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Abstract

Designed to establish potential relations and distill high-order
representations, graph-based recommendation systems con-
tinue to reveal promising results by jointly modeling ratings
and reviews. However, existing studies capture simple review
relations, failing to (1) completely explore hidden connec-
tions between users (or items), (2) filter out redundant infor-
mation derived from reviews, and (3) model the behavioral
association between rating and review interactions. To ad-
dress these challenges, we propose a review-enhanced hier-
archical contrastive learning, namely ReHCL. First, ReHCL
constructs topic and semantic graphs to fully mine review re-
lations from different views. Moreover, a cross-view graph
contrastive learning is used to achieve enhancement of node
representations and extract useful review knowledge. Mean-
while, we design a neighbor-based positive sampling to cap-
ture the graph-structured similarity between topic and seman-
tic views, further performing efficient contrast and reducing
redundant noise. Next, we propose a cross-modal contrastive
learning to match the rating and review representations, by
exploring the association between ratings and reviews. Lastly,
these two contrastive learning modes form a hierarchical con-
trastive learning task, which is applied to enhance the final
recommendation task. Extensive experiments verify the su-
periority of ReHCL compared with state-of-the-arts.

Introduction
Recommender systems have become an indispensable part
of e-commerce services (e.g., Amazon and Yelp). They of-
ten model rating interactions to capture user preferences and
item characteristics (Do et al. 2022; Wang, Cai, and Wang
2022). However, numerical ratings are often sparse, and only
modeling single interactions fails to learn enriched represen-
tations of understanding users’ intents. Therefore, recent ef-
forts (Liu et al. 2019, 2020c) adopt reviews to alleviate the
sparsity. Review-based methods absorb additional knowl-
edge to enhance generated representations by modeling free-
form textual reviews (Wang et al. 2022).

Recently, Graph-based Recommender Systems (GRS)
(Gao et al. 2020; Shuai et al. 2022; Ren et al. 2022) capture
potential relations existing in reviews, and leverage graph
neural networks to learn node representations. Several works
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While my rating would be 4 or 5 stars if I was 9 
to 12 , it is 2 star as an adult fantasy reader…

(a) Topic Graph

𝑢1

(b) Semantic Graph

Classical sci-fi at it's best. I have read tons of sci-
fi and fantasy over last 20 years… 𝑢2

This is truly an amazing work, and is a very well-
known story…𝑢3

Of course, this is classic. The book is of course 
amazing…𝑢4

This book is about love …and you appreciate 
wonderful writing, you will love this book…𝑢5

This is an old fashioned, but passionate love story. 
I can't believe how much I LOVED this book…𝑢6

LDA
Topic 

similarity

BERT
Semantic 
similarity

Figure 1: Six review comments written by different users in
the Book domain. Two types of graphs are constructed from
topic and semantic views via LDA and BERT, respectively.

focus on studying topical links (Wang et al. 2023) or se-
mantic similarity (Liu et al. 2020c) between users (or items)
derived from reviews, alleviating the sparsity of user-item
interactions. Despite exhibiting satisfactory performance,
these technics suffer from the following limitations.

• Incomplete Relation Extraction. Existing GRS either
extract the key topic factors at word level to discover
highly interpretable textual cues, or capture implicit se-
mantics at review level to search for contextual clues
between users (or items), while ignoring that user-
generated reviews carry both topic and semantic prop-
erties (Chin et al. 2018). In fact, the critical topics and
whole contexts jointly affect latent relations from dif-
ferent views, especially when users expound local topics
and holistic contexts simultaneously.

• Redundant Review Information. Although review texts
can provide detailed descriptions of users’ interests,
sometimes they also contain too much redundant or re-
peated information, thus introducing unnecessary noise
while extracting review knowledge (Wang, Cai, and
Wang 2022). However, existing GRS are often not specif-
ically designed to consider how to extract useful review
knowledge and make the obtained review representations
more effective (Liu et al. 2020a).

• Consistent Interaction Behavior. Different behavioral
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interactions of a user in the same time period are also of-
ten consistent. For example, a user gave one item a low
star (e.g., 2 stars), and generally expressed his dissatis-
faction in his review. In turn, one other item drew lavish
praise from this user attached with a 5 star rating. In-
tuitively, while ratings and reviews offer complementary
signals (Liu et al. 2020b), they also exist behavioral asso-
ciations that can be utilized to generate more robust and
interactive embeddings. However, existing GRS lacks the
exploration of this association.

