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Abstract
It is important to automatically discover the underlying tree-
structured formulae from large amounts of data. In this paper,
we examine learning linear temporal logic on finite traces
(LTLf ) formulae, which is a tree structure syntactically and
characterizes temporal properties semantically. Its core chal-
lenge is to bridge the gap between the concise tree-structured
syntax and the complex LTLf semantics. Besides, the learning
quality is endangered by explosion of the search space and
wrong search bias guided by imperfect data. We tackle these
challenges by proposing an LTLf encoding method to param-
eterize a neural network so that the neural computation is able
to simulate the inference of LTLf formulae. We first identify
faithful LTLf encoding, a subclass of LTLf encoding, which
has a one-to-one correspondence to LTLf formulae. Faithful
encoding guarantees that the learned parameter assignment
of the neural network can directly be interpreted to an LTLf

formula. With such an encoding method, we then propose an
end-to-end approach, TLTLf, to learn LTLf formulae through
neural networks parameterized by our LTLf encoding method.
Experimental results demonstrate that our approach achieves
state-of-the-art performance with up to 7% improvement in
accuracy, highlighting the benefits of introducing the faithful
LTLf encoding.

Introduction
Formulae with tree structures widely exist in data mining
and knowledge management, e.g., linear temporal logic
(LTL) (Luo et al. 2022) and regular expression (Ye et al.
2023). Therefore, it is important to automatically discover
the underlying tree structured formulae from large amounts
of data. In this paper, we focus on linear temporal logic on
finite traces (LTLf ) formulae (Baier and McIlraith 2006; Gi-
acomo and Vardi 2013), which are tree-structured formulae
characterizing temporal properties. LTLf has been success-
fully used in many applications, typically, characterizing the
high-level behaviors of a system based on observed traces
in planning (Neider and Gavran 2018). For example, LTLf
can specify that an agent keeps walking forward until (U) it
encounters a block (p1 U p2), where p1 and p2 express “agent
walking forward” and “agent encountering a block”, respec-
tively. Besides planning, learning LTLf formulae can also be
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applied in apprenticeship learning (Kasenberg and Scheutz
2017), behavior classification (Camacho and McIlraith 2019),
and explainable artificial intelligence (Kim et al. 2019).

Learning LTLf formulae is a challenging problem. The
core challenge is to bridge the gap between the concise tree-
structured syntax and the complex LTLf semantics. Besides,
a formula with arbitrary form has only semantic constraints
and no syntactic constraints. Finding such a formula probably
leads to explosion of the search space. On the other hand,
imperfect data, e.g., incorrect labels (Kim et al. 2019), tend to
introduce wrong search bias far away from the target formula.

To tackle the above challenges, some approaches (Cama-
cho and McIlraith 2019; Luo et al. 2022) modeled the relation
between syntax and semantics by introducing an interme-
diate representation, but they need to pay additional costs
from learning the over-expressive intermediate representation.
There are also some approaches (Neider and Gavran 2018;
Gaglione et al. 2021) that uniformly encoded syntactic and
semantic constraints as Boolean satisfiability problem (SAT)
or maximum satisfiability problem (MaxSAT), but they suffer
from the high computational complexity of SAT or MaxSAT.
Other approaches (Lemieux, Park, and Beschastnikh 2015;
Shah et al. 2018; Kim et al. 2019) directly encoded syntac-
tic constraints, exploiting well-designed heuristics to search
for formulae satisfying semantic constraints. However, the
heuristics are limited in scope and are time-consuming. In
confront of imperfect data, some approaches (Neider and
Gavran 2018; Camacho and McIlraith 2019) directly ignored
them, and others (Lemieux, Park, and Beschastnikh 2015;
Shah et al. 2018; Kim et al. 2019) limited the hypothesis
space by templates.

In this paper, we propose an LTLf encoding method for
faithfully bridging the neural network inference and the LTLf
inference. An LTLf encoding is a parameter assignment of
the target neural network ensuring that, under certain simple
conditions, an LTLf formula is able to be directly interpreted
from the neural network. We identify the conditions where
LTLf encodings and LTLf formulae are one-to-one corre-
sponding, and refer to the encoding under these conditions
as faithful LTLf encoding, which provides a compact en-
coding of the LTLf syntax. We model the LTLf semantics
via designing an inference process with LTLf encoding; in
other words, inference with LTLf encoding simulates the
inference of LTLf formulae. Based on this theoretical re-
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sult, we propose an end-to-end approach, TLTLf, to learn
LTLf formulae. Specifically, TLTLf learns a neural network
that is parameterized by the LTLf encoding method, and
subsequently interprets an LTLf formula from the learned
parameter assignment of the neural network.

