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Abstract

Coreset selection seeks to choose a subset of crucial training
samples for efficient learning. It has gained traction in deep
learning, particularly with the surge in training dataset sizes.
Sample selection hinges on two main aspects: a sample’s rep-
resentation in enhancing performance and the role of sample
diversity in averting overfitting. Existing methods typically
measure both the representation and diversity of data based
on similarity metrics, such as L2-norm. They have capably
tackled representation via distribution matching guided by
the similarities of features, gradients, or other information be-
tween data. However, the results of effectively diverse sample
selection are mired in sub-optimality. This is because the sim-
ilarity metrics usually simply aggregate dimension similari-
ties without acknowledging disparities among the dimensions
that significantly contribute to the final similarity. As a result,
they fall short of adequately capturing diversity. To address
this, we propose a feature-based diversity constraint, com-
pelling the chosen subset to exhibit maximum diversity. Our
key lies in the introduction of a novel Contributing Dimen-
sion Structure (CDS) metric. Different from similarity met-
rics that measure the overall similarity of high-dimensional
features, our CDS metric considers not only the reduction
of redundancy in feature dimensions, but also the difference
between dimensions that contribute significantly to the final
similarity. We reveal that existing methods tend to favor sam-
ples with similar CDS, leading to a reduced variety of CDS
types within the coreset and subsequently hindering model
performance. In response, we enhance the performance of
five classical selection methods by integrating the CDS con-
straint. Our experiments on three datasets demonstrate the
general effectiveness of the proposed method in boosting ex-
isting methods.

1 Introduction
Coreset selection is a long-standing learning problem that
aims to select a subset of the most informative training
samples for data-efficient learning (Das et al. 2021; Wan
et al. 2023a). Early coreset selection methods were designed
to accelerate the learning and clustering of machine al-
gorithms, such as k-means and k-medians (Har-Peled and
Kushal 2007), support vector machines (Tsang et al. 2005),
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Figure 1: Our method and motivation. (a) We combine the
proposed CDS metric and constraint with the current coreset
selection pipeline. (b) CDS metric and constraint enhance
the performance of SOTA—GC (Iyer et al. 2021). Although
replacing the CDS metric with L2 distance employed by pre-
vious feature-based methods can improve GC, integrating
our proposed CDS metric is more effective since it can cap-
ture more diverse, informative samples. (c) Previous feature-
based methods using L2 metric could treat three distinct
samples as equivalent, while (d) our CDS metric effectively
distinguishes these samples by pruning the feature space and
representing the space in different partitions. Note that here,
we set the pruned dimension (C-dim) to 2 for demonstration.

and Bayesian inference (Campbell and Broderick 2018).
However, they are designed for specific models and prob-
lems, and have limited applications in deep learning.

Recently, with the rapid development of deep learn-
ing (Xie et al. 2023; Yang et al. 2023; Yuan et al.
2023), research on coreset selection for deep learning has
emerged, including geometry-based methods (Sener and
Savarese 2017; Agarwal et al. 2020), uncertainty-based
methods (Coleman et al. 2019), submodularity-based meth-
ods (Kothawade et al. 2022; Rangwani et al. 2021), gradi-
ent matching-based methods (Mirzasoleiman, Bilmes, and
Leskovec 2020; Killamsetty et al. 2021a) and others (Toneva
et al. 2018; Swayamdipta et al. 2020). They typically rely
on a pre-trained model to obtain information, e.g., features,
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gradients and predicted probabilities, for measuring the im-
portance of data in the full training set through designed
measurer and constraint. Budget-sized samples will then be
selected based on importance to form a coreset that can
be used for data-efficient machine learning (Pooladzandi,
Davini, and Mirzasoleiman 2022), compute-efficient hyper-
parameter tuning (Killamsetty et al. 2022), continual learn-
ing (Tiwari et al. 2022; Yoon et al. 2021), etc.