To tackle the above challenges, we propose a graph-
based Review-enhanced Hierarchical Contrastive Learning
approach, called ReHCL.

Firstly, we construct topic and semantic graphs to pre-
serve the key topical relations and contextual semantic re-
lations between users (or items) and then employ graph en-
coders to produce the high-order node representations. Sep-
arate graph encoding processes will encourage ReHCL to
generate node representations at different levels simultane-
ously, fully capturing individual topic and holistic semantic
preferences of users. From Figure 1, we apply LDA (Blei,
Ng, and Jordan 2003) and BERT (Reimers and Gurevych
2019) to extract topic factors and semantic embeddings, re-
spectively. Then similarity calculation strategies are used to
judge whether there are connection edges between users,
which help construct topic and semantic graphs.

Secondly, we design a cross-view Graph Contrastive
Learning (GCL) between topic and semantic views to dis-
till more robust representations from reviews. GCL pulls to-
gether the same node representations and pushes the dif-
ferent node representations away in the two views (Peng
et al. 2020). It automatically identifies the effective infor-
mation of data itself by generating self-supervised signals
(Wu et al. 2021). Therefore, by promoting the alignment of
the two associated views, each view can extract supplemen-
tal knowledge from the other view, and perform cross-view
contrast to achieve mutual enhancement of node represen-
tations at topic and semantic levels. Since the two views
are derived from the same source of review data, we de-
sign a neighbor-based positive sampling to mine the intrinsic
graph-structured similarity by searching for the same neigh-
bors of the node in different views (e.g., users u5 and u6

in Figure 1). This strategy generates positive samples from
the same view to relieve inefficient contrast that only utilizes
positive pairs from different views, further refining effective
review knowledge and reducing redundant noise.

Thirdly, we build a cross-modal contrastive learning to ex-
plore the association between ratings and reviews, which re-
gards rating and review interactions as two modalities, learn-
ing informative representations by maximizing the similar-
ity between the two modalities. Since ratings and reviews are
heterogeneous, we design a projection function to match the
generated rating and review representations. This requires
similarity in representations while preserving the distinctive
information that each modality brings (Salvador et al. 2021).

Specifically, the cross-view GCL and cross-modal con-
trastive learning form a hierarchical contrastive learning task
to capture different self-supervised signals by jointly mod-

eling ratings and reviews. Then, we further combine the hi-
erarchical contrastive learning task with the primary recom-
mendation task, and conduct joint training to output the final
representations of users and items for item recommendation.

Our contributions are summarized as follows:
• We establish the topic and semantic graphs to fully

mine review relations from different views. We present a
neighbor-based positive sampling to identify the effective
information of graph-structure data itself, helping extract
useful review information and reduce redundant noise.

• We propose a graph-based model ReHCL to combine
cross-view GCL and cross-modal contrastive learning by
jointly modeling ratings and reviews.

• Extensive experiments are conducted on three datasets to
verify the superiority of ReHCL over strong baselines.

Preliminaries and Related Work
Let U = {u1, u2, ..., uM} and I = {i1, i2, ..., iN} be the set
of users and items, respectively. Each interaction between
users and items can be defined as a tuple (u, i, yu,i, du,i),
where yu,i denotes the interaction that user u has rated item i
and du,i is the review comment that u described i. Let P+ =
{yu,i|u ∈ U , i ∈ I} denote the observed rating interactions.
Definition 1: User-item Rating Graph. The user-item
graph GR = (VR, ER) indicates rating interactions between
users and items. VR = U ∪ I are the initial nodes involving
all the users and items. ER is the set of edges (ER = P+).
Definition 2: Topic Graph and Semantic Graph. Topic
graph G1 is composed of the user-user topic graph G1

u =
(V1

u, E1
u) and item-item topic graph G1

i = (V1
i , E1

i ). G1
u (or

G1
i ) records topic relations between users (or items), where

the node set V1
u (or V1

i ) indicates all the users (or items) and
the edge set E1

u (or E1
i ) denotes topic similarities between

nodes. Analogously, we obtain semantic graph G2
u, consist-

ing of user-user graph G2
u = (V2

u, E2
u) and item-item graph

G2
i = (V2

i , E2
i ), retaining semantic relations.