Following the assessment of the state-of-the-art (SOTA) ap-
proach (Luo et al. 2022), we evaluate TLTLf across datasets
with and without imperfect data. Experimental results show
that TLTLf achieves SOTA performance and improves the
accuracy by up to 7% compared with the SOTA approach.
Besides, the LTLf formula learnt by TLTLf is highly faithful
to the network from which it is extracted, giving the same sat-
isfiability results over 95% traces. Following the work (Kim
et al. 2019; Luo et al. 2022), we also evaluate TLTLf on
imperfect data generated by assigning incorrect labels to a
subset of the original data. Results demonstrate that TLTLf
still outperforms other approaches on imperfect data.

Related Work
Learning LTL formulae from positive and negative
traces. Neider and Gavran (2018) provided two methods
to learn LTL formulae, one based on SAT and the other based
on the decision tree. Besides, Camacho and McIlraith (2019)
designed a SAT-based method to learn formulae from the
symbolic state representation of LTL formulae. However,
both studies are limited by an assumption that the training
data are precise. Kim et al. (2019) handled imperfect data
based on Bayesian inference. Their use of templates limits
the hypothetical space of formulae, preventing the proposed
method from learning arbitrary formulae. Overall, these ap-
proaches cannot handle imperfect data and learn arbitrary
formulae simultaneously.

Recently, several studies have realized the importance
of learning arbitrary LTLf formulae from imperfect data.
Gaglione et al. (2021) proposed a MaxSAT-based approach
to tolerate imperfect data, but the scalability is limited by
the computational complexity of the MaxSAT solver. The
work (Luo et al. 2022) is the closest to this work. Based on
a theoretical result that the graph neural network (GNN) in-
ference is able to simulate the LTLf inference in checking
if a trace is satisfied, Luo et al. (2022) first trained a GNN
classifier for the trace satisfiability problem and then inter-
preted LTLf formulae from the model parameters. However,
they do not guarantee the faithfulness between the GNN infer-
ence and the LTLf inference, i.e., the result of the interpreted
LTLf formula is probably different from that of the GNN
classifier in checking if a trace is satisfied. This is because
they only proved that, given a formula, a GNN classifier can
always be constructed to simulate LTLf inference, but not
vice versa, which means that the expressive power of a GNN
classifier is stronger than an LTLf formula. It results in addi-
tional costs from learning the over-expressive GNN classifier.
In contrast, the interpreted LTLf formula in this work is more
faithful with the learnt neural network.
Learning temporal logic formulae from other forms of
data. Some work learns temporal logic formulae from other
forms of data, such as Markov decision process (Kasenberg
and Scheutz 2017) and only positive traces (la Rosa and McIl-
raith 2011; Lemieux, Park, and Beschastnikh 2015; Le and

Lo 2015; Shah et al. 2018; Cao et al. 2018). In the business
process modeling, some studies (Maggi, Bose, and van der
Aalst 2012; Ciccio, Mecella, and Mendling 2013; Maggi
et al. 2018; Leno et al. 2020) use temporal logic to model the
declarative process model learned from the event log, which
is viewed as a kind of positive traces.
Learning other formal languages. Our work is also rele-
vant to learning logical representations, such as regular lan-
guage (Angluin 1987; Giantamidis and Tripakis 2016; Bollig
et al. 2009; Angluin, Eisenstat, and Fisman 2015; Fiterau-
Brostean et al. 2017; Gabel and Su 2008, 2010; Ye et al.
2023) and other forms of temporal formulae (Asarin et al.
2011; Jin et al. 2015; Bombara et al. 2016; Xu et al. 2016;
Xu and Julius 2016; Kong, Jones, and Belta 2016; Arif et al.
2020; Brunello, Sciavicco, and Stan 2020; Roy, Fisman, and
Neider 2020; Xu et al. 2019; Maggi, Montali, and Peñaloza
2020). Although the expressive power of temporal formulae
is weaker than that of regular languages, learning temporal
formulae is more compact and easy to understand (Cama-
cho and McIlraith 2019). Our approach will potentially be
extended to learn formulae in other formal languages.
Learning tree structure. There have been various studies
on learning tree structure. They can be divided into two main
categories. One is to extract a latent tree structure for each
example to improve the performance. For example, in nature
language processing (NLP), the syntactic dependency tree of
the sentence is extracted to improve the performance on tasks
like semantic role labeling (Shi, Malioutov, and Irsoy 2020;
Zhang et al. 2022) and sentiment analysis (Li et al. 2021;
Hou et al. 2021). Syntactic dependency parsing is a classical
problem in NLP and there have been some mature tools like
the natural language toolkit (Bird, Klein, and Loper 2009).
For the neural approach, Chen and Manning (2014) used
three types of operations of a stack and a queue to construct
the syntactic dependency tree and used a neural network
to predict the operation in each construction step. The other
category is to design an approach to learning the tree structure
of specific semantics. Fargier, Gimenez, and Mengin (2018)
proposed a greedy learning algorithm to learn lexicographic
preference trees from positive examples. Sun et al. (2020) and
Xie et al. (2021) used a tree-structured decoder to generate
the abstract syntax tree of code from the natural language
description. Ye et al. (2023) used a differentiable approach to
learn the syntax tree of regular expressions from both positive
and negative examples. Compared with the above studies,
our approach learns the tree-structured LTLf formulae with
a completely different tree structure from both positive and
negative examples.