The importance of data in coreset selection is assessed in
two main aspects, that is, representation and diversity. Rep-
resentation is guaranteed through the distribution matching
between subsets and the full set under the guidance of simi-
larities between data in features, gradients, or other informa-
tion. Meanwhile, diversity is assured through the imposition
of penalties upon similar data. Information similarity is com-
monly computed by similarity metrics, such as L2-norm and
cosine distance. However, these similarity metrics obtain the
final similarity by simply aggregating dimension similari-
ties without evaluating the impact of different dimensions.
This risks treating some distinct samples as equally impor-
tant, leading to an ineffective assessment of the diversity.
For example, in the case of feature-based selection methods,
there is redundancy in the feature dimensions extracted by
the pre-trained model (Li et al. 2017), and similarity met-
rics directly add a lot of useless information, which is not
conducive to measuring the diversity of data. Besides, and
most importantly, the data dimensions that contribute signif-
icantly to the final similarity are different for different data
(such dimensions are called contributing dimensions), and
this difference is also ignored in the similarity metrics. Our
empirical study further shows that similarity metrics tend to
select a larger number of samples whose features have the
same Contributing Dimension Structure (CDS) for coreset
selection, resulting in fewer types of CDS in the coreset,
which inhibits model performance. Therefore, it is urgent
to design a metric that can evaluate the impact of different
dimensions of the data information.

In this paper, we draw inspiration from the above obser-
vation and consequently design a Contributing Dimension
Structure (CDS) metric and a feature-based CDS diversity
constraint (abbreviated as CDS constraint) to improve the
current coreset selection pipeline, as shown in Figure 1(a), to
compel the selected subset to showcase maximum diversity.
Firstly, we propose a CDS metric to select helpful feature
dimensions and divide the pruned feature space into differ-
ent partitions, obtaining the CDS of each data. Throughout
our paper, CDS is defined as an indication of whether each
dimension of the pruned feature contributes significantly to
the overall similarity measure. Each dimension is analyzed
in turn, with 1 indicating that the dimension contributes and
0 indicating that it does not. By comparing the CDS of dif-
ferent data, we can classify them as having the same CDS
or different CDS. Afterward, an effective strategy CDS con-
straint is proposed to enrich the diversity of CDS in subsets.

The main contribution of our work is threefold:
• For the first time in coreset selection, we explicitly intro-

duce information on the Contributing Dimension Struc-
ture (CDS) via the proposed CDS metric to enrich the
diversity of CDS in the coreset.

• CDS constraint, which aims to constrain the selected
subset to have as many different CDS as possible, is pro-
posed to improve existing SOTA methods. We propose
two implementations of the CDS constraint, namely the
Hard CDS Constraint and the Soft CDS Constraint, and
apply them to five classical coreset selection methods.

• Extensive experiments on three image classification
datasets with two data sampling modes (class-balanced
sampling and class-imbalanced sampling) show that our
method can effectively improve SOTA methods.

2 Problem Formulation
Coreset Selection We focus on the traditional computer
vision task of image classification. In an image classifica-
tion task with C classes, we work with a sizable training set
D = (xi, yi)

n
i=1 defined across a joint distribution X × Y ,

where n denotes the quantity of training data, X pertains the
input space and Y is the label space {1, . . . , C}. In scenarios
where there’s a specified budget b, coreset selection aims to
select a subset S ⊂ D containing the most informative train-
ing samples. This is done with the intention that the model
θS trained on S can achieve performance comparable to that
of the model θD trained on the full training set D. The size
of the subset |S| = b, where b < n. It is common to convert
the coreset selection problem into the design of a monotonic
objective function T and to find the optimal subset

S∗ = argmax
S⊂D

T (S) s.t. |S| ≤ b, (1)

where budget-sized S∗ is selected before training, with the
expectation that the accuracy of models trained on this sub-
set will be maximized.

Representativeness and diversity of subsets are the two
main factors that coreset selection focuses on when mea-
suring the importance of data. Most existing coreset se-
lection methods usually design and implement the objec-
tive function based on similarity metrics (e.g., L2-norm).
They ensure representativeness through distribution match-
ing guided by similarities of features, gradients, or other in-
formation between data, while pursuing diversity by penal-
ising data with similar information. However, conventional
similarity metrics simply aggregate dimension similarities
without acknowledging disparities among the dimensions
that significantly contribute to the final similarity. As a re-
sult, they fall short of adequately capturing diversity. We will
dissect the problems in the following.