Graph-based Recommender Systems
Graph Neural Network. Graph Neural Networks
(GNNs) introduce propagation or diffusion mechanism
(Wang et al. 2019) to capture graph-structured knowledge
(Berg, Kipf, and Welling 2017; Velickovic et al. 2017).
Recent studies concentrate on converting reviews into graph
structures, such as word-level graphs (Liu et al. 2021b),
review-level graphs (Gao et al. 2020), and document-level
graphs (Liu et al. 2020c; Zhu et al. 2020). They then employ
GNNs to distill node-based or graph-based features from
these graph-structured review patterns.

Graph Contrastive Learning. Graph Contrastive Learn-
ing (GCL) encourages the same node in different views to
stay close to each other in the embedding space (Zhu et al.
2021; Zang et al. 2023). This enables self-discrimination of
node representations in an unsupervised way and supple-
ments the supervised task with the unlabeled data (Yu et al.
2021; Shuai et al. 2022). For example, SGL (Wu et al. 2021)
designs three graph-based data augmentation operators, i.e.,
node dropout, edge dropout, and random walk, to reinforce
node embeddings along the user-item graph.
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Review-based Recommender Systems
Topic-level Methods. Topic-level methods use topic
model (Bao, Fang, and Zhang 2014; Cheng et al. 2018) to
extract topic factors from reviews. Typical works, such as
HFT (McAuley and Leskovec 2013) and RBLT (Tan et al.
2016), introduce LDA (Blei, Ng, and Jordan 2003) to in-
fer topic distributions of reviews. Despite their success in
tapping into topical cues, they generally portray reviews
as shallow features at the phrase level and thereby remain
oblivious of plentiful semantic contents (Dong et al. 2020).

Semantic-level Methods. Semantic-level methods evalu-
ate contextual information from reviews to capture semantic
features (Choi et al. 2022). Achievable technical routes fo-
cus on deep network paradigm, containing CNNs (Zheng,
Noroozi, and Yu 2017; Liu et al. 2019) and RNNs (Li et al.
2019). Moreover, recent BERT-based works (Devlin et al.
2018; Reimers and Gurevych 2019; Su et al. 2021) fine-tune
Transformer (Vaswani et al. 2017) to encode abundant re-
views and leverage multi-head self-attention to capture the
contextual features. In this paper, we select the BERT-based
model as the basic unit to exploit review texts in the seman-
tic view and obtain semantic representations.

ReHCL
Figure 2 shows an overview of ReHCL, which jointly com-
bines Cross-View Graph Contrastive Learning (CVGCL)
and Cross-Modal Contrastive Learning (CMCL).

Graph Construction and Encoder
Topic Graph Construction. Given the set of reviews
written by user u, we concatenate them as the user docu-
ment Du. Here, we adopt LDA (Blei, Ng, and Jordan 2003)
to extract the topic distribution of dimension K, where each
dimension reveals a probability that user u enjoys a certain
topic. This process is formulated as:

θu = {θ1u, θ2u, ..., θKu } = LDA(Du). (1)

Then his topic preference is judged with the largest rele-
vance probability (e.g., θku) to finalize the topic factor. This
helps recognize the nub of review contents. We connect any
two similar users with the same topic factor to construct the
user-user topic graph G1

u, as shown in Figure 1(a). How-
ever, users’ preferences are multi-faceted when considering
fine-grained descriptions in reviews (Zhao et al. 2020), e.g.,
theme, author, scene in Book domain. Hence, we pick out
diversified factors to depict fine-grained procedures with the
largest relevance probabilities (the number of topic factors
larger than 2) and extend the topic graph to multi-aspect pat-
terns. This also makes us easier to attach possible edges be-
tween similar users to explore diverse potential connections.
Analogously, we obtain the item-item topic graph G1

i .

Semantic Graph Construction. To portray the whole
context in reviews, we introduce siamese BERT networks
(Reimers and Gurevych 2019) to encode review text. Each
user-generated item review contributes to the user’s inter-
ests, but only the significant ones play a more important role.

