generative patterns
poses significant challenges: (1) the structural information
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Figure 1: The sketch and the observations of the structural divergence. (a) shows the performance under different scenarios.
(b) shows that the larger the graphon Gromov-Wasserstain (GW) discrepancy between different pre-train datasets (shown in
App § A.4) and downstream dataset Cornell is, the less the performance (%) is promoted. (c) The pearson correlation between:
(Horizontal) discrepancy of different graph measurements and graphon between pre-training and downstream datasets, (Vertical)
the performance promotion for different downstream datasets when using different pre-train datasets.

of the pre-training may not be accessible during fine-tuning,
and (2) effectively representing intricate semantics within
these generative patterns, such as graphons, requires careful
design considerations.

In this paper, we aim to address these challenges by propos-
ing a fine-tuning strategy, G-TUNING, which is agnostic to
pre-training data and algorithms. Specifically, it performs
graphon reconstruction of the downstream graphs during fine-
tuning. In order to enable efficient reconstruction, we provide
a theoretical result (Theorem 1) that given a graphon W , it’s
possible to find a set of other graphons, called graphon bases,
whose linear combination can closely approximate W . Then,
we develop a graphon decoder that transforms the embed-
dings from the pre-trained model into a set of coefficients.
These coefficients are combined with the structure-aware
learnable bases to form the reconstructed graphon. To en-
sure the fidelity of the reconstructed graphon, we introduce a
GW-discrepancy based loss, which minimizes the distance
between the approximated graphon and an oracle graphon
(Xu et al. 2021). Furthermore, by optimizing our proposed
G-TUNING, we obtain provable results regarding the dis-
criminative subgraphs relevant to the task (Theorem 2).

The main contributions of our work are as follows:1

• We identify the generative patterns of downstream graphs
as a crucial step in bridging the gap between pre-training
and fine-tuning.

• Building upon our theoretical results, we design the
model architecture, G-TUNING to efficiently reconstruct
graphon as generative patterns with rigorous generaliza-
tion results.

• Empirically, our method shows consistent performance
improvement in 7 in-domain and 7 out-of-domain transfer
learning datasets over the best baseline.

1Supplement materials: https://github.com/zjunet/G-Tuning

2 Preliminaries
Notations. Let G = (V,A,X) denote a graph, where V is
the node set, A ∈ {0, 1}|V |×|V | is the adjacency matrix and
X ∈ R|V |×d is the node feature matrix where d is the dimen-
sion of feature. Gs and Gt denotes a pre-training graph and a
downstream graph respectively. The classic and commonly
used pre-training paradigm is to first pre-train the backbone
Φ on abundant unlabeled graphs by a self-supervised task
with the loss as LSSL. Then the pre-trained Φ is employed to
fine-tuning on labeled downstream graphs. The embedding
H ∈ R|V |×d with the hidden dimension d encoded by Φ is
further input to a randomly initialized task-specific shallow
model fϕ. The goal of fine-tune is to adapt both Φ and fϕ for
the downstream task with the loss Ltask and the label Y . The
pre-training setup has two variations: one is the in-domain
setting, where Gs and Gt come from the same domain, and the
other is the out-of-domain setting, where Gs and Gt originate
from different domains. In the latter case, the structural diver-
gence between Gs and Gt is greater, posing greater challenges
for fine-tuning.
Definition 1 (Graph generative patterns). Graph generative
patterns are data distributions parameterized by Θ where
the observed graphs {G1, ..., Gn} are sampled from, Gi ∼
P (G; Θ).

According to our definition, Θ can be traditional graph
generative model such as Erdos-Rényi (Erdős and Rényi
1959), stochastic block model (Airoldi et al. 2008), forest-
fire graph (Leskovec, Kleinberg, and Faloutsos 2007) and
etc. Besides, Θ can also be any deep generative model like
GraphRNN (You et al. 2018). In this paper, we propose a
theoretically sound fine-tuning framework by preserving the
graph generative pattern of the downstream graphs.
Graphon. A graphon (Airoldi, Costa, and Chan 2013),
short for "graph function", can be interpreted as a gener-
alization of a graph with an uncountable number of nodes or
a graph generative model or, more important for this work, a
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mathematical object representing Θ from graph generative
patterns P (G; Θ). Formally, a graphon is a continuous and
symmetric function W : [0, 1]2 → [0, 1]. Given two points
ui, uj ∈ [0, 1] as “nodes”, W (i, j) ∈ [0, 1] indicates the prob-
ability of them forming an edge. The main idea of graphon is
that when we extract subgraphs from the observed graph, the
structure of these subgraphs becomes increasingly similar to
that of the observed one as we increase the size of subgraphs.
The structure then converges in some sense to a limit object,
graphon. The convergence is defined via the convergence of
homomorphism densities. Homomorphism density t(F,G) is
used to measure the relative frequency that homomorphism of
graph F appears in graph G: t(F,G) = | hom(F,G)|