Diversity Measurement Informative and easily accessi-
ble deep features are often adopted in selection meth-
ods (Guo, Zhao, and Bai 2022; Margatina et al. 2021; Wan
et al. 2023b, 2022), which typically use the overall similarity
metrics to calculate the similarity between deep features to
measure the importance of the data, such as L1-norm, L2-
norm and cosine distance metric. Figure 2 illustrates their
characteristics. For convenience, we focus on the most com-
monly adopted L2-norm as an example. It can be formulated
as:

d (F (xi),F (xj)) =

√√√√K−1∑
k=0

(
fk
i − fk

j

)2
, (2)
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CDSL2L1 Cosine

Figure 2: Different metrics. L1 and L2 quantify the magni-
tude between samples, while the Cosine distance evaluates
the direction between samples. In contrast, our introduced
CDS metric evaluates the impact of different dimensions,
making it an effective tool for assessing diversity. Note that
the reference sample is positioned at the origin for L1, L2,
and CDS, while it is located along the positive horizontal
axis for Cosine distance. Regions with the same color indi-
cate the same score.

where F (xi) =
[
f0
i , f

1
i , . . . , f

K−1
i

]
∈ RK denotes the fea-

ture of sample xi extracted by the model, and K means the
number of dimensions of the deep feature.

Unfortunately, the calculation of the similarity metric
shown in Equation 2 does not explicitly reflect the numer-
ical difference between F (xi) and F (xj) in each dimen-
sion. This may lead to an ineffective assessment of the di-
versity of the data, making the selection of the coreset in-
sufficiently diverse. For example, there is a phenomenon:
Given candidate data xi, xj , and xh, when measuring their
importance, we compare them with a selected data xq .
If their distance d (F (xi),F (xq)), d (F (xj),F (xq)), and
d (F (xh),F (xq)) are close, feature-based methods could
treat them as equally important and select them with equal
probability. However, when analyzed in terms of each di-
mension difference, there may exist a dimension k̈ that
makes the difference between xi and xq equals zero, while
that between xj and xq , xh and xq are significantly larger
than zero, i.e.,

|f k̈
i − f k̈

q | → 0 , |f k̈
j − f k̈

q | ≫ 0 , |f k̈
h − f k̈

q | ≫ 0 .

This can be interpreted as the k̈th dimension of data xi does
not contribute in calculating the overall similarity with xq ,
while the k̈th dimension of data xj and data xh do. In other
words, xi has a different contributing dimension structure
(CDS) from xj and xh. At this point, the CDS diversity of
xi is different from that of xj and xh while their diversities
calculated by L2 are the same.

It is natural to ask the question: what is the relationship
between the diversity of the CDSs in the selected samples
and the performance of the models trained on those selected
samples? In light of this question, we introduce a metric to
measure the CDS of each data in the next section.

3 CDS Metric of Deep Feature
The previous section introduces the concept of CDS. Mov-
ing forward, we will introduce the CDS metric in this sec-
tion. This metric is designed to quantify the CDS of individ-
ual samples, as depicted in Figure 3. Additionally, we will
delve into an analysis of the connection between CDS diver-
sity and the performance of models.
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Figure 3: CDS metric for deep features. Given the high-
dimensional feature matrix, we first reduce its dimension
from K to k using PCA. Then, we compute the central fea-
ture [µ0, µ1, . . . , µk−1] of the dimension reduced feature
matrix. Next, we obtain the CDS for each data by compar-
ing the difference between each data feature and the central
feature in each dimension with a threshold β to divide the
feature space into different partitions. Finally, the CDS rela-
tionship matrix R used for the subsequent CDS constraint is
obtained by comparing the CDS between each data individ-
ually to see if they are the same.

3.1 CDS Metric
Dimension Reduction Inspired by the work (Li et al.
2017), we consider that for the analysis of CDS relationships
between data, there is redundancy in the feature dimensions
output by the network, i.e., the dimensions that are help-
ful need to be selected before analysis. Therefore, we first
perform dimension selection using the classical PCA algo-
rithm (Pearson 1901) to reduce K to k. The choice of k will
be elaborated upon in Section 5.5. After that, two problems
lie ahead when it comes to actually analyzing the CDS rela-
tionships between the data.