Hence we utilize mean operation and max-pooling (Wang
et al. 2022) to manufacture semantic embeddings:

pu =
1

|Du|
∑
i∈Du

pu,i +MaxPooling(pu,1, ...,pu,|Du|),

(2)

where Du is a set of items that user u has reviewed. To match
the semantic relation between two users, we measure cosine
similarity between embeddings of users u and u′:

Sim(u, u′) = ReLU(
pupu′

∥pu∥ ∥pu′∥
), (3)

where Sim(.) is similarity function. We then compute the
similarities between all users and produce semantic edges
with the top-Q cosine values (Liu et al. 2020c), building the
user-user semantic graph G2

u as shown in Figure 1(b). Anal-
ogously, we obtain the item-item semantic graph G2

i .

Graph Encoder We encoder initial nodes [e
(0)
v ]v∈U∪I

and aggregate their neighbors to promote message propaga-
tion. For target node v at lth propagation layer, we aggregate
the embeddings of neighbor nodes to update the embeddings
of the target node iteratively. Here, we select the simple but
effective LightGCN (He et al. 2020) as the encoder:

e(l+1)
v =

∑
j∈Nv

1√
|Nv∥Nj |

e
(l)
j , (4)

where 1√
|Nv∥Nj |

is a symmetric normalization constant. Nv

and Nj denote the neighbors of v and j. The matrix form
propagation rule can be described as follows:

E(l+1) = LE(l), (5)

where L is the Laplacian matrix of the target graph. After
obtaining L layer embeddings, the graph encoding adopts
average function to produce the high-order representations:

E =
1

L+ 1

L∑
l=0

E(l), (6)

In addition, we also choose other graph encoders to compare
with LightGCN in the experimental part.

Cross-View Graph Contrastive Learning
Embedding-based Data Augmentation. Following the
previous step, we generate two types of review representa-
tions (E1 and E2) by encoding topic and semantic graphs,
respectively. Since our design generates two different views,
we develop an embedding-based augmentation to improve
the robustness of the model. Compared with graph-based
augmentation which revises the topological structure on the
original graph, embedding-based augmentation revamps the
learned propagated embeddings during the graph encoding
process. Specifically, we adopt the random dropout strategy
(Srivastava et al. 2014) to independently handle these two
views, and the process is formulated as follows:

Ẽ1 = Dropout(BatchNorm(E1), γ), (7)

Ẽ2 = Dropout(BatchNorm(E2), γ), (8)
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Figure 2: Overview of the proposed review-enhanced hierarchical contrastive learning.

where Ẽ1 and Ẽ2 indicate augmented data from topic and
semantic views, respectively. BatchNorm accelerates neu-
ral network training. Dropout randomly discards some ob-
ject of embeddings with the probability γ.

Graph Contrastive Learning. GCL enforces the agree-
ment between the same node representations from differ-
ent views while promoting the divergence between differ-
ent nodes. Formally, we follow InfoNCE (Oord, Li, and
Vinyals 2018) to define contrastive loss and maximize the
similarity of positive pair (i,e,. {(ẽ1v, ẽ2v)|v ∈ {U ∪I}}) and
minimize that of the negative pairs (i,e,. {(ẽ1v, ẽ2v′)|v, v′ ∈
{U ∪ I}, v ̸= v′}):

Lgcl =
∑

v∈{U∪I}

− log
exp(sim(ẽ1v, ẽ

2
v)/τ)∑

v′∈{U∪I}
exp(sim(ẽ1v, ẽ

2
v′)/τ)

,

(9)

where sim(·) is the discriminator which computes the simi-
larity between two vectors. τ is a temperature parameter. By
extracting self-supervised signals from unlabeled data over
two different views, GCL accomplishes self-discrimination
of review information and enhances review representations.

Neighbor-based Positive Sampling. The aforementioned
loss only notes positive pairs for different views and ne-
glects the intra-view positive samples, which leads to ineffi-
cient contrast, as the two graphs constructed from the same
sources of review data share similar graph-structured sig-
nals. This enables us to find a flexible principle: if an anchor
node has the same neighbor node in different views, then we
take the same neighbor node as its positive samples.