|VG||VH | , which

can be seen as the probability that a random mapping of ver-
tices from F to G is a homomorphism. Thus, the convergence
can be formalized as lim

n→∞
t (F,Gn) = t(F,W ). When used

as the graph generative patterns, the adjacency matrix A of
graph G with N nodes are sampled from P (G;W ) as fol-
lows,

v ∼ U(0, 1), v ∈ V ;Aij ∼ Ber(W (vi, vj)), ∀i, j ∈ [N ].
(1)

where Ber(·) is the Bernoulli distribution. Since there is no
available closed-form expression of graphon, existing works
mainly employ a two-dimensional step function, which can
be seen as a matrix, to represent a graphon (Xu et al. 2021;
Han et al. 2022). In fact, the weak regularity lemma of
graphon (Lovász 2012) indicates that an arbitrary graphon
can be approximated well by a two-dimensional step function.
Hence, we follow the above mentioned works to employ a
step function W ∈ [0, 1]D×D to represent a graphon, where
D is a hyper-parameter.

3 Related Work
Fine-tuning strategies. Designing fine-tuning strategies
first attracts attention in computer vision (CV), which can
be categorized into model parameter regularization and fea-
ture regularization. L2_SP(Xuhong, Grandvalet, and Davoine
2018) uses L2 distance to constrain the parameters around
pre-trained ones. StochNorm (Kou et al. 2020) replaces
BN(batch normalization) layers in pre-trained model with
their StochNorm layers. DELTA (Li et al. 2019) selects fea-
tures with channel-wise attention to constrain. BSS (Chen
et al. 2019) penalizes small eigenvalues of features to prevent
negative transfer. However, there is only one work focusing
on promoting performance of downstream task during fine-
tuning phase specially for the graph structured data. GTOT-
Tuning (Zhang et al. 2022) presents an optimal transport-
based feature regularization, which achieves node-level trans-
port through graph structure. Moreover, the gap between
pre-train and fine-tune is also noted in L2P (Lu et al. 2021)
and AUX-TS (Han et al. 2021). Specifically, L2P leverages
meta-learning to adjust tasks during pre-training stage. AUX-
TS adaptively selects and combines auxiliary tasks with the
target task in fine-tuning stage, which means only one pre-
train task is not enough. However, they both require to use
the same dataset for both pre-train and fine-tune, and to in-
sert auxiliary tasks in pre-training phase , which indicates

they are not generally applicable. Unlike them, we focus on
the fine-tuning phase and propose that preserving generative
patterns of downstream graphs during fine-tuning is the key
to mine knowledge from pre-trained GNNs without altering
the pre-training process.
Graphon. Graphon has been studied intensively as a
mathematical object (Borgs et al. 2008, 2012; Lovász and
Szegedy 2006; Lovász 2012) and been applied broadly, like
graph signal processing (Ruiz, Chamon, and Ribeiro 2020b,
2021), game theory (Parise and Ozdaglar 2019), network sci-
ence (Avella-Medina et al. 2018; Vizuete, Garin, and Frasca
2021). Moreover, G-mixup (Han et al. 2022) is proposed to
conduct data augmentation for graph classification since a
graphon can serve as a graph generator. From the another
perspective of being the graph limit, (Ruiz, Chamon, and
Ribeiro 2020a) leverage graphon to analyse the transferabil-
ity of GNNs. Graphon, as limit of graphs, forms a natural
method to describe graphs and encapsulates the generative
patterns (Borgs and Chayes 2017). Thus, we incorporate the
graphon into the fine-tuning stage to preserve the generate pat-
terns of downstream graphs. In App § A.1, we provide more
detailed related work about graph pre-training and graphon.