Preliminaries
Linear temporal logic. Linear temporal logic (LTL) (Pnueli
1977) is a modal logic typically used to express temporally
extended constraints over state trajectories. Derived from
LTL, LTL interpreted over finite traces (Baier and McIlraith
2006; Giacomo and Vardi 2013) is referred to as finite LTLf .
The syntax of LTLf for a finite set of atomic propositions P is
built up of > (true) and ⊥ (false), standard logical operators
(∧ and ¬), and temporal logical operators next (X) and until
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(U), described as follows:

φ := p | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1Uϕ2,

where p ∈ P∪{>,⊥} and ϕ, ϕ1, and ϕ2 are LTLf formulae.
The other operators or (∨), weak next (N), release (R),

eventually (F), and always (G) are commonly used, but they
can be defined using the above fundamental operators, i.e.,
ϕ1 ∨ ϕ2 := ¬(¬ϕ1 ∧ ¬ϕ2), Nϕ := ¬X> ∨ Xϕ, ϕ1Rϕ2 :=
¬(¬ϕ1U¬ϕ2), Fϕ := >Uϕ, and Gϕ := ¬(>U¬ϕ). For
brevity, we only consider the fundamental operators in this
paper, but our approach can be extended to handle all opera-
tors of LTLf .

The prefix form of an LTLf formula φ, denoted by pre(φ),
is defined recursively as follows:

pre(φ) =

{
p, φ = p ∈ P,
αpre(φ1), φ = αφ1, α ∈ {¬,X},
βpre(φ1)pre(φ2), φ = φ1βφ2, β ∈ {∧,U}.

(1)
The syntax tree of an LTLf formula φ, denoted by T (φ),

is defined as follows:
• if φ = p, then T (φ) is a tree with a single node vp.
• if φ = βφi, where β ∈ {¬,X}, then the root node of
T (φ) is vβ and it has a unique subtree T (φi).

• if φ = φiβφj , where β ∈ {∧,U}, then the root node of
T (φ) is vβ and it has two subtrees, where the left subtree
is T (φi) and the right subtree is T (φj).

The node sequence obtained by preorder traversal of
all nodes in an LTLf syntax tree T (φ), denoted by
pretravel(T (φ)), is defined as follows:

pretravel(T (φ)) =
vp, φ = p ∈ P.
vα, pretravel(T (φ1)), φ = αφ1, α ∈ {¬,X}.
vβ , pretravel(T (φ1)),
pretravel(T (φ2)), φ = φ1βφ2, β ∈ {∧,U}.

(2)
LTLf formulae are interpreted over finite traces of

propositional states. A finite trace is represented by π =
s0, s1, . . . , sn, where st ∈ 2P is a state at time t. For every
state si of π and every p ∈ P, p holds if p ∈ si or ¬p holds
otherwise. The traces mentioned in this paper are finite. The
size of π is the number of states of π, denoted by |π|. By πi
we denote a sub-trace of π beginning from the state si. Let π
be a trace and |π| = n. The satisfaction relation |= is defined
as follows:

πi |= p iff p ∈ si,
πi |= ¬φ iff πi 6|= φ,
πi |= φ1 ∧ φ2 iff πi |= φ1 and πi |= φ2,
πi |= Xφ iff i < n and πi+1 |= φ,
πi |= φ1Uφ2 iff ∃i ≤ k ≤ n, πk |= φ2 and

∀i ≤ j < k, πj |= φ1.

where φ, φ1, φ2 are LTLf formulae, and p ∈ P ∪ {>,⊥}.
Learning LTLf formulae. We focus on the problem of
learning a target LTLf formula to characterize the behaviors
observed in a set of positive traces (Π+), while to exclude
behaviors observed in a set of negative traces (Π−). The
target formula is an LTLf classifier over traces aiming to

separate the provided positive and negative traces. We de-
note Π = Π+ ∪ Π−. We define lab : Π → {0, 1}: for any
e ∈ Π, lab(e) = 1 if e ∈ Π+, or lab(e) = 0 if e ∈ Π−. The
accuracy of an LTLf formula φ for Π is defined as:

acc(φ,Π) =
|{π ∈ Π+|π |= φ}|+ |{π ∈ Π−|π 6|= φ}|

|Π|
.

(3)

LTLf Encoding and Inference
The key part of TLTLf is a neural network parameterized by
the LTLf encoding method. So in this section, we first show
the definition of LTLf encoding to parameterize TLTLf, as
well as the model structure of TLTLf for inference of the
satisfaction relation over traces. Afterwards, we introduce
a subclass of LTLf encoding, namely faithful LTLf encod-
ing, and show a one-to-one correspondence between LTLf
formulae and faithful LTLf encodings.

Model Structure of TLTLf
The input of TLTLf is a trace and its output is the satis-
faction relation between TLTLf and a trace. The trainable
parameters of TLTLf are given by Definition 1.