For example, the sample pair (u6,u5) from Figure 3 can
be regarded as an intra-view positive pair since the node u6
in different views has the same 1-hop neighbor u5. Marking
strongly related intra-view nodes as positive samples will

pull together their embeddings in the latent space. Hence,
this sampling strategy connects the anchor node and its sim-
ilar neighbors to strengthen positive samples and expand the
applicability of graph contrastive learning. Finally, we com-
bine intra-view positive pairs (i,e,. {(ẽ1v, ẽ1v+)|v+ ∈ N+

v })
and inter-view positive pair (i,e,. {(ẽ1v, ẽ2v)|v ∈ {U ∪ I}})
to update the graph contrastive loss:

Lgcl =
∑

v∈{U∪I}

− log


inter-view positive pair︷ ︸︸ ︷

exp(sim(ẽ1
v, ẽ

2
v)/τ)∑

v′∈{U∪I}
exp(sim(ẽ1

v, ẽ
2
v′)/τ)

+

intra-view positive pairs︷ ︸︸ ︷∑
v+∈N+

v

exp(sim(ẽ1
v, ẽ

1
v+/τ)∑

v′∈{U∪I}
exp(sim(ẽ1

v, ẽ
2
v′)/τ)

 ,

(10)

where N+
v denotes the same neighbors of node v in two

different views. We combine user side Luser
gcl and item side

Litem
gcl to generate GCL loss as Lgcl = Luser

gcl + Litem
gcl .

Cross-Modal Contrastive Learning
Having producing e1v and e2v , we concatenate them as the
final review representation erev = [e1v||e2v]. Meanwhile, we
apply LightGCN to encode the user-item graph GR and ob-
tain the rating representations erav . Motivated by the su-
periority of CLIP (Radford et al. 2021) and CrossCLR
(Zolfaghari et al. 2021) to explore cross-modal paired data,
we design a cross-modal contrastive learning network to ex-
plore the association between ratings and reviews.

Since ratings and reviews are two different structures of
data, the information contained in a review cannot be fully

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9110



Intra-view Positive Pair

𝑢1 𝑢3

𝑢4 𝑢6

𝑢2

𝑢5

𝑢1 𝑢3

𝑢4 𝑢6

𝑢2

𝑢5

𝑢1 𝑢3

𝑢4 𝑢6

𝑢2

𝑢5

𝑢1 𝑢3

𝑢4 𝑢6

𝑢2

𝑢5

View 1: Topic Graph

View 2: Semantic Graph

Inter-view Positive PairThe same neighbor of   𝑢6

Figure 3: A toy example of neighbor-based positive samples.

presented in a rating. Thus, we introduce a projection func-
tion to map erev to another latent space as ẽrev via a MLP:

ẽrev = MLP (erev ). (11)
Aiming to mine similar signals between different modali-

ties, we weaken the impact of negative samples on loss func-
tion distinguishing from the original InfoNCE:

Lcro =
∑

v∈U/I

− log
exp(sim(erav , ẽrev )/τ)

exp(sim(erav , ẽrev )/τ) + ρNeg
,

(12)

where Neg =
∑

v′∈{U∪I},v′ ̸=v exp(sim(erav , ẽrev′ )/τ) in-
dicates negative pairs. ρ is a hyper-parameter that controls
the strength of negative samples. Through our design, the
representations of these two modalities are similar but still
retain their individual information. Specifically, we combine
user side Luser

cro and item side Litem
cro to obtain cross-modal

contrastive objective as Lcro = Luser
cro + Litem

cro .

Prediction
We sum two generated modalities (erav and erev ) to manu-
facture the final representations of users and items, namely
eu and ei. Then we employ the inner product to infer the
predicted rating that user u would give target item i:

ŷu,i = eue
⊤
i . (13)

Here, the item recommendation is typically presented as a
supervised learning task with the supervision signals coming
from the observed interactions P+. The Bayesian Personal-
ized Ranking (BPR) loss (Rendle et al. 2012) can be adopted
as our optimization benchmark:

Lrec =
∑

(u,i,j)∈P

− lnσ(ŷu,i − ŷu,j), (14)

where P = {(u, i, j)|(u.i) ∈ P+, (u.j) ∈ P−} is training
set and P− = U×I/P+ is a set of unobserved interactions.