4 G-TUNING
4.1 Framework Overview
Similar to our seminal results in Fig 1, recent research (Zhu
et al. 2021) has started to analyze the transfer performance
of a pre-trained GNN w.r.t. discrepancy between pre-train
and fine-tune graphs. However, the pre-training graphs are
typically not accessible during the fine-tuning phase. Thus,
G-TUNING aims to adapt the pre-trained GNN to the fine-
tuning graphs by preserving the generative patterns. During
fine-tuning, a pre-trained GNN Φ obtains latent representa-
tions H for downstream graphs Gt = {G1, ..., Gn} and feeds
them into task-specific layers fϕ to train with the fine-tuning
labels Y . For a specific graph Gi(A,X), the pre-trained node
embeddings H are obtained by pre-trained model Φ:

Ltask = LCE(fϕ(H), Y ), H = Φ(A,X), (2)

where Φ can be any pre-training backbone model, LCE is the
cross entropy classification loss and fϕ is a shallow neural
network fϕ : H → Ŷ .

However, the vanilla strategy may fail to improve fine-
tuning performance due to the large discrepancy between
pre-training and fine-tuning graphs, namely negative trans-
fer. To alleviate this, we propose to enable the pre-trained
GNN Φ to preserve the generative patterns of the downstream
graphs Gt by reconstructing their graphons W (overall work-
flow in Fig 2). However, the pre-trained model is inherently
biased towards the generative patterns of the pre-training
graphs. Consequently, at the begining of the fine-tuning, the
embeddings H also contain the bias from the pre-training
data. Thus, we need both the H and graph structure A of
downstream graph to reconstruct the graphon. Specifically,
we design a graphon reconstruction module Ω to reconstruct
the graphon Ŵ of each downstream graph Gi(A,X) ∈ Gt:

Ŵ = Ω(A,H), (3)
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However, the computation of oracle graphons W of real-
world graphs in continuous function form itself is in-
tractable (Han et al. 2022). Thus, the graphon reconstruction
module Ω approximates an estimated oracle graphon (i.e.
W ∈ [0, 1]D×D) for each downstream graph through Laux,
D is the size of oracle graphon. Finally, in the framework of
G-TUNING (Fig 2), we leverage both the downstream task
loss and our reconstruction loss to optimize the parameters
of pre-trained GNN encoder Φ, the layer fϕ and graphon
reconstruction module Ω as follows,

L = Ltask + λLG-TUNING(W, Ŵ ). (4)

where λ is a hyper-parameter of G-TUNING.

4.2 Approximating Oracle Graphon
In this section, we first discuss the calculation of the under-
lying graphon, denoted as W , given downstream graphs Gt.
Then we introduced proposed algorithm to reconstruct this
graphon as an auxiliary loss during the fine-tuning process.

Extensive research has been conducted on the methods for
estimating graphons (Airoldi, Costa, and Chan 2013; Chatter-
jee 2015; Pensky 2019; Ruiz, Chamon, and Ribeiro 2020a)
from observed graphs. In this paper, the oracle graphon
W used in Eq 4 can be estimated via structured Gromov-
Wasserstein barycenters (SGB) (Xu et al. 2021). Suppose
there are N observed graphs {Gn}Nn=1 and their adjacency
matrices {An}Nn=1, at each step t,

min
Tn∈Π(µ,µW )

d2gw,2 (Wt, An) , (5)

Wt+1 =
1

µWµ⊤
W

N∑
n=1

Tn
⊤AnTn, (6)

where Wt+1 ∈ [0, 1]D×D is calculated barycenters with the
optimal transportation plan {Tn}Nn=1 of 2-order Gromov-
Wasserstein distance d2gw,2. The probability measures µW is
estimated by merging and sorting the normalized node de-
grees in {An}Nn=1. Further details regarding the calculations
of d2gw,2 and the iterative procedure for estimating the oracle
graphon can be found in App § A.3.

After obtaining the oracle graphon W ∈ [0, 1]D×D from
the downstream graphs and the reconstructed graphon Ŵ ∈
[0, 1]M×M from the reconstruction module Ω, we also adopt
the Gromov-Wasserstein distance to measure the distance
between the two unaligned graphons. Formally, our p-order
GW distance is calculated as:

LG-TUNING(W, Ŵ ) = min
T∈Γ

∑
i,j,k,l

(Wi,k−Ŵj,l)
pTi,jTk,l, (7)

where Γ is the set of transportation plans that satisfy Γ =
{T ∈ RD×M

+ |T1M = 1D, T ⊺1D = 1M}. In each epoch,
an optimal T minimizes the transportation cost between two
graphons (W, Ŵ ). Fixing T , the graphon reconstruction mod-
ule Ω is optimized to minimize the GW discrepancy. We will
introduce the model design of Ψ in the next section for scal-
able training and inference.