Deviation from the Mean One problem is that the rela-
tionship between the contributing dimension structures of
the data is relative, i.e., in the above phenomenon, the con-
tributing dimension structure relationship between xi, xj

and xh may change as xq changes to xq̇ . Therefore in sam-
pling data from each class, we set F (xq) to be the class pro-
totype, i.e., the central feature F̃c = [µ0, µ1, . . . , µk−1] of
the class (Xie et al. 2022), to consistently analyze the rela-
tionships of all training data1 with

µk′ =

(
Nc−1∑
i=0

fi
k′

)
/Nc , k′ ∈ {0, 1, . . . , k − 1} .

Then for each data point within class c, its deviation from
the central feature F̃c in each dimension can be expressed

1For class-imbalanced sampling settings, F (xq) can be set to
the central feature of the dataset.
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as σ =
[
|f0

i − µ0|, |f1
i − µ1|, . . . , |fk−1

i − µk−1|
]
∈ Rk,

where i ∈ {0, 1, . . . , Nc − 1}.

Partition The other problem is determining if each dimen-
sion contributes to the similarity calculation. We intuitively
set a threshold parameter β to deal with it. Then, the CDS Θ
of data xi can be represented as:

Θ(xi) =
[
I(|f0

i − µ0|), . . . , I(|fk−1
i − µk−1|)

]
, (3)

where I(△f) is a binary decision function. When the feature
difference △f > β, then I(△f) = 1, otherwise I(△f) = 0.

Comparison After that, the relationship between data can
be subdivided into two types from the CDS perspective.
Take xi and xj as an example:

• if ∀k′ ∈ {0, 1, . . . , k−1}, I(|fk′

i −µk′ |) = I(|fk′

j −µk′ |),
then xi and xj have the same contributing dimension
structure, noted as Rij = 1;

• if ∃k′ ∈ {0, 1, . . . , k−1}, I(|fk′

i −µk′ |) ̸= I(|fk′

j −µk′ |),
then xi and xj have different contributing dimension
structures, noted as Rij = 0.

To achieve this division, we adopt the cosine similarity to
measure the similarity between the CDS of xi and the CDS
of xj . If the cosine similarity of Θ(xi) and Θ(xj) is equal
to 1, then it means that xi and xj have the same CDS; oth-
erwise, it means that xi and xj have different CDS. Follow-
ing this approach, the CDS relationship between each data
is calculated and analyzed individually. Then, we can obtain
a relationship matrix Rc ∈ RNc×Nc for the class c, where
Rc

ij ∈ {0, 1}. The relationship matrix Rc will be used in the
subsequent CDS Constraint algorithm.

3.2 Analyses
We performed experiments to analyze the connection be-
tween CDS diversity and the performance of models. Firstly,
we computed the CDS relationship matrix for each class in
the dataset using the CDS metric. Then, guided by the re-
lationship matrix, two classes of data were sampled accord-
ing to the sampling rate, i.e., more data with the same CDS
(more S-CDS) and more data with different CDS (more D-
CDS). They were used to train the models separately and
then we compared their performances with that of the Ran-
dom method. Please refer to the Supplementary Material
for details of the experimental setup. Figure 4(a) shows the
comparison results. It shows that the more D-CDS strategy
outperforms the more S-CDS strategy when sampling 0.1%-
10% of CIFAR-10; the two strategies are evenly matched
as the sampling rate increases. Therefore, for data with the
same overall similarity, selecting a subset with different
CDS impacts performance differently than selecting a sub-
set with the same CDS at low sampling rates. Specifically,
more data with different CDSs need to be sampled.

When further using the CDS metric to analyze the CDS
relationships of the data sampled by existing SOTA meth-
ods, we find that they tended to select data with the same
CDS, as evidenced in Figure 4(b). With reference to as
shown in Figure 4(a), it can be deduced that the coresets
selected by the existing SOTA methods are sub-optimal.
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Figure 4: Analyses. (a) The improvement of sampling more
same CDS strategy or more different CDS strategy over ran-
dom sampling. The strategy of sampling more of the same
CDS performs worse than random sampling. The strategy of
sampling more different CDSs performs better than random
sampling, especially with low sampling rates of 0.1%-10%.
The result motivates us to select more samples with differ-
ent CDS. (b) We compare the CDS distribution of coresets
(1% of the CIFAR-10) selected by the baseline method and
our improved counterparts. It exhibits that previous meth-
ods tend to choose a few certain CDSs, which could lead
the trained model to perform worse than random sampling.
Integrating our proposed constraint explicitly increases the
diversity of CDS in the selected coreset.