Finally, we combine the recommendation task and two
contrastive learning tasks to form a joint learning objective:

L = Lrec + β1Lgcl + β2Lcro + β3||Θ||22, (15)
where β1 and β2 are two hyperparameters that control the
strength of CVGCL and CMCL. β3 is the weight of regular-
ization term ||Θ||22 and Θ denotes model parameters.

Dataset #Users #Items #Interactions Density

Instrument 1,429 900 10,261 0.798%
Music 5,541 3,568 64,706 0.327%
Toy 19,412 11,924 167,597 0.072%

Table 1: Statistics of datasets.

Experiments
Experimental Settings

Dataset. We evaluate our model on Amazon dataset
(McAuley and Leskovec 2013)1, which contains ratings and
user-generated reviews. Following previous studies (Chen
et al. 2018; Shuai et al. 2022), we randomly split the
user–item pairs of each dataset into 80% training set, 10%
validation set, and 10% testing set. The detailed statistics of
the datasets are summarized in Table 1.

Evaluation Metric. To evaluate the top-N recommenda-
tion performance, we employ three widely used metrics: Hit
Ratio (HR), Mean Reciprocal Rank (MRR), and Normalized
Discounted Cumulative Gain (NDCG). We run each experi-
ment five times and report the average results.

Comparison Baselines. We compare our ReHCL with
different lines of item recommendation methods.

• Rating-based GNN uses GNNs to model user-item
rating interactions, such as GC-MC (Berg, Kipf, and
Welling 2017), GCN (Kipf and Welling 2016), NGCF
(Wang et al. 2019), and LightGCN (He et al. 2020).

• Rating-based GCL uses GCL to exploit the user-item
rating graph, such as SGL (Wu et al. 2021).

• Review-based topic adopts statistical models to infer
review-based topic factors, such as TopicMF (Bao, Fang,
and Zhang 2014) and ALFM (Cheng et al. 2018).

• Review-based CNN mainly designs CNNs to encode
user-generated reviews, such as DeepCoNN (Zheng,
Noroozi, and Yu 2017) and NARRE (Chen et al. 2018).

• Review-based GNN transforms reviews into semantic
connectivity to construct graphs, such as HGNR (Liu
et al. 2020c) and SSG (Gao et al. 2020).

• Review-based GCL proposes RGCL (Shuai et al. 2022)
that combines review-enhanced edges with rating-based
edges to produce self-supervised signals.

Implementation Details. ReHCL is implemented with
Tensorflow. We adopt Adam optimizer with an initial learn-
ing rate of 10−3. The layer number is 3 and the embedding
size is 64. We used the L2 regularization and its weight β3 is
set to 10−4. Each observed user-item interaction in the train-
ing stage is defined as a positive sample, and then a negative
item that the user has never interacted with is sampled.

1http://jmcauley.ucsd.edu/data/amazon/
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Model Instrument Music Toy
H@10 M@10 N@10 H@10 M@10 N@10 H@10 M@10 N@10

(1) Rating-based GNN
GC-MC 0.2451 0.0682 0.1080 0.4614 0.1609 0.2308 0.3304 0.1237 0.1717
NGCF 0.2500 0.0957 0.1317 0.4729 0.1854 0.2523 0.3379 0.1428 0.1841

LightGCN 0.2661 0.0933 0.1336 0.4839 0.2156 0.2783 0.3459 0.1478 0.1906

(2) Rating-based GCL SGL 0.2773 0.0941 0.1367 0.4889 0.2170 0.2794 0.3549 0.1507 0.2044

(3) Review-based topic TopicMF 0.2969 0.1118 0.1575 0.4408 0.1765 0.2381 0.2796 0.1072 0.1472
ALFM 0.3249 0.1419 0.1849 0.4848 0.1946 0.2618 0.3090 0.1218 0.1653

(4) Review-based CNN DeepCoNN 0.3213 0.1427 0.1847 0.5376 0.2505 0.3180 0.3478 0.1427 0.1905
NARRE 0.3432 0.1492 0.2033 0.5647 0.2637 0.3346 0.3617 0.1493 0.1987

(5) Review-based GNN SSG 0.2605 0.0853 0.1259 0.4733 0.1944 0.2596 0.3469 0.1476 0.1919
HGNR 0.2780 0.0999 0.1414 0.4958 0.2232 0.2873 0.3692 0.1556 0.2091