Definition 1 Let P be a set of atomic propositions and
L ∈ N. The parameter set of TLTLf of size L is defined
as Γ = {(Γright)i,j ∈ R|1 ≤ i ≤ L − 2, i + 2 ≤ j ≤
L} ∪ {(Γatom)i,j ∈ R|1 ≤ i ≤ L, 1 ≤ j ≤ |P|} ∪
{(Γ¬)i, (Γ∧)i, (ΓX)i, (ΓU)i, (Γnone)i ∈ R|1 ≤ i ≤ L}. For
brevity, we also reuse Γ to denote an assignment of the pa-
rameter set Γ of TLTLf.

To establish a relationship between parameters of TLTLf
and an LTLf syntax tree, we confine that every parameter in
Γ be assigned a value between 0 and 1. We call a parameter
assignment with this restriction an LTLf encoding, formally
defined below.

Definition 2 An LTLf encoding of TLTLf of size L is de-
fined as θ = {(θright)i,j ∈ R(0,1)|1 ≤ i ≤ L − 2, i + 2 ≤
j ≤ L} ∪ {(θatom)i,j ∈ R(0,1)|1 ≤ i ≤ L, 1 ≤ j ≤ |P|} ∪
{(θ¬)i, (θ∧)i, (θX)i, (θU)i, (θnone)i ∈ R(0,1)|1 ≤ i ≤ L},
where R(0,1) denotes the real value range from 0 to 1.

An LTLf encoding is able to represent an LTLf syntax tree.
Let T (φ) be an LTLf syntax tree and pretravel(T (φ)) =
v1, v2, ..., vL. For all i ∈ [1, L], the parameters θ¬, θ∧, θX,
θU and θatom determine whether vi is v¬, v∧, vX, vU and vp
for p ∈ P, respectively. We introduce θnone to encode a null
node so as to represent a smaller syntax tree using an LTLf
encoding of a greater size. For example, if we want to use an
LTLf encoding of size L+1 to represent T (φ), we should set
(θnone)L+1 to 1. The parameter (θright)i,j is used to represent
whether the right child of vi is vj . Since pretravel(T (φ)) is
the prefix form of φ, the left or the only child of vi should be
vi+1 if vi has children. We use the following Example 1 to
illustrate an LTLf encoding.

Example 1 Let P = {p1, p2} and θ be an LTLf encod-
ing of TLTLf of size 3 where (θ¬)1 = 0.8, (θX)1 =
0.3, (θatom)2,1 = (θnone)3 = 1 and other parameters are
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assigned 0. The LTLf formula that θ represents is the most
likely to be ¬p1 while it may also be Xp1 since (θX)1 = 0.3.

In fact, an arbitrary parameter assignment of TLTLf can
be converted to an LTLf encoding of TLTLf of the same
size, as shown in the following equation.

(θright)i,j = e(Γright)i,j

(ηright)i
, (θatom)i,j = e(Γatom)i,j

(ηop)i
,

(θ¬)i = e(Γ¬)i

(ηop)i
, (θ∧)i = e(Γ∧)i

(ηop)i
,

(θX)i = e(ΓX)i

(ηop)i
, (θU)i = e(ΓU)i

(ηop)i
, (θnone)i = e(Γnone)i

(ηop)i
,

(4)
where

(ηright)i =
∑L
j=i+2 e

(Γright)i,j +
∑|P|
j=1 e

(Γatom)i,j

+e(Γnone)i + e(Γ¬)i + e(ΓX)i ,

(ηop)i =
∑|P|
j=1 e

(Γatom)i,j + e(Γnone)i

+e(Γ¬)i + e(Γ∧)i + e(ΓX)i + e(ΓU)i .
(5)

Thus, TLTLf is defined as a neural network parameter-
ized by Definition 1, which is then transformed to an LTLf
encoding by Equation (4). Given a trace π, TLTLf com-
putes a satisfaction relation between the LTLf encoding of
TLTLf and the trace. Such an inference process of TLTLf
is formalized in Definition 3.
Definition 3 Let P be a set of atomic propositions and Γ
a parameter assignment of TLTLf of size L ∈ N. θ is
constructed from Γ by Equation (4). Given a trace π =
s0, s1, ..., sn over P, TLTLf computes satisfaction vectors
xi ∈ RL (where 0 ≤ i ≤ n) defined as follows:

(xi)j = σ(
∑|P|
k=1(θatom)j,kI(pk ∈ si) + (θX)j(xi+1)j+1

+(θ¬)jσ(1− (xi)j+1) + (θ∧)jσ((xi)j+1 + (ri)j − 1)
+(θU)j((ri)j + σ((xi)j+1 + (xi+1)j − 1))),

(6)
where

(ri)j =
∑j+2
k=L(θright)j,k(xi)k,

σ(x) = min(1,max(0, x)),
(7)

and (xi)L+1 = 0, (xn+1)k = 0 for all 1 ≤ k ≤ L+ 1, and
I(C) returns 1 if C is satisfied or 0 otherwise. By ESat(θ, π)
we denote the satisfaction relation between θ and π. Finally
TLTLf outputs ESat(θ, π) as (x0)1.