4.3 Efficient Optimization of LG-TUNING

A straightforward way to approximate the graphon is to learn
a mapping function graph structure A and node embedding
H to the target W . For example, we can simply define the
graphon reconstruction module Ω in Eq 3 as a GNN or a shal-
low MLP. Suppose we have M graphs and each graph has at
most |V | nodes, brute-force graphon reconstruction from the
pre-trained node embeddings H ∈ R|V |×d requires a large
number of parameters, e.g., Ψ : R|V |×d → RM×M . Addi-
tionally, properties such as permutation-variance of graphons
are not guaranteed without a carefully designed architecture.

To this end, we first establish a theorem for graphon de-
composition and utilize it for efficient graphon approxima-
tion. Specifically, we propose that any graphon can be recon-
structed by a linear combination of graphon bases Bk ∈ B.
Theorem 1. ∀ W (x, y) ∈ WC+1, there exists C graphon
bases Bk(x, y) that satisfies W (x, y) =

∑C
k=1 αkBk(x, y)+

RC+1(x, y), where αi ∈ R and RC+1(x, y) is the remainder
of order C + 1.

W (x, y) =
∑C

k=0 αkBk(x, y) +RC+1. (8)

For every W ∈ WC+1, it has continuous partial derivatives
of order 0, ..., C + 1 at any point, so we call apply Taylor
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expansion at (x, y). See full proof at App § A.2. Then we
set the graphon basis, denoted as Bk : [0, 1]2 → [0, 1], to
keep the same size as the graphon Ŵ , i.e., Bk ∈ [0, 1]M×M .
According to the above theorem, instead of direct graphon
reconstruction, we can estimate the bases B and coefficients
α. Each coefficient αk reflects how close the corresponding
graphon basis Bk is to the graphon being approximated. To
summarize, we devise our graphon reconstruction module Ω
as another GNN to transform the encoded node representation
H and graph structure A into coefficients α = {α1, ..., αC}:

α = Ψ(A,H), (9)

where Ψ : (A,H) → RC
+ maps the embeddings H from

Eq 2 into C coefficients of graphon bases with
∑

αi =
1. G-TUNING also learns a set of graphon bases Bi ∈
RK×K ,Bi ∈ B to get the optimal bases to reconstruct the
oracle graphon W . Overall, the amount of the parameters can
be greatly reduced from O(|V |hM2) to O(C · (M2+ |V |d))
since C ≪ min{M2, |V |d}. It is worth noting that bases B
are graphons related with the structure {An}Nn=1 of down-
stream graphs. Therefore, we initialize each basis Bk as fol-
lows: (1) for each run we randomly select a downstream
graph Gi ∈ Gt and its adjacency matrix Ai; (2) sort the adja-
cency matrix in descending order of its node degrees; (3) ran-
domly draw a graphon with the size M from the sorted Ai as
the initialized bk. Moreover, we constrain the learbable bases
between [0, 1] by setting Bk = σ(bk) where σ is Sigmoid
function. Finally, as the Theorem 1 implies, the approximated
graphon Ŵ can be aggregated as,

Ŵ =
C∑

k=0

αkBk. (10)

Moreover, as the theory indicates, the number of bases
corresponds to the order of Taylor expansion (i.e., the more
accurate the approximation). In G-TUNING, we have two
major hyper-parameters: the number of learnable bases C and
graphon size M . The overall learning process of G-TUNING
can be found in Algorithm 1 from App § A.3.
Complexity Analysis. We now analyze the additional time
complexity of G-TUNING besides vanilla tuning. Suppose
|V | and |E| are the average number of nodes and edges, d is
the hidden dimension and C is number of graphon bases. The
total time complexity of G-TUNING includes two parts: (i)
the graphon decoder costs O(CM2 + |V |d) ; (ii) the oracle
graphon estimation costs O(|E|D+ |V |D2) (Xu et al. 2021),
where D is the size of oracle graphon. Thus, the overall
additional time complexity is O(|E|D + |V |D2 + CM2 +
|V |d), which is the same magnitudes with the vanilla tuning
process of O(|E|d+ |V |d) assuming M,D ≪ |V |.