(6) Review-based GCL RGCL 0.2731 0.0914 0.1335 0.4935 0.2042 0.2717 0.3636 0.1531 0.2049

(7) OURS ReHCL 0.3936* 0.1612* 0.2155* 0.6116* 0.2797* 0.3570* 0.3885* 0.1833* 0.2313*
Improv. 14.68% 8.03% 6.00% 8.30% 6.07% 6.71% 5.23% 17.80% 10.62%

Table 2: Performance results. The row of ”Improv.” indicates the improvement of the best result of ReHCL (boldface) compared
with the best baseline (underscore). * indicates the statistical significance for p < 0.05 compared with the best baseline.

Performance Comparison
We compare the performance of ReHCL with six types of
typical methods for item recommendation. Table 2 sum-
marizes the detailed results on three datasets in terms
of HR@10 (H@10), MRR@10 (M@10), and NDCG@10
(N@10). First, review-based baselines (Table 2 (3)-(6)) ex-
cel rating-based baselines (Table 2 (1)-(2)) baselines with
the average improvements of 5.50% H@10, 11.46% M@10,
and 9.49% N@10, illustrating the effectiveness of review
knowledge. Besides, exploiting high-order signals along the
review-based graph structure can generally exert a favor-
able impact on the performance. Especially, these review-
enhanced graph-based baselines (Table 2 (5)-(6)) jointly
capture multi-hop collaborative signals between ratings and
reviews, surpassing other graph-based baselines (Table 2
(1)-(2)) that only model user-item rating interactions. Lastly,
we observe relative improvements on three datasets for Re-
HCL of 24.83% H@10, 37.27% M@10, and 31.74% N@10
on average, compared to all the baselines. It also reveals the
efficacy of distilling useful rating and review knowledge by
fusing CVGCL and CMCL jointly.

Ablation Study
Effect of Graph Structures We evaluate the influence of
different graphs of ReHCL (i.e., GR, G1

u, G1
i , G2

u, and G2
i ),

as shown in Table 3. First, Table 3 (3) simultaneously cap-
tures topic and semantic relations and establishes GCL with
the improvement of at least 8.91%, compared to Table 3 (2)
only recording a single view. Next, Table 3 (4) has better
performance than a single modality (Table 3 (1) and (2)) by
aligning a single view of review representations with the rat-
ing part. In addition, we discover that both user and item
sides (Table 3 (5)) contribute to the performance by assem-
bling user-user and item-item graphs derived from reviews

Graph Instrument Music Toy
(1) GR 0.2941 0.4897 0.3483

(2) G1
u + G1

i 0.2906 0.4847 0.3371
G2
u + G2

i 0.2808 0.4523 0.3147
(3) G1

u + G1
i + G2

u + G2
i 0.3165 0.5121 0.3469

(4) GR + G1
u + G1

i 0.3242 0.5531 0.3541
GR + G2

u + G2
i 0.3522 0.5782 0.3657

(5) GR + G1
u + G2

u 0.3789 0.5848 0.3799
GR + G1

i + G2
i 0.3817 0.5830 0.3733

(6) ReHCL 0.3936 0.6116 0.3885

Table 3: Comparison of different graphs in terms of HR@10.
The results with the best performance are marked in bold.

to fill in sparse rating interactions. At last, the proposed Re-
HCL (Table 3 (6)) achieves the best gains by skillfully fusing
these different types of graphs above.

Effect of Contrastive Learning Figure 4 shows the re-
sults of encoding graphs without contrastive learning (w/o
CL), and discarding CVGCL and CMCL (w/o CVGCL, w/o
CMCL). The remarkable gains of w/o CVGCL and w/o
CMCL compared to w/o CL reveal that both contrastive
parts produce a positive effect of recommendation. More-
over, the hierarchical model ReHCL is conducive to perfor-
mance gain by mixing two types of contrastive learning and
generating different levels of self-supervised signals.

Model Study
Effect of Graph Encoder. We replace the graph encoder
of ReHCL with GCN (Kipf and Welling 2016) and NGCF
(Wang et al. 2019) to obtain the variants ReHCL GCN and
ReHCL NGCF. The results are illustrated in Table 4 (1). Re-
HCL outperforms ReHCL GCN and ReHCL NGCF. This is
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Figure 4: Performance comparison over different contrastive
learning tasks on M@10 and N@10.

mainly because LightGCN only preserves the most essential
component in GCN , namely neighborhood aggregation, to
simplify graph structure.