Intuitively, (xi)j represents whether πi = si, si+1, ..., sn
satisfies the j-th sub-formula of the formula that θ represents.
The computation of (xi)j is based on the definition of the
satisfaction relation of LTLf . Specifically, we first calculate
(ri)j , which denotes whether the right sub-formula of the j-th
sub-formula satisfies πi. Here θright plays a role of right-child
selection. In Equation (6), θ¬, θ∧, θX, θU are used to select
operators while θatom is used to select atomic propositions.
For example, if the j-th sub-formula is of the form of ¬φj+1,
then the equation can be simplified to (xi)j = σ(1−(xi)j+1),
which means that the j-th sub-formula satisfies πi if its only
child sub-formula does not satisfy πi. We use the following
Example 2 to illustrate Definition 3.
Example 2 Let π = {p1, p2}, {p2} and θ be the LTLf en-
coding of TLTLf given in Example 1. Then the satisfaction
vector is x0 = [0, 1, 0], x1 = [0.8, 0, 0]. The inference output
is ESat(θ, π) = (x0)1 = 0.

The Faithful Subclass of LTLf Encoding
As shown in Example 1, not every LTLf encoding corre-
sponds to an LTLf formula. So in the following we introduce
the notion of faithful LTLf encoding by adding additional
constraints to ensure the correspondence.

Definition 4 Let θ be an LTLf encoding of TLTLf of size L.
θ is said to be faithful if it satisfies the following conditions:
1. ∀γ ∈ θ : γ = 0 ∨ γ = 1.
2. ∀i ∈ [1, L] : (θnone)i+

∑|P|
j=1(θatom)i,j+(θ¬)i+(θ∧)i+

(θX)i + (θU)i = 1.
3.

∑|P|
j=1(θatom)L,j + (θnone)L = 1 ∧ ∀i ∈ [1, L − 1] :∑L
j=i+2(θright)i,j+(θnone)i+

∑|P|
j=1(θatom)i,j+(θ¬)i+

(θX)i = 1.
4. (θnone)1 = 0∧∀i ∈ [2, L] :

∑i−2
j=1(θright)j,i+ (θ¬)i−1 +

(θ∧)i−1 + (θX)i−1 + (θU)i−1 + (θnone)i = 1.
5. ∀i ∈ [1, L− 1] : (θnone)i+1 ≥ (θnone)i.
6. ∀i ∈ [1, L), ∀j ∈ (i, L], ∀t ∈ (i, j), ∀t′ ∈ (j, L] :

(θright)i,j + (θright)t,t′ ≤ 1.

Intuitively, Condition 1 ensures all the parameters are as-
signed Boolean values. Condition 2 forces each node on the
syntax tree to represent only one operator or one atomic
proposition. Condition 3 restricts the number of children of
a node according to the operator. If this node represents a
binary operator, it will not represent other operators or atomic
propositions because of Condition 2. Thus this node will have
exactly one right child according to Condition 3. Besides, the
node vL has no child node so it must represent an atomic
proposition or must not be used. Condition 4 restricts the
number of fathers of a node. Except for the root node that
has no father, every valid node vi (where (θnone)i = 0) has
exactly one father node. Condition 5 is used to restrict that
null nodes vi (where (θnone)i = 1) are placed continuously
at the end of the node sequence obtained by preorder traversal
of all nodes. Condition 6 restricts that, if vj is the right child
of vi, then every node vt between them does not have a right
child v′t such that t′ > j.

The faithful LTLf encoding ensures the LTLf formula that
it represents to be unique, as shown in the following example.

Example 3 Consider the LTLf encoding θ of TLTLf given
in Example 1 again. A faithful LTLf encoding closed to θ is θ̂,
where (θ̂¬)1 = 1, (θ̂X)1 = 0, (θ̂atom)2,1 = 1, (θ̂none)3 = 1
and other parameters are assigned 0. The LTLf formula that
θ̂ represents is unique, which is ¬p1.

Faithful LTLf Encoding vs LTLf Formula
For an arbitrary LTLf formula φ, we introduce a function to
encode φ into a parameter assignment of TLTLf of an equal
or greater size, formalized in the following Definition 5.

Definition 5 Let φ be an LTLf formula, T (φ) its syntax tree,
and pretravel(T (φ)) = v1, v2, ..., vL. The function for en-
coding φ into a parameter assignment of TLTLf of size
L′ ≥ L, denoted by θφ(L′), is defined as follows:

• ∀1 ≤ i ≤ L : (θright)i,j = 1 if vj is the right child of vi
and (θright)i,j = 0 otherwise.
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• ∀1 ≤ i ≤ L : (θatom)i,j = 1 if vi = vpj and
(θatom)i,j = 0 otherwise.

• ∀1 ≤ i ≤ L : (θβ)i = 1 if vi = vβ and (θβ)i = 0
otherwise, where β ∈ {¬,∧,X,U}.