4.4 Theoretical Analysis
In this section, we further illustrate the ability of G-TUNING
to capture the discriminative subgraphs present in the down-
stream graph Gt. We first give the definition of the discrimi-
native subgraph.
Definition 2 (Discriminative subgraph). A discriminative
subgraph FG of graph G with a label Y is the subgraph

F ⊆ G that minimize the information from G and maximize
the information to the label Y formulated as the optimization:

FG = argmax
F⊆G

[I(Y ;F )− βI(G;F )], (11)

where I(·; ·) denotes the mutual information and the positive
number β operate as a tradeoff parameter.

According to the definition, discriminative subgraphs are
the minimal subsets of subgraphs that determine the label of
a graph. For example, in the case of a molecular graph, the
benzene ring is a discriminative subgraph that distinguishes
benzene. Therefore, downstream tasks can benefit from the
ability to preserve such discriminative subgraphs. We provide
a theoretical insight below that G-TUNING is capable of
preserving discriminative subgraphs while reconstructing
graphons of downstream graphs.
Theorem 2. Given an arbitrary graph G, the oracle graphon
WG, the predicted graphon ŴG, and a discriminative sub-
graph FG, the upper bound of the difference between the
homomorphism density of FG in the oracle graphon WG and
that of the predicted graphon ŴG is decribed as

|t(FG, ŴG)− t(FG,WG)| ≤
e(FG)

C
||RC+1||∞, (12)

where e(F ) is the number of nodes in subgraph F and RC+1

is the remainder in Theorem 1.
See detailed proof at App § A.2. Assuming oracle graphon

captures the discriminative subgraphs at t(FG,WG), G-
TUNING is optimized to preserve these discriminative sub-
graphs during fine-tuning. Moreover, we discuss the general-
ization bound of G-TUNING in App § A.2.

5 Experiments
In this section, we answer the following questions:
Q1. (Effectiveness) Does G-TUNING improve the perfor-

mance of fine-tuning?
Q2. (Transferability) Can G-TUNING enable the better

transferability than baselines?
Q3. (Integrity) How does each component of G-TUNING

contribute to the performance?
Q4. (Efficiency) Can G-TUNING improve the performance

of fine-tuning at an acceptable time consumption?
Baselines. We implement several representative baselines
in computer vision that were originally designed for CNNs,
including StochNorm (Kou et al. 2020), DELTA and the ver-
sion with fixed attention coefficients (Feature-Map) (Li et al.
2019), L2_SP(Xuhong, Grandvalet, and Davoine 2018) and
BSS(Chen et al. 2019). To the best of our knowledge, there is
only one baseline dedicated to improving the fine-tuning of
GNNs, which is agnostic to the pre-training strategy, namely
GTOT-Tuning (Zhang et al. 2022). To validate the effective-
ness of reconstructing graphons, we introduce VGAE-Tuning
for comparison, which employs VGAE (Kipf and Welling
2016) as the auxiliary loss to reconstruct the adjacency matri-
ces of downstream graphs. We reproduce the baselines based
on the code released by the authors and set the hyperparame-
ters according to their released code and settings depicted in
their papers. More details can be found in App §A.4.
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BBBP Tox21 Toxcast ClinTox MUV HIV BACE Rank
Supervised 65.84±4.51 74.02±0.89 61.45±0.64 58.06±4.42 71.81±2.56 75.31±1.93 70.13±5.41 10.0

Vanilla Tuning 68.99±3.13 75.39±0.94 63.33±0.74 65.92±3.78 75.78±1.73 78.21±0.51 79.22±1.20 5.4

StochNorm 69.27±1.67 74.97±0.77 62.69±0.69 65.53±4.25 76.05±1.61 77.58±0.84 81.48±2.10 6.7
Feature Map 60.42±0.78 70.58±0.28 61.50±0.24 64.05±3.40 78.36±1.11 74.50±0.49 76.32±1.15 9.1

L2_SP 67.70±3.21 73.55±0.82 62.43±0.34 68.12±3.77 76.73±0.92 75.74±1.50 82.21±2.44 7.1
DELTA 67.79±0.76 75.22±0.54 63.34±0.58 72.11±3.06 80.18±1.13 77.49±0.88 81.83±1.17 4.1