4 Coreset Selection with CDS Constraints
Inspired by the results in Figure 4, in this section, we pro-
pose to improve the SOTA methods by using a feature-based
CDS diversity constraint (a.k.a. CDS constraint). The key
idea of the CDS constraint is to sample a subset with as
many different CDS as possible. We present two implemen-
tations of the CDS constraint: the hard version, which can
be directly applied to existing methods, and the soft ver-
sion, which requires custom design aligned with the objec-
tive function of the targeted coreset selection methods.

4.1 Implementation I: Hard CDS Constraint
The coreset selection algorithm with Hard CDS Constraint
consists of a two-stage clustering process and a data selec-
tion process. The data are first clustered based on the feature
distance and CDS relationships. Then, the data are selected
using a baseline selection method among data clusters with
the same feature distance and CDS. We depict the details in
the following:
1. 1st stage clustering: the distance between each reduced

feature and the central feature (of the class or dataset)
is calculated and the data are clustered according to the
spacing α. That is, samples with feature distance values
v ∈ [h × α, (h + 1) × α) are clustered into one group.
In our experiments, α = 0.5 and h ∈ N+. At this point,
the sampling budget for each cluster is calculated based
on the cluster density.

2. 2nd stage clustering: for each cluster in the 1st stage,
the CDS relationship between the data within the clus-
ter is calculated and the data with the same CDS are re-
clustered to obtain multiple clusters t. At this point, to
achieve the CDS constraint, we constrain the sampling
budget for each cluster t to be as consistent as possible.
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3. data selection: each cluster t is then sampled according
to the baseline method. Please refer to the Supplemen-
tary Material for a detailed algorithm of coreset selection
with Hard CDS Constraint.

4.2 Implementation II: Soft CDS Constraint
Although Hard CDS Constraint does not need to be re-
designed and can be used directly with any of the coreset
selection methods, in practice, it has been found to improve
only some methods (see the Supplementary Material for re-
lated experiments). This means that for other methods, a
special design is required. For this reason, we have further
proposed the Soft CDS Constraint, which is integrated into
the objective function T of existing methods, i.e., CRAIG
and Graph Cut. We expect to constrain the original objective
function T by designing a constraint function H related to
the relationship matrix R to find:

S⋆ = argmax
S⊂D

T (S)×H(R) s.t. |S| ≤ b, (4)

where S⋆ satisfies the CDS constraint:

Ψ(S⋆) ≥ Ψ(S∗). (5)

Ψ(S) calculates the number of CDS types in subset S .
Since finding the optimal subset S⋆ is NP-hard in gen-

eral, we use the simple greedy algorithm (Minoux 2005) to
approximately solve the coreset selection problem, as in the
CRAIG and Graph Cut. The greedy algorithm starts with
the empty set S0 = ∅, and at each selection iteration i, it se-
lects an element e ∈ V that maximizes T (e|Si−1)×H(R)
and enriches the diversity of CDS, i.e., Si = Si−1 ∪
argmaxe∈V T (e|Si−1)×H(R), where V = D\Si−1 and
Ψ(Si) ≥ Ψ(Si−1). Due to page limitations, the detailed al-
gorithm is provided in the Supplementary Material.