• ∀L < i ≤ L′ : (θnone)i = 1, (θright)i,j =
0, (θatom)i,j = 0, (θβ)i = 0, where β ∈ {¬,∧,X,U}.

Example 4 Let φ be p1UXp2. We have pretravel(T (φ)) =
vU, vp1 , vX, vp2 . Then in the encoding θφ(5), we have (θU)1 =
1, (θatom)2,1 = 1, (θX)3 = 1, (θatom)4,2 = 1, (θright)1,3 =
1, (θnone)5 = 1, and other parameters are assigned 0.

The following lemma shows that the parameter assignment
of TLTLf encoded from an LTLf formula must be a faithful
LTLf encoding.1

Lemma 1 Let φ be an LTLf formula, then θφ(L′) is a faithful
LTLf encoding of TLTLf of size L′.

The following Definition 6 shows how to decode a faith-
ful LTLf encoding to a symbol sequence. Then Example 5
illustrates the decoding method.

Definition 6 Let θ be a faithful LTLf encoding of TLTLf
of size L. The decoding function decode(θ) = o1 . . . oL is
defined as follows:

oi =

{
pj , (θatom)i,j = 1,
β, (θβ)i = 1, β ∈ {¬,∧,X,U},
ε, (θnone)i = 1.

(8)

Example 5 Consider φ and θφ(5) in Example 4 again. Since
(θU)1 = 1, (θatom)2,1 = 1, (θX)3 = 1, (θatom)4,2 = 1 and
(θnone)5 = 1, We have decode(θφ(5)) = Up1Xp2, which is
exactly the prefix form of φ.

The following Theorem 1 shows that the decoding method
always results in the prefix form of an LTLf formula.

Theorem 1 For every faithful LTLf encoding θ of TLTLf,
decode(θ) is the prefix form of a certain LTLf formula.

Now we can prove that faithful LTLf encodings and the
prefix forms of LTLf formulae have one-to-one correspon-
dence, by showing that the decoding method is both subjec-
tive (Theorem 2) and injective (Theorem 3).

Theorem 2 For any LTLf formula φ with pretravel(T (φ))
= v1, v2, ..., vL and any L′ ≥ L, there exists a faithful LTLf
encoding θ of size L′ such that decode(θ) = pre(φ).

Theorem 3 Given two different faithful LTLf encodings of
the same size, namely θ1 and θ2, decode(θ1) 6= decode(θ2).

Inference for the Satisfaction Relation
Now we achieve Theorem 4 to guarantee an equivalence
between the inference of TLTLf and the inference of LTLf .

Theorem 4 For any LTLf formula φ with pretravel(T (φ))
= v1, v2, ..., vL, any L′ ≥ L and any trace π =
s0, s1, ..., sn, it holds that ESat(θφ(L′), π) = 1 if π |= φ,
or ESat(θφ(L′), π) = 0 otherwise.

1All the proofs of lemmas/theorems are provided in the technical
report available at https://github.com/a79461378945/TLTLf.git.

Learning LTLf Formulae by LTLf Encoding
For learning LTLf formulae, we first build TLTLf parame-
terized by an LTLf encoding and then train it to distinguish
positive traces from negative traces. Afterwards, we give an
algorithm to extract the formula from TLTLf.

The faithful conditions are used in both the network struc-
ture and the optimization objective. The construction pro-
cess of θ is similar to using the softmax function. We use
it to make θ satisfy Condition 2 and Condition 3 as much
as possible. Notice that θ satisfies Condition 2 because
∀i ∈ [1, L](θnone)i +

∑|P|
j=1(θatom)i,j + (θ¬)i + (θ∧)i +

(θX)i + (θU)i = e(Γnone)i

(ηop)i
+

∑|P|
j=1

e(Γatom)i,j

(ηop)i
+ e(Γ¬)i

(ηop)i
+

e(Γ∧)i

(ηop)i
+ e(ΓX)i

(ηop)i
+ e(ΓU)i

(ηop)i
= 1. Similarly, Condition 3 in Defi-

nition 4 is approximately satisfied.
For each trace π in the set of positive traces Π+ and the set

of negative traces Π−, we use the LTLf encoding θ to infer
the satisfaction relation. The classification objective is:

ζ1 =
∑
π∈Π

(ESat(θ, π)− lab(π))2, (9)

where ∀π ∈ Π+, lab(π) = 1 and ∀π ∈ Π−, lab(π) = 0.
We additionally use regularization loss to make θ approx-

imately satisfy Condition 4, 5, and 6 in Definition 4. The
regularization terms are formulated as:

ζ2 =

L∑
i=2

(

i−2∑
j=1

(θright)j,i + (θ¬)i−1 + (θ∧)i−1 + (θX)i−1

+ (θU)i−1 + (θnone)i − 1)2,

ζ3 =
L−1∑
i=1

Relu((θnone)i − (θnone)i+1),

ζ4 =

L−2∑
i=1

L∑
j=i+2

j−1∑
t=i+1

L∑
t′=j+1

Relu((θright)i,j

+ (θright)t,t′ − 1).
(10)

They are obtained from the corresponding conditions by con-
verting constraints like x = y to (x − y)2 and x > y to
Relu(y − x). The final objective to be minimized is:

ζ = ζ1 + α1ζ2 + α2ζ3 + α3ζ4, (11)

where α1, α2, α3 are coefficients for regularization terms.