BSS 68.02±2.76 75.01±0.71 63.11±0.49 70.75±4.98 77.92±2.01 77.63±0.83 82.48±2.10 4.6
GTOT-Tuning 70.04±1.48 75.20±0.94 62.89±0.46 71.77±5.38 79.82±1.78 78.13±1.13 82.48±2.18 3.6
VGAE-Tuning 71.69±0.51 75.79±0.41 63.93±0.38 68.63±1.30 77.70±1.43 77.50±0.13 77.83±0.64 4.6

Ours w/o Pre 65.91±2.54 70.09±0.73 59.79±0.62 61.04±2.55 73.39±1.88 75.55±2.06 81.63±0.71 9.4
Ours 72.59±0.32 75.80±0.29 64.25±0.27 74.64±4.30 75.84±1.97 78.33±0.67 84.79±1.39 1.3

Table 1: Mean and standard deviation of ROC-AUC(%) of fine-tuning on the same domain with pre-training dataset.

5.1 Fine-tuning GNNs
Setting. To answer Q1, we evaluate G-TUNING on the
molecular property prediction task to show its effective-
ness. Following the setting of (Hu et al. 2020a; Zhang et al.
2022), we use the model pre-trained by unsupervised con-
text prediction task as the backbone model. Specifically, we
pre-train GIN (Xu et al. 2019) by self-supervised Context
Prediction task on the ZINC15 dataset with 2 million unla-
beled molecules (Sterling and Irwin 2015). Next, we perform
fine-tuning of the backbone model on 7 binary classification
datasets obtained from MoleculeNet (Wu et al. 2018). We
use the scaffold split at an 8:1:1 ratio. Since our framework
is agnostic to the backbone GNNs, we focus on evaluating
whether our model achieves better fine-tuning results. For
each dataset, we run 5 times and report the average ROC-
AUC with the corresponding standard deviation.
Results. Tab 1 shows that G-TUNING achieves 6 best per-
formance among 7 datasets against the baselines, taking a
top average rank. We notice that constraining the embedding
from pre-trained model like Feature-Map or DELTA some-
times bring worse performance than vanilla tuning. From
the comparison between supervised learning and Ours w/o
Pre, although there might be occasional instances of slight
performance drops when applying the G-TUNING loss to
supervised learning, the majority of supervised training ex-
periences benefits from G-TUNING loss. From the compar-
ison between vanilla tuning and the last two rows of the
table, the performance of G-TUNING without pre-training is
lower than that with pre-training but sometime better than the
vanilla tuning. The results generally prove that in the case that
datasets come from the same domains, G-TUNING can com-
pensate for structural divergence by preserving generative
patterns and lead to better performance.

5.2 Fine-tuning GNNs Across Domains
Settings. To answer Q2, we propose to evaluate G-TUNING
in the cross-domain setting where the pre-training and down-
stream datasets are not from the same domains. It is a more
challenging yet more realistic setting (Qiu et al. 2020; You
et al. 2020) due to the larger structural divergence which
can in turn degrade the performance. Therefore, we adopt

GCC (Qiu et al. 2020) as the backbone model and its sub-
graph discrimination as the pre-train task. Following the set-
ting of GCC, we pre-train on 7 different datasets ranging
from academia to social domains, and evaluate our approach
on 7 downstream graph classification benchmarks: IMDB-M,
IMDB-B, MUTAG, PROTEINS, ENZYMES, MSRC_21 and
RDT-M12K from the TUDataset (Morris et al. 2020). These
datasets cover a wide range of domains including movies,
chemistry, bioinformatics, vision graphs and social network.
We report the results under 10-fold cross-validation.
Results. From Tab 2, we find that our model outperforms
all baselines on 6 out of 7 datasets and presents competitive
results on MUTAG (1.92% lower than the best). G-TUNING
improves performance on PROTEINS by 7.63% and 4.71%
when compared to vanilla tuning and the second best base-
line respectively. We can observe a more substantial improve-
ment of G-TUNING compared with the previous experiment
(Tab 1), because we explicitly preserve the generative pat-
terns. Although GTOT also incorporates structural informa-
tion, it sometimes even performs worse than vanilla tuning
(i.e. PROTEINS and ENZYMES). Generally, G-TUNING
clearly demonstrates its effectiveness when pre-training and
fine-tuning graphs exhibit large structural divergence.