CRAIG with the CDS Constraint CRAIG (Mirza-
soleiman, Bilmes, and Leskovec 2020) is a gradient match-
ing based method that tries to find an optimal coreset S that
approximates the full dataset gradients under a maximum
error ϵ by converting gradient matching problem to the max-
imization of a monotone submodular facility location func-
tion T . It uses the greedy algorithm to select data. To satisfy
the CDS constraint, we design a function H to constrain the
monotone submodular facility location function:

e = argmax
i∈D\Sl−1

T (i|Sl−1)×H(R)i, (6)

our designed constraint function H for CRAIG is:

H (R)i = 1/

 ∑
j∈Sl−1

Rij + 1

. (7)

Graph Cut with the CDS Constraint Graph Cut (Iyer
et al. 2021) is a submodularity-based method that naturally
measures the information and diversity of the selected subset
S . At selection iteration l, a greedy algorithm is used to find:

e = argmax
i∈D\Sl−1

∑
o∈D

s(Gi, Go)− λ×
∑

j∈Sl−1

s(Gi, Gj)

 , (8)

where s(·, ·) is a similarity metric that measures the gra-
dient similarity between data. The parameter λ captures
the trade-off between diversity and representativeness, and
λ = 2 in our implementation. Considering the item λ ×∑

j∈Sl−1
s(Gi, Gj) is responsible for measuring the di-

versity of each data, we thus propose that the CDS di-
versity constraint function H constrains only this item:
λ×

∑
j∈Sl−1

s(Gi, Gj)×H(R)ij . Our designed constraint
function H is given by:

H (R)ij =

{
2, if Rij = 1
1, if Rij = 0

. (9)

If data xi have the same CDS as the data xj from Sl−1,
H (R)ij can increase the penalty value, reducing the proba-
bility of data xi being selected.

5 Experiments
5.1 Datasets, Model and Experimental Setup
We evaluate our method with two common data sampling
modes, i.e., class-balanced and class-imbalanced sampling.
We perform experiments on three common image classifica-
tion datasets, including CIFAR-10, CIFAR-100 (Krizhevsky
and Hinton 2009), and TinyImageNet (TIN, a subset of Im-
ageNet (Krizhevsky, Sutskever, and Hinton 2012)). We pro-
vide details of datasets in the Supplementary Material.

In all experiments, we utilize the 18-layer residual net-
work (ResNet-18) (He et al. 2016) as the backbone of the
pre-trained model and target model, and use the deep fea-
tures extracted before the final fully connected layer for the
CDS metric, which is 512-dimensional (512-D). We follow
the experimental setup of work (Guo, Zhao, and Bai 2022).
Specifically, we use SGD as the optimizer with batch size
128, initial learning rate 0.1, Cosine decay scheduler, mo-
mentum 0.9, weight decay 5 × 10−4, 10 pre-trained epochs
and 200 training epochs. For data augmentation, we apply
random crop with 4-pixel padding and random flipping on
the 32 × 32 training images. We use classification accuracy
as the evaluation metric. For each selection method, we re-
peat the same experiment 5 times with random seeds and
report the performance mean and standard deviation. All ex-
periments were run on Nvidia Tesla V100 GPUs.

5.2 Comparison Methods
We reproduce nine selection methods ourselves based on the
open source database2, including Random, K-Center Greedy
(KCG) (Sener and Savarese 2017), Forgetting (Toneva
et al. 2018), Least Confidence (LC) (Coleman et al. 2019),
CRAIG (Mirzasoleiman, Bilmes, and Leskovec 2020),
Cal (Margatina et al. 2021), Glister (Killamsetty et al.
2021b), Graph Cut (GC) (Iyer et al. 2021), and Moderate-
DS (M-DS) (Xia et al. 2023). To adequately demonstrate
the effectiveness of the CDS constraint, we apply the CDS
constraint to four classical coreset selection methods of dif-
ferent types and an up-to-date selection method (each as a
baseline):

2https://github.com/PatrickZH/DeepCore
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Method Sampling rates

0.1% 0.5% 1% 5% 10% 20%

Random 18.9±0.2 29.5±0.4 39.3±1.5 62.4±1.7 74.7±1.9 86.9±0.3
KCG 18.7±2.9 27.4±1.0 31.6±2.1 53.5±2.9 73.2±1.3 86.9±0.4

Forgetting 21.8±1.7 29.2±0.7 35.0±1.1 50.7±1.7 66.8±2.5 86.0±1.2
LC 14.8±2.4 19.6±0.8 20.9±0.4 37.4±1.9 56.0±2.0 83.4±1.1

CRAIG 21.1±2.4 27.2±1.0 31.5±1.5 45.0±2.9 58.9±3.6 79.7±3.5
Cal 20.8±2.8 32.0±1.9 39.1±3.2 60.7±0.8 72.2±1.5 79.9±0.5