LTLf Encoding Interpretation
We interpret an LTLf formula from an LTLf encoding by
Algorithm 1. The algorithm interprets the LTLf encoding
from bottom to top and calculates the score of the interpre-
tations for each sub-formula (sj in line 12) according to the
LTLf encoding. The score of an interpretation is obtained by
multiplying all related parameters in the LTLf encoding. The
following Example 6 illustrates how Algorithm 1 works.

Example 6 Suppose an LTLf encoding θ of size 3 shown
in Table 1 and the beam width 2 are input to Algorithm 1.
The outcomes of execution steps of Algorithm 1 are shown in
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Algorithm 1: Interpreting LTLf Formula
Input :LTLf encoding θ of size L, the beam width

ω, the training set Π
Output :An LTLf formula φ interpreted from θ

1 θright, θnone, θatom, and θop ← computed by
Equation (7) on θ, where op ∈ {¬,∧,X,U};

2 i← L;
3 while i ≥ 1 do
4 fi ← ∅;
5 for pk ∈ P do
6 fi ← fi ∪ {(pk, (θatom)i,k)};
7 for (φk, sk) ∈ fi+1 do
8 fi ←

fi∪{((¬, φk), (θ¬)isk), ((X, φk), (θX)isk)};
9 for i+ 2 ≤ j ≤ L do

10 for ((φl, sl), (φr, sr)) ∈ fi+1 × fj do
11 fi ← fi ∪

{((∧, φl, φr), (θ∧)i(θright)i,rslsr)} ∪
{((U, φl, φr), (θU)i(θright)i,rslsr)};

12 Sort fi = {(φj , sj)} according to sj , keep top ω
elements and remove the others;

13 i← i− 1;
14 φ← the best formula obtained from f1 according to

the classification accuracy on Π;
15 return φ;

Table 2, where the top 2 interpretations and their scores for
each fi are displayed in bold. For i = 3, the interpretations of
f3 can only be an atomic proposition. The score of f3 = p1 is
(θatom)3,1 according to Algorithm 1 (line 5). We keep p1 and
p2 as the top 2 interpretations for f3. The score of f2 = Xp1

is obtained by multiplying (θX)2 and the score of f3 = p1.
Continuing this way we finally obtain the top 2 interpretations
for f1, namely p2 and p1 ∧ p2.

Evaluation
Competitors. We compared TLTLf with four SOTA ap-
proaches, including C.&M. (Camacho and McIlraith 2019),
BayesLTL (Kim et al. 2019), MaxSAT-DT (Gaglione
et al. 2021) and GLTLf (Luo et al. 2022). C.&M. cannot
learn from imperfect data but can learn arbitrary formulae.
BayesLTL can learn from imperfect data but cannot learn
arbitrary formulae. MaxSAT-DT, GLTLf and our proposed
TLTLf can learn arbitrary formulae from imperfect data.
Datasets. We reused the datasets that are provided by (Luo
et al. 2022). There are 5 domains for kf ∈ {3, 6, 9, 12, 15}
and each domain has 50 datasets. For each dataset, there is
a formula with kf operators, and there are 250/250 posi-
tive/negative traces for this formula constituting the training
set and 500/500 positive/negative traces for this formula con-
stituting the test set. For generating the imperfect data, a
portion of traces from the original data were randomly cho-
sen to reverse labels; i.e., original positive labels are turned to
be negative, and vice versa. The percentage δ of traces with
wrong labels is determined by the imperfect rate drawn from

i (θnone)i (θ¬)i (θ∧)i (θX)i

1 0 0 0.8 0

2 0 0 0 0.1

3 0 0 0 0

i (θU)i (θatom)i,1 (θatom)i,2 (θright)i,3

1 0 0 0.2 1

2 0 0.3 0.6 absent

3 0 0.7 0.3 absent

Table 1: The parameters in Example 6.

i φi related parameter fi score

3
p1 (θatom)3,1 = 0.7 p1 0.7
p2 (θatom)3,2 = 0.3 p2 0.3

2

p1 (θatom)2,1 = 0.3 p1 0.3
p2 (θatom)2,2 = 0.6 p2 0.6

Xφ3 (θX)3 = 0.1
Xp1 0.07

Xp2 0.03

1

p2 (θatom)1,2 = 0.2 p2 0.2

φ2 ∧ φ3

p1 ∧ p1 0.168

(θ∧)1 = 0.8 p1 ∧ p2 0.336
(θright)1,3 = 1 p2 ∧ p1 0.072

p2 ∧ p2 0.144

Table 2: Executing Algorithm 1 for Example 6.