Figure 3: Ablation study on G-TUNING.

5.3 Model Ablation and Hyper-parameter Study

Model ablation study. To answer Q3, we choose 2 datasets
from above 2 experiments to perform ablation study (Fig 3).
Across four datasets, we observe G-TUNING always out-
performs “Direct-Rec”. Next, we compare different GNN
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IMDB-M IMDB-B MUTAG PROTEINS ENZYMES MSRC_21 RDT-M12K Rank
Supervised 36.67±6.67 52.40±7.20 82.89±6.16 63.51±3.60 20.50±4.02 7.45±3.52 38.09±0.56 10.1

Vanilla Tuning 50.20±2.72 72.10±3.65 83.45±5.71 64.42±4.91 21.33±5.62 7.99± 2.39 40.53±1.21 6.6

StochNorm 49.87±3.11 72.20±2.99 82.40±7.95 64.08±3.61 23.33±4.25 9.08±3.21 41.02±0.98 6.0
Feature Map 50.87±2.89 72.90±2.70 82.95±7.80 63.06±4.80 22.67±4.78 9.77±4.30 40.74±1.26 5.6

L2_SP 51.07±2.11 71.90±2.59 82.98±3.91 65.95±4.57 21.50±4.50 10.29±3.91 38.36±0.88 6.0
DELTA 50.67±2.81 71.80±3.99 82.98±6.12 63.96±5.35 22.33±5.01 10.48±3.84 39.87±1.47 6.6

BSS 47.35±1.76 73.20±3.25 84.56±5.52 65.58±6.79 23.41±4.79 10.47±3.29 39.90±1.39 4.7
GTOT-Tuning 51.13±2.72 72.30±2.93 87.50±6.94 62.89±3.88 20.67±5.49 8.32±3.92 39.90±0.85 6.0
VGAE-Tuning 49.27±2.37 72.50±2.91 80.35±6.16 67.34±3.52 19.33±7.61 8.88±2.75 41.43±1.88 6.6

Ours w/o Pre 49.27±3.09 72.10±4.99 83.04±3.09 69.88±3.30 20.17±4.37 7.63±2.95 40.92±1.78 6.7
Ours 51.80±2.31 74.30±3.29 86.14±5.50 72.05±3.80 26.70±4.28 11.01±2.08 42.80±1.62 1.1

Table 2: Mean and standard deviation of Accuracy(%) of fine-tuning on different domains from pre-training datasets.

Figure 4: Performance & time varying # graphon bases.

architectures (two-layered MLP, GCN(Welling and Kipf
2016), GraphSAGE(Hamilton, Ying, and Leskovec 2017)
and GAT (Veličković et al. 2018)) with the default backbone
(i.e. GIN (Xu et al. 2019)). In Fig 3, we observe MLP-encoder
performs the worst, which proves the effectiveness of incorpo-
rating structural information to reconstruct graphon. Lastly,
we replace our loss with KL divergence, Wasserstein dis-
tance and cosine similarity. We can observe that our GW
discrepancy loss significantly outperforms the others. Since
KL divergence does not satisfy the commutative law, it is
difficult to converge when reconstructing graphons. Though
Wasserstein distance is also based on optimal transport, it
fails to capture the geometry between two graphons.
Hyper-parameter Study. As analyzed in Theorem 1, more
bases can represent more information and better approximate
the oracle graphon. Fig 4 shows that the performance in-
creases as the number of bases grows from 2 to 32. However,
when the number keep increasing, the improvement becomes
smaller.We attribute this phenomenon to the optimization
difficulty brought by the increased number of parameters.
Therefore, G-TUNING only requires a small amount of bases
to improve the fine-tuning performance.