Effect of Embedding-based Data Augmentation. We try
different ways of data augmentations to demonstrate their
impacts. ReHCL NA is defined as no augmentation. Re-
HCL ED and ReHCL ND refer to edge and node dropout
of the graph-based augmentation, randomly discarding some
edges and nodes with a ratio γ by revising the original graph.

EdgeDropout : G̃ = ED(G) = (V,D1 ⊙ E), (16)

NodeDropout : G̃ = ND(G) = (D2 ⊙ V , E), (17)

where D1 ∈ {0, 1}|E| and D2 ∈ {0, 1}|V| denote masking
vectors by operating edge set E and node set V to produce
augmented graphs G̃. The results in Table 4 (2) reveal the
embedding-based augmentation achieves relative gain over
the three ways above. We put the performance gains down
to two main reasons. First, the message dropout strategy it-
self can prevent over-fitting of graph embedding. Further,
by varying the learned embeddings to enrich the representa-
tions of nodes, embedding-based augmentation withstands
more disturbances during the message-passing process and
improves the robustness of ReHCL.

Effect of Neighbor-based Positive Sampling. To assess
the effect of the neighbor-based positive sampling strategy,
we compare it to typical InfoNCE (ReHCL Info). The re-
sults in Table 4 (3) show that in contrast to ReHCL Info,
enforcing intra-view positive sampling upgrades contrastive
capability by incorporating similar neighbor nodes into pos-
itive pairs. This is largely due to two factors. First, explor-
ing positive nodes from similar neighbor nodes preserves
original graph-structured information. Marking these related
intra-view nodes as positive samples relieves inefficient con-
trast that only considers positive pairs from different views.
In addition, strengthening positive samples conversely re-
duces false negative samples existing in the InfoNCE esti-
mator and helps weaken the noise information.

Effect of Hyper-parameters
Topic Factor. We vary the number of latent factors (K)
to evaluate the effect of topics in Figure 5 (a). Overall, the
performance remains relatively stable within a certain mar-
gin, demonstrating ReHCL is insensitive to topic numbers.

Model Instrument Music Toy

(1) ReHCL GCN 0.3578 0.5601 0.3484
ReHCL NGCF 0.3690 0.5831 0.3606

(2)
ReHCL NA 0.3873 0.6031 0.3788
ReHCL ED 0.3898 0.6022 0.3821
ReHCL ND 0.3824 0.5951 0.3785

(3) ReHCL Info 0.3908 0.6042 0.3806
(4) ReHCL 0.3936 0.6116 0.3885

Table 4: Comparison of variants in terms of H@10.
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(a) Topic number on M@10 (left) and N@10 (right)

2 3 4 5 6 7

0.20
0.24
0.28
0.32
0.36
0.40
0.44 Instrument Music Toy

(b) Layer number on N@10

Instrument Toy Music
0.10

0.15

0.20

0.25

0.30

0.35 d=8
d=16
d=32

d=64
d=128
d=256

(c) Embedding size on N@10

Figure 5: Performance results of hyper-parameters.

But too many topics easily confuse the user’s intention when
there are few subjects of interest to this user.

Layer Number. To investigate the impacts of multiple em-
bedding propagation layers, we experiment with different
model depths. Figure 5 (b) summarizes the results that the
performance increases as layer number grows by capturing
high-order signals. However, performance deteriorates when
the layer number is larger than 6. This is mainly due to the
over-smoothing issue (Liu et al. 2021a) that the embeddings
of nodes get closer together until they become indistinguish-
able as stacking more layers.

Embedding Size. From Figure 5 (c), the suitable size of
embedding parameters boosts the recommendation perfor-
mance. However, sparse features assigned by too large em-
bedding sizes (e.g., d > 64) are likely to lead to over-fitting
problems and the performance starts to decline.

Conclusion
We proposed a graph-based learning paradigm ReHCL to
effectively capture review knowledge and reduce redundant
noise by combining cross-view and cross-modal contrastive
learning efficiently. This process allowed us to generate
high-quality representations to enhance the performance of
item recommendation.
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