Glister 19.5±2.1 29.7±1.1 33.2±1.1 47.1±2.6 65.7±1.7 83.4±1.7
GC 22.9±1.4 34.0±1.3 42.0±3.0 66.2±1.0 75.6±1.4 84.3±0.4

M-DS 21.0±3.0 31.8±1.2 37.7±1.4 63.4±2.2 78.0±1.3 87.9±0.5

GC+Ours 24.6±1.7 36.4±1.0 43.1±1.8 67.1±0.6 76.9±0.2 85.2±0.6
∆ 1.7 ↑ 2.4 ↑ 1.1 ↑ 0.9 ↑ 1.3 ↑ 0.9 ↑

M-DS+Ours 22.0±2.0 33.0±1.3 40.7±1.0 64.9±0.8 79.6±0.4 87.9±0.2
∆ 1.0 ↑ 1.2 ↑ 3.0 ↑ 1.5 ↑ 1.6 ↑ 0.0 ↑

Table 1: Comparison on the class-balanced sampling setting. We train randomly initialized ResNet-18 on coresets of CIFAR-10
selected by different methods and then test them on the test set of CIFAR-10. Bold emphasizes the best performance at each
sampling rate. ∆ denotes the improvement of baseline+Ours over baseline.
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Figure 5: Performance improvement over baselines. We im-
prove current methods with our proposed CDS metric and
constraint. We compare the improved versions with respec-
tive baselines on CIFAR-10 (a–c) and TinyImageNet (d–f)
under the class-balanced sampling setting.

• KCG — a feature distribution-based selection method;
• LC — an uncertainty-based selection method;
• CRAIG — a gradient matching-based selection method;
• GC — a submodularity-based selection method;
• M-DS — a feature distribution-based selection method.

We improve baseline methods KCG, LC, and M-DS using
the Hard CDS constraint and the greedy sampling baselines
CRAIG and GC using the Soft CDS constraint.

5.3 Results of Class-balanced Sampling
Table 1 and Figure 5 show the experimental results on
CIFAR-10 and TinyImageNet. Please refer to Supplemen-

tary Material for the results for CIFAR-100. We select sub-
sets of CIFAR-10 with fractions of 0.1%, 0.5%, 1%, 5%,
10%, 20% of the full training dataset respectively. For the
best experiments of methods KCG, CRAIG, GC and M-DS
on the CIFAR-10, we use the PCA algorithm to select the 10
most relevant dimensions of the features extracted from the
network for the CDS metric and set β = 1e-4; for the best
experiments of LC on the CIFAR-10, we directly use the
512-dimensional features extracted from the network for the
CDS metric and set β = 1e-3. To ensure that a minimum of 5
images are sampled from each class of TIN dataset, we start
with a 1% sampling rate and select subsets of the TIN with
fractions of 1%, 5%, 10%, 20% of the full training dataset.
We select the 10 least relevant dimensions for the best ex-
periments of all baselines on TIN, with β = 1e-1.

In Table 1, we first report the improved results based on
two baselines with optimal performance at different sam-
pling rates, i.e., GC and M-DS. When comparing the base-
line+Ours to the baseline, it is observed that our method en-
hances the performance of baselines at all sampling rates.
When further comparing baseline+Ours with other coreset
selection methods, it can be seen that our method further
strengthens the leading power of the GC at the 0.1%-5%
sampling rates, and even makes the overall performance of
M-DS better than the Random method on CIFAR-10. The
results prove the effectiveness of our method.

In Figure 5, we show the improved results of baselines
KCG, LC, CRAIG on CIFAR-10 and TIN datasets. The re-
sults consistently show that our method effectively improves
these three types of coreset selection methods, proving the
general effectiveness of our method. In particular, taking the
LC as an example, LC+Ours outperforms LC by an average
of 15.0% accuracy when sampling 0.1% to 20% of CIFAR-
10, while LC+Ours outperforms LC by an average of 4.3%
accuracy when sampling 1% to 20% of TIN.