{10%, 20%, 30%, 40%}.
Settings. All experiments were conducted on a Linux system
equipped with an Intel(R) Xeon(R) Gold 6248R processor
with 3.0 GHz and 126 GB RAM. The time limit is set to 1
hour and the memory limit set to 10 GB for each instance. We
used grid search to find optimal hyperparameters of TLTLf.
We used Adam (Kingma and Ba 2015) to optimize the param-
eters in our model. Detailed settings for all approaches can
be found in our technical report. In our experiments, all ap-
proaches first learn an LTLf formula and then are evaluated
to estimate the classification performance on the test set.
Comparison across datasets. As shown in Table 3, TLTLf
obviously outperforms BayesLTL and GLTLf. Although
MaxSAT-DT and C.&M. seem to have the best performance,
they run out of time in more cases when kf increases; in
contrast, TLTLf keeps successful in all cases and it keeps
a high accuracy when kf increases. If we treat the accuracy
of failed cases as 0, then the accuracies of MaxSAT-DT and
C.&M. on datasets with kf = 9 drop to 16% and 68%,
respectively, obviously lower than that of TLTLf.
Comparison on imperfect data. TLTLf also outperforms
other approaches on imperfect data, as shown in Figure 1(a).
MaxSAT-DT and C.&M. fail to solve any formula on imper-
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Figure 1: (a) Accuracy achieved by different imperfect rates. The results are averaged by 5 datasets with kf ∈ {3, 6, 9, 12, 15}.
(b) Network accuracy and the accuracy of formula interpreted from the network. (c) Consistency. (d) Accuracy achieved by
different encoding sizes L. (e) Accuracy achieved by different beam widths ω for Algorithm 1.

kf = 3 kf = 6 kf = 9 kf = 12 kf = 15
Acc F1 Ns Acc F1 Ns Acc F1 Ns Acc F1 Ns Acc F1 Ns

MaxSAT-DT 100 100 49 100 100 19 100 100 8 100 100 5 100 100 5
C.&M. 99.7 99.7 50 97.9 96.7 47 97.1 95.5 35 95.1 91.9 20 93.7 87.4 8

BayesLTL 85.1 85.9 50 77.9 76.7 50 74.0 75.7 50 72.7 73.4 50 74.8 77.3 50
GLTLf 94.3 94.2 50 90.0 90.3 50 84.0 83.2 50 83.0 83.2 50 83.0 83.5 50

TLTLf 98.0 97.9 50 95.3 95.4 50 91.9 91.3 50 89.5 88.9 50 90.4 90.2 50

Table 3: Experimental results for L = 10 across different approaches. Acc stands for the average accuracy (%) for successful
cases. F1 stands for the average F1 score (%) for successful cases. Ns stands for the number of cases out of total 50 cases that
are successfully solved within the time limit.

fect training data. In contrast, TLTLf still has a high average
accuracy 88.47% even when being trained on datasets with a
moderately high imperfect rate δ = 0.3.
Comparison on the performance of interpreting. Both
TLTLf and GLTLf involve network training and interpret-
ing, so we compare the performance gap between the two
parts for TLTLf with that for GLTLf. Figure 1(b) shows that
TLTLf has a smaller performance gap than GLTLf. This
result suggests that the neural model underpinned TLTLf is
more interpretable. We further assess consistency between
the inference of neural model and that of the interpreted
formula, indicating their agreement on the test set. For ex-
ample, if the neural model and the interpreted formula give
the same classification results on 95 out of 100 test traces,
then the consistency between them is 95%. TLTLf achieves
higher consistency, aligning with its reduced performance
gap between the neural network and interpreted formula.
Hyper-parameters analysis. To analyze the impact of dif-
ferent hyper-parameters, we conducted experiments with var-
ious sizes of encoding and beam widths, on the datasets with
kf = 9. During the analysis of one hyper-parameter, the
other hyper-parameter was set as default. From Figure 1(d),

it can be seen that with the increase of the size of encoding,
the accuracy increases to a certain extent until L = 8. This
may be caused by that kf was set to 9 for all experimental
datasets. Figure 1(e) shows that the accuracy first increases
rapidly as the beam width increases and then remains stable.
This implies that ω = 100 is sufficient to guarantee a high
accuracy for the formula interpreted by Algorithm 1.

Conclusion and Future Work
Learning tree-structured LTLf formulae from imperfect data
is important and challenging. In this paper we have proposed
TLTLf parameterized by the LTLf encoding to simulate
LTLf inference. TLTLf bridges the gap between the con-
cise tree-structured syntax and the complex LTLf seman-
tics. Besides, we have identified the faithful LTLf encoding,
which has a one-to-one correspondence to the prefix form of
LTLf formulae. Experiment results demonstrate that TLTLf
achieves the SOTA performance and yields LTLf formulae
more consistent with the learnt neural network than existing
approaches do. Future work will extend our approach to LTL
or other formal languages.
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