5.4 Running Time
To answer Q4, we conduct a running time comparison (Tab 3).
The time complexity mainly consists of two parts: (i) the
graphon approximation from the pre-trained model and (ii)
the oracle graphon estimation. Please note that G-TUNING
incurs additional time only during the training process of

BBBP MUV HIV

# graphs 2039 93087 41127
Vanilla Tuning 1.95±0.12 81.56±3.21 15.62±0.47

L2_SP 2.22±0.08 118.64±11.41 86.06±4.23
DELTA 2.04±0.10 109.69±14.22 99.13±0.21

Feature Map 1.91±0.16 113.62±11.09 31.69±5.20
BSS 2.09±0.20 114.84±12.50 72.04±5.81

StochNorm 2.05±0.13 120.37±13.24 67.26±5.83
GTOT 1.97±0.11 94.62±3.90 59.32±0.97

VGAE-Tuning 5.67±0.07 238.98±15.78 95.59±3.68
G-TUNING 4.36±0.19 198.04±15.82 73.81±1.35

Oracle W Est 55.70% 56.65% 63.88%

Table 3: The Comparison of Running time.

the fine-tuning stage, while the rest of the time consump-
tion is the same as the vanilla tuning. As indicated by the
number of graphs in the first row, it is evident that as the
number of graphs increases, the time consumption of our
method becomes more comparable to that of other baselines.
It means our method exhibits excellent scalability. Thus, the
time consumption of our method is kept in an acceptable
range. Moreover, the last row shows the mean proportion of
the oracle graphon estimation during the complete training
process in the fine-tuning stage. It is evident that a significant
portion of time is dedicated to the oracle graphon estima-
tion. If the graphon estimation research advances and can run
faster, our method will also benefit from corresponding speed
improvements. Due to the space limit, please refer to other
experiments in App § A.5.

6 Conclusion
In this paper, we attribute the unsatisfactory performance
of the pre-training on graphs to the structural divergence
between pre-training and downstream datasets. Moreover,
we identify the cause of this divergence as the discrepancy
of generative patterns between pre-training and downstream
graphs. Building upon our theoretical analysis, we propose
G-TUNING, a GNN fine-tuning strategy based on graphon,
to adapt the pre-trained model to the downstream dataset. Fi-
nally, we empirically prove the effectiveness of G-TUNING.
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Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò,
P.; and Bengio, Y. 2018. Graph Attention Networks. In ICLR.
Vizuete, R.; Garin, F.; and Frasca, P. 2021. The Laplacian
spectrum of large graphs sampled from graphons. IEEE
Transactions on Network Science and Engineering, 8(2):
1711–1721.
Welling, M.; and Kipf, T. N. 2016. Semi-supervised classifi-
cation with graph convolutional networks. In J. International
Conference on Learning Representations (ICLR 2017).
Wu, Z.; Ramsundar, B.; Feinberg, E. N.; Gomes, J.; Ge-
niesse, C.; Pappu, A. S.; Leswing, K.; and Pande, V. 2018.
MoleculeNet: a benchmark for molecular machine learning.
Chemical science, 9(2): 513–530.
Xia, J.; Zhu, Y.; Du, Y.; and Li, S. Z. 2022. A survey of
pretraining on graphs: Taxonomy, methods, and applications.
arXiv preprint arXiv:2202.07893.
Xu, H.; Luo, D.; Carin, L.; and Zha, H. 2021. Learning
graphons via structured gromov-wasserstein barycenters. In
Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, 10505–10513.
Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019. How
Powerful are Graph Neural Networks? In ICLR.
Xuhong, L.; Grandvalet, Y.; and Davoine, F. 2018. Explicit
inductive bias for transfer learning with convolutional net-
works. In International Conference on Machine Learning,
2825–2834. PMLR.
You, J.; Ying, R.; Ren, X.; Hamilton, W.; and Leskovec, J.
2018. Graphrnn: Generating realistic graphs with deep auto-
regressive models. In International conference on machine
learning, 5708–5717. PMLR.
You, Y.; Chen, T.; Sui, Y.; Chen, T.; Wang, Z.; and Shen,
Y. 2020. Graph contrastive learning with augmentations.
NeurIPS.
Zhang, J.; Xiao, X.; Huang, L.-K.; Rong, Y.; and Bian, Y.
2022. Fine-Tuning Graph Neural Networks via Graph Topol-
ogy Induced Optimal Transport. In Raedt, L. D., ed., Pro-
ceedings of the Thirty-First International Joint Conference on
Artificial Intelligence, IJCAI-22, 3730–3736. International
Joint Conferences on Artificial Intelligence Organization.
Main Track.
Zhu, Q.; Yang, C.; Xu, Y.; Wang, H.; Zhang, C.; and Han,
J. 2021. Transfer learning of graph neural networks with
ego-graph information maximization. Advances in Neural
Information Processing Systems, 34: 1766–1779.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9061