It needs to be emphasized that KCG, CRAIG, GC, and M-
DS employ the overall similarity metric in the measurement
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(a) CIFAR-10 (b) CIFAR-100

Figure 6: Performance improvement of GC+Soft CDS over
GC in the class imbalanced way

dim
reduction partition CDS-r cons-

traint

(v1) ✗ ✗ ✗ ✗ 34.0±1.3
(v2) ✗ ✗ ✗ ✓ 32.8±0.7
(v3) ✓ ✗ ✗ ✓ 34.3±2.5
(v4) ✓ ✓ ✗ ✓ 33.5±1.1
full ✓ ✓ ✓ ✓ 36.4±1.0

Table 2: Ablation study on 0.5% of the CIFAR-10

stage, whereas LC uses the predicted probability directly
without using the overall similarity metric. This means that
our method not only improves baselines that use the overall
similarity metric but is also effective for other baselines. We
reveal by visualizing the distributions that existing methods
do not handle subset diversity well, while our method mo-
tivates them to capture diversity adequately, thus boosting
model performance remarkably well. For length reasons, the
visualisations are shown in the Supplementary Material.

5.4 Results of Class-imbalanced Sampling
In this subsection, we choose the method GC to perform
class imbalanced sampling on CIFAR-10 and CIFAR-100.
Soft CDS is used to improve it. For the experiments on the
CIFAR-10, we use the PCA algorithm to select the 10 most
relevant dimensions of the features extracted from the net-
work for the CDS metric and set β = 1e-4. We select the
10 least relevant dimensions for the experiments on CIFAR-
100, with β = 1e-2. We show the performance improvement
of GC+Soft CDS over GC in Figure 6. It can be seen that
soft CDS effectively improves the performance of GC on
both datasets. For example, Soft CDS improves the perfor-
mance of GC by an average of 4.0% when sampling 0.1% to
20% of the CIFAR-10.

5.5 Ablation and Parameter Studies
Ablation Study Our method consists of four parts: dimen-
sion reduction (dim. reduction), partition, CDS relationship
(CDS-r), and CDS diversity constraint (constraint). Since
the validity of the constraint has been demonstrated in Fig-
ure 4(a), we evaluate the effectiveness of the other three parts
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Figure 7: Parameter analysis. It shows that our method
achieves the best improvement compared to the baseline
method (CRAIG) when K =10-M-D and β =1e-4.

based on the GC (denoted as v1) in Table 2. When introduc-
ing the feature into the GC using L2-norm and constraining
the CDS diversity based on the feature similarity (as v2), it
gets a performance drop of 1.2%. When the dim. reduction
part is added (as v3), it obtains a 1.5% accuracy improve-
ment, exceeding the performance of baseline GC. When the
partition part (as v4) is then introduced, the performance
is harmed. However, when L2-norm is replaced with CDS
metric to compute CDS relationship for CDS constraint (as
full), the performance is optimal, i.e., achieving 36.4±1.0
accuracy. It can prove the effectiveness of dim. reduction
and CDS-r, while the partition is valid in the CDS metric.

Parameter Study The dimension k of the pruned fea-
ture and the contribution threshold β are important param-
eters for our method. We first study the effect of k in Fig-
ure 7(a), and then study the effect of β based on the best
choice of k in Figure 7(b). We have tried three kinds of k,
namely (1) original feature extracted before the final fully
connected layer, where k = 512-D; (2) the 10 most relevant
dimensions (10-M-D) of the feature extracted from the net-
work; (3) the 10 least relevant dimensions (10-L-D) of the
feature extracted from the network. Each type of k corre-
sponds to one β̃, which is the maximum value that satisfies∑

i∈n

∑
j∈k Θij/(n×k) ≥ 0.9. Based on the optimal k, we

empirically set β ∈ {10× β̃, β̃, 0.1× β̃} to find the optimal
β.

6 Conclusion

This paper introduces CDS to the coreset selection and a
novel CDS metric for evaluating diversity. Utilizing this
metric, we propose a CDS constraint to augment diversity
within coreset selection methods. Our extensive experimen-
tal results affirm the effectiveness of our approach across a
spectrum of methods. The current pipeline does not take the
time cost of selecting data into account. In future work, we
hope to design a more efficient and robust baseline for core-
set selection.